272 research outputs found

    Broadband Records of Earthquakes in Deep Gold Mines and a Comparison with Results from SAFOD, California

    Get PDF
    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter Rv, where v is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6:3 m=sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4:0 m=sec

    Validation of T2* in-line analysis for tissue iron quantification at 1.5 T.

    Get PDF
    BACKGROUND: There is a need for improved worldwide access to tissue iron quantification using T2* cardiovascular magnetic resonance (CMR). One route to facilitate this would be simple in-line T2* analysis widely available on MR scanners. We therefore compared our clinically validated and established T2* method at Royal Brompton Hospital (RBH T2*) against a novel work-in-progress (WIP) sequence with in-line T2* measurement from Siemens (WIP T2*). METHODS: Healthy volunteers (n = 22) and patients with iron overload (n = 78) were recruited (53 males, median age 34 years). A 1.5 T study (Magnetom Avanto, Siemens) was performed on all subjects. The same mid-ventricular short axis cardiac slice and transaxial slice through the liver were used to acquire both RBH T2* images and WIP T2* maps for each participant. Cardiac white blood (WB) and black blood (BB) sequences were acquired. Intraobserver, interobserver and interstudy reproducibility were measured on the same data from a subset of 20 participants. RESULTS: Liver T2* values ranged from 0.8 to 35.7 ms (median 5.1 ms) and cardiac T2* values from 6.0 to 52.3 ms (median 31 ms). The coefficient of variance (CoV) values for direct comparison of T2* values by RBH and WIP were 6.1-7.8 % across techniques. Accurate delineation of the septum was difficult on some WIP T2* maps due to artefacts. The inability to manually correct for noise by truncation of erroneous later echo times led to some overestimation of T2* using WIP T2* compared with the RBH T2*. Reproducibility CoV results for RBH T2* ranged from 1.5 to 5.7 % which were better than the reproducibility of WIP T2* values of 4.1-16.6 %. CONCLUSIONS: Iron estimation using the T2* CMR sequence in combination with Siemens' in-line data processing is generally satisfactory and may help facilitate global access to tissue iron assessment. The current automated T2* map technique is less good for tissue iron assessment with noisy data at low T2* values

    Splitting or lumping? A conservation dilemma exemplified by the critically endangered Dama Gazelle (Nanger dama)

    Get PDF
    Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions

    Hosts elevate either within-clutch consistency or between-clutch distinctiveness of egg phenotypes in defence against brood parasites

    Get PDF
    In host-parasite arms races, hosts can evolve signatures of identity to enhance the detection of parasite mimics. In theory, signatures are most effective when within-individual variation is low ('consistency'), and between-individual variation is high ('distinctiveness'). However, empirical support for positive covariation in signature consistency and distinctiveness across species is mixed. Here, we attempt to resolve this puzzle by partitioning distinctiveness according to how it is achieved: (i) greater variation within each trait, contributing to elevated 'absolute distinctiveness' or (ii) combining phenotypic traits in unpredictable combinations ('combinatorial distinctiveness'). We tested how consistency covaries with each type of distinctiveness by measuring variation in egg colour and pattern in two African bird families (Cisticolidae and Ploceidae) that experience mimetic brood parasitism. Contrary to predictions, parasitized species, but not unparasitized species, exhibited a negative relationship between consistency and combinatorial distinctiveness. Moreover, regardless of parasitism status, consistency was negatively correlated with absolute distinctiveness across species. Together, these results suggest that (i) selection from parasites acts on how traits combine rather than absolute variation in traits, (ii) consistency and distinctiveness are alternative rather than complementary elements of signatures and (iii) mechanistic constraints may explain the negative relationship between consistency and absolute distinctiveness across species.Peer reviewe

    Dehydration risk is associated with reduced nest attendance and hatching success in a cooperatively breeding bird, the southern pied babbler Turdoides bicolor

    Get PDF
    incubation in birds. Understanding the mechanisms driving these impacts requires comprehensive knowledge of animal physiology and behaviour under natural conditions. We used a novel combination of a non-invasive doubly labelled water (DLW) technique, nest temperature data and field-based behaviour observations to test effects of temperature, rainfall and group size on physiology and behaviour during incubation in southern pied babblers Turdoides bicolor, a cooperatively breeding passerine endemic to the arid savanna regions of southern Africa. The proportion of time that clutches were incubated declined as air temperatures increased, a behavioural pattern traditionally interpreted as a benefit of ambient incubation. However, we show that (i) clutches had a <50% chance of hatching when exposed to daily maximum air temperatures of >35.3◦C; (ii) pied babbler groups incubated their nests almost constantly (99% of daylight hours) except on hot days; (iii) operative temperatures in unattended nests frequently exceeded 40.5◦C, above which bird embryos are at risk of death; (iv) pied babblers incubating for long periods of time failed to maintain water balance on hot days; and (v) pied babblers from incubating groups lost mass on hot days. These results suggest that pied babblers might leave their nests during hot periods to lower the risk of dehydration associated with prolonged incubation at high operative temperatures. As mean air temperatures increase and extreme heat events become more frequent under climate change, birds will likely incur ever greater thermoregulatory costs of incubation, leading to compromised nest attendance and increased potential for eggs to overheat, with implications for nest success and, ultimately, population persistence.Australian Research Council, BBSRC David Phillips Fellowship, e British Ornithologists’ Union, DST-NRF Centre of Excellence, Oppenheimer Memorial Trust and University of Cape Town and the National Research Foundation of South Africa.http://conphys.oxfordjournals.orgdm2022Zoology and Entomolog

    Role of Activins in Hepcidin Regulation during Malaria

    Get PDF
    ABSTRACT Epidemiological observations have linked increased host iron with malaria susceptibility, and perturbed iron handling has been hypothesized to contribute to the potentially life-threatening anemia that may accompany blood-stage malaria infection. To improve our understanding of these relationships, we examined the pathways involved in regulation of the master controller of iron metabolism, the hormone hepcidin, in malaria infection. We show that hepcidin upregulation in Plasmodium berghei murine malaria infection was accompanied by changes in expression of bone morphogenetic protein (BMP)/sons of mothers against decapentaplegic (SMAD) pathway target genes, a key pathway involved in hepcidin regulation. We therefore investigated known agonists of the BMP/SMAD pathway and found that Bmp gene expression was not increased in infection. In contrast, activin B, which can signal through the BMP/SMAD pathway and has been associated with increased hepcidin during inflammation, was upregulated in the livers of Plasmodium berghei -infected mice; hepatic activin B was also upregulated at peak parasitemia during infection with Plasmodium chabaudi . Concentrations of the closely related protein activin A increased in parallel with hepcidin in serum from malaria-naive volunteers infected in controlled human malaria infection (CHMI) clinical trials. However, antibody-mediated neutralization of activin activity during murine malaria infection did not affect hepcidin expression, suggesting that these proteins do not stimulate hepcidin upregulation directly. In conclusion, we present evidence that the BMP/SMAD signaling pathway is perturbed in malaria infection but that activins, although raised in malaria infection, may not have a critical role in hepcidin upregulation in this setting. </jats:p

    Highly virulent avian brood-parasitic species show elevated embryonic metabolic rates at specific incubation stages compared to less virulent and non-parasitic species

    Get PDF
    As the avian embryo grows and develops within the egg, its metabolic rate gradually increases. Obligate avian brood-parasitic birds lay their eggs in the nests of other species to avoid the costs of parental care, and all but one of these brood-parasitic species are altricial at hatching. Yet the chicks of some altricial brood-parasitic species perform the physically demanding task of evicting, stabbing or otherwise killing host progeny within days of hatching. This implies a need for high metabolic rates in the embryo, just as precocial species require. Using flow-through respirometry in situ, we investigated embryonic metabolic rates in diverse avian brood parasite lineages which either kill host offspring (high virulence) or share the nest with host young (low virulence). High-virulence brood parasite embryos exhibited higher overall metabolic rates than both non-parasitic (parental) species and low-virulence parasites. This was driven by significantly elevated metabolic rates around the halfway point of incubation. Additionally, a fine-scale analysis of the embryos of a host–parasitic pair showed faster increases in metabolic rates in the parasite. Together these results suggest that the metabolic patterns of the embryos of high-virulence parasites facilitate their early-life demands

    Chase-away evolution maintains imperfect mimicry in a brood parasite-host system despite rapid evolution of mimics.

    Get PDF
    We studied a brood parasite-host system (the cuckoo finch Anomalospiza imberbis and its host, the tawny-flanked prinia Prinia subflava) to test (1) the fundamental hypothesis that deceptive mimics evolve to resemble models, selecting in turn for models to evolve away from mimics ('chase-away evolution') and (2) whether such reciprocal evolution maintains imperfect mimicry over time. Over only 50 years, parasites evolved towards hosts and hosts evolved away from parasites, resulting in no detectible increase in mimetic fidelity. Our results reflect rapid adaptive evolution in wild populations of models and mimics and show that chase-away evolution in models can counteract even rapid evolution of mimics, resulting in the persistence of imperfect mimicry. [Abstract copyright: © 2023. The Author(s).
    corecore