1,642 research outputs found
Sistema de gerenciamento de informações laboratoriais Infolab.
Requisitos do sistema InfoLab. Principais funcionalidades do InfoLab. Resultados e trabalhos futuros.bitstream/item/76630/1/CNPTIA-COM.TEC.-3-99.pd
Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering
Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates
Weathering of evaporites: natural versus anthropogenic signature on the composition of river waters
Weathering of evaporites strongly influences the chemistry of continental runoff, making surface waters poorly exploitable for civil uses. In south-central Sicily, this phenomenon is worsened by the occurrence of abandoned landfills of old sulphur and salt mines. The industrial evolution of the Bosco-S. Cataldo mining site leaved two landfills from the early exploitation of a sulphur mine followed by that of a kainite deposit. In particular, the weathering of these landfills leads the dissolved salt (TDS) values up to about 200 g l−1 in the Stincone–Salito Stream waters. This process induces the V, Cr and Fe desorption from sediments and particulates in the aqueous phase under reducing conditions. At the same time, the weathering of salt minerals releases Rb and Cs, originally contained in halite. The overall processes lead to the V, Cr, Fe, Rb and Cs enrichment of waters from the Stincone–Salito Stream system accompanied by a sharp growth of As content, up to about 13 µg l−1, caused by As release from Fe-bearing solids due to the high salinity. Therefore, the scenario of the weathering of Bosco-S. Cataldo mine landfills depicts an environment strongly influenced by effects of the growing salinity and euxinic water conditions where the attained TDS, Eh and pH conditions reduce the natural scavenging capability of the interested river system, favouring a growth of residence time of toxic elements in river waters
A Comparison of Computerized Chemical Models for Equilibrium Calculations in Aqueous Systems
A survey of computer programs which are currently being used to calculate the distribution of species in aqueous solutions, especially natural waters, has been made in order to 1) provide an inventory of available programs with a short description of their uses, 2) compare the consistency of their output for two given test solutions and 3) identify major weaknesses or problems encountered from their use. More than a dozen active programs which can be used for distribution of species and activity calculations for homogeneos equilibria among the major anions and cations of natural waters have been inventoried. Half of these programs can also accept several trace elements including Fe, Al, Mn, Cu, Ni, Zn, Cd, Pb, Ag, Hg, As, Ba, Sr, and B. Consistency between programs was evaluated by comparing the log of the molal concentrations of free ions and complexes for two test solutions: a hypothetical seawater analysis and a hypothetical river water analysis. Comparison of the free major ion concentrations in the river water test case shows excellent agreement for the major species. In the seawater test case there is less agreement and for both test cases the minor species commonly show orders of magnitude differences in concentrations. These differences primarily reflect differences in the thermodynamic data base of each chemical model although other factors such as activity coefficient calculations, redox assumptions, temperature corrections, alkalinity corrections and the number of complexes used all have an affect on the output
Basic functionality of a prototype wearable assistive soft exoskeleton for people with gait impairments : a case study
XoSoft is a soft modular wearable assistive exoskeleton for peo- ple with mild to moderate gait impairments. It is currently being developed by a European Consortium (www.xosoft.eu) and aims to provide tailored and active lower limb support during ambu- lation. During development, user-centered design principles were followed in parallel with the aim of providing functional support during gait. A prototype was developed and was tested for practi- cability, usability, comfort and assistive function (summarized as basic functionality) with a potential end user. The prototype con- sisted of a garment, electromagnetic clutch-controlled elastic bands supporting knee- and hip flexion and a backpack containing the sensor and actuator control of the system. The participant had ex- perienced a stroke and presented with unilateral impairment of the lower and upper extremities. In testing, he donned and doffed the prototype independently as far as possible, and performed walk- ing trials with the system in both active (powered on) and pas- sive (powered off) modes. Afterwards, the participant rated the perceived pressure and various elements of usability. Results high- lighted aspects of the system for improvement during future phases of XoSoft development, and also identified useful aspects of proto- type design to be maintained. The basic functionality of XoSoft could be assumed as satisfactory given that it was the first version of a working prototype. The study highlights the benefits of this participatory evaluation design approach in assistive soft robotics development
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Speciation of phosphorus in a fertilized, reduced-till soil system: in-field treatment incubation study
Citation: Khatiwada, Raju, Ganga M. Hettiarachchi, David B. Mengel, and Mingwei Fei. “Speciation of Phosphorus in a Fertilized, Reduced-Till Soil System: In-Field Treatment Incubation Study.” Soil Science Society of America Journal 76, no. 6 (2012): 2006–18. https://doi.org/10.2136/sssaj2011.0299.Phosphorus management in reduced-tillage systems is a great concern for farmers. Conclusive positive results of deep-banding P fertilizers compared with broadcast application and the chemistry of reduced-tillage systems remain unclear. Knowledge of the dominant solid P species present in soil following application of P fertilizers and the resulting potential P availability would help us understand and efficiently manage P in reduced-tillage systems. The objective of this research was to study the influence of placement (broadcast vs. deep-band P), fertilizer source (granular vs. liquid P), and time on the reaction products of P under field conditions. Changes in soil pH, resin-extractable P, total P, and speciation of P were determined at different distances from the point of fertilizer application at 5 wk and 6 mo after P application at a rate of 75 kg ha−1 to a soil system that was under long-term reduced tillage. Resin-extractable P was lower for broadcast treatments compared with deep-band treatments for both time periods. Resin-extractable P was greater in the liquid P-treated soils than in the granular P-treated soils. Speciation results showed that granular P fertilizers tended to form Fe–P-like forms, whereas liquid forms remained in adsorbed P-like forms in the soil 5 wk after application; moreover, speciation results showed granular P fertilizers precipitated less when deep-banded. During the 6-mo period following application, reaction products of broadcast granular, broadcast liquid, and deep-band granular fertilizers transformed to Ca-phosphate or mixtures of Ca-, Fe- and adsorbed-phosphate-like forms, whereas deep-band liquid P remained as mainly adsorbed P-like forms. Deep-banding of P would most likely provide a solution that is both agronomically and environmentally efficient for reduced-till farmers
Enrichment of trace elements in the clay size fraction of mining soils
Reactive waste dumps with sulfide minerals pro-
14 mote acid mine drainage (AMD), which results in water and
15 soil contamination by metals and metalloids. In these systems,
16 contamination is regulated by many factors, such as mineral-
17 ogical composition of soil and the presence of sorption sites
18 on specific mineral phases. So, the present study dedicates
19 itself to understanding the distribution of trace elements in
20 different size fractions (<2-mm and <2-μm fractions) of min-
21 ing soils and to evaluate the relationship between chemical
22 and mineralogical composition. Cerdeirinha and Penedono,
23 located in Portugal, were the waste dumps under study. The
24 results revealed that the two waste dumps have high degree of
25 contamination by metals and arsenic and that these elements
26 are concentrated in the clay size fraction. Hence, the higher
27 degree of contamination by toxic elements, especially arsenic
28 in Penedono as well as the role of clay minerals, jarosite, and
29 goethite in retaining trace elements has management implica-
30 tions. Such information must be carefully thought in the reha-
31 bilitation projects to be planned for both waste dumps
Advances in research on the use of biochar in soil for remediation: a review
Purpose: Soil contamination mainly from human activities remains a major environmental problem in the contemporary world. Significant work has been undertaken to position biochar as a readily-available material useful for the management of contaminants in various environmental media notably soil. Here, we review the increasing research on the use of biochar in soil for the remediation of some organic and inorganic contaminants. Materials and methods: Bibliometric analysis was carried out within the past 10 years to determine the increasing trend in research related to biochar in soil for contaminant remediation. Five exemplar contaminants were reviewed in both laboratory and field-based studies. These included two inorganic (i.e., As and Pb) and three organic classes (i.e., sulfamethoxazole, atrazine, and PAHs). The contaminants were selected based on bibliometric data and as representatives of their various contaminant classes. For example, As and Pb are potentially toxic elements (anionic and cationic, respectively), while sulfamethoxazole, atrazine, and PAHs represent antibiotics, herbicides, and hydrocarbons, respectively. Results and discussion: The interaction between biochar and contaminants in soil is largely driven by biochar precursor material and pyrolysis temperature as well as some characteristics of the contaminants such as octanol-water partition coefficient (KOW) and polarity. The structural and chemical characteristics of biochar in turn determine the major sorption mechanisms and define biochar’s suitability for contaminant sorption. Based on the reviewed literature, a soil treatment plan is suggested to guide the application of biochar in various soil types (paddy soils, brownfield, and mine soils) at different pH levels (4–5.5) and contaminant concentrations ( 50 mg kg−1). Conclusions: Research on biochar has grown over the years with significant focus on its properties, and how these affect biochar’s ability to immobilize organic and inorganic contaminants in soil. Few of these studies have been field-based. More studies with greater focus on field-based soil remediation are therefore required to fully understand the behavior of biochar under natural circumstances. Other recommendations are made aimed at stimulating future research in areas where significant knowledge gaps exist
Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks
After the scientific development of Biotic Ligand Models (BLMs) in recent decades these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The approach has been developed over several years and has been described in many peer-reviewed publications. The original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds and are also recommended as suitable concepts for the evaluation of monitoring data in the context of the European Water Framework Directive. Currently, several user-friendly BLM-based bioavailability software tools are available for assessing the aquatic toxicity of a limited number of metals (mainly copper, nickel, and zinc). These tools need only a basic set of water parameters as input (e.g., pH, hardness, dissolved organic matter and dissolved metal concentration). Such tools seem appropriate to foster the implementation in routine water quality assessments. This work aims to review the existing bioavailability-based regulatory approaches and the application of available BLM-based bioavailability tools for this purpose. Advantages and possible drawbacks of these tools (e.g., feasibility, boundaries of validity) are discussed, and recommendations for further implementation are given
- …
