514 research outputs found

    State College Times, February 6, 1934

    Get PDF
    Volume 22, Issue 67https://scholarworks.sjsu.edu/spartandaily/12958/thumbnail.jp

    Monazite behaviour during isothermal decompression in pelitic granulites: a case study from Dinggye, Tibetan Himalaya

    Get PDF
    Monazite is a key accessory mineral for metamorphic geochronology, but interpretation of its complex chemical and age zoning acquired during high-temperature metamorphism and anatexis remains a challenge. We investigate the petrology, pressure–temperature and timing of metamorphism in pelitic and psammitic granulites that contain monazite from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent isothermal decompression from pressure of >10 kbar to ~5 kbar at temperatures of 750–830 °C, and recorded three metamorphic stages at kyanite (M1), sillimanite (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were dated by microbeam techniques either as grain separates or in thin sections. U–Th–Pb ages are linked to specific conditions of mineral growth on the basis of zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural relationships with co-existing minerals. The results show that inherited domains (500–400 Ma) are preserved in monazite even at granulite-facies conditions. Few monazites or zircon yield ages related to the M1- stage (~30–29 Ma), possibly corresponding to prograde melting by muscovite dehydration. During the early stage of isothermal decompression, inherited or prograde monazites in most samples were dissolved in the melt produced by biotite dehydration-melting. Most monazite grains crystallized from melt toward the end of decompression (M3-stage, 21–19 Ma) and are chemically related to garnet breakdown reactions. Another peak of monazite growth occurred at final melt crystallization (~15 Ma), and these monazite grains are unzoned and are homogeneous in composition. In a regional context, our pressure–temperature–time data constrains peak high-pressure metamorphism within the GHC to ~30–29 Ma in Dinggye Himalaya. Our results are in line with a meltassisted exhumation of the GHC rocks

    Dating minerals by ID-TIMS geochronology at times of in situ analysis: selected case studies from the CPGeo-IGc-USP laboratory

    Get PDF
    Since 1964, the Center for Geochronological Research - CPGeo, one of the interdepartmental centers of the Instituto de Geociências (IG) of São Paulo University, has developed studies related to several geological processes associated with different rock types. Thermal Ionization Mass Spectrometry Isotopic Dilution (ID-TIMS) has been the technique widely used in the CPGeo U-Pb Laboratory. It provides reliable and accurate results in age determination of superposed events. However, the open-system behavior such as Pb-loss, the inheritance problem and metamictization processes allow and impel us to a much richer understanding of the power and limitations of U-Pb geochronology and thermochronology. In this article, we present the current methodology used at the CPGeo-IGc-USP U-Pb laboratory, the improvements on ID-TIMS method, and report high-precision U-Pb data from zircon, monazite, epidote, titanite, baddeleyite and rutile from different rock types of several domains of the Brazilian south-southeast area, Argentina and Uruguay.O Centro de Pesquisas Geocronológicas (CPGeo), um dos centros interdepartamentais do Instituto de Geociências (IG) da Universidade de São Paulo (USP), desde 1964 desenvolve estudos relacionados a diversos processos geológicos que se associam a diferentes tipos de rochas. A técnica amplamente utilizada no Laboratório U-Pb é a diluição isotópica por espectrometria de massa termo ionizada (ID-TIMS). Esta sistemática proporciona resultados bastante confiáveis e precisos na determinação das idades de eventos geológicos superpostos. Entretanto, o comportamento de sistema aberto como perda de Pb, problemas de herança isotópica e processos de metamictização, nos permite o entendimento do poder e limitação da geocronologia e termocronologia U-Pb. Neste artigo apresentamos a metodologia atualmente utilizada no Laboratório U-Pb do CPGeo-IGc-USP, as melhorias atingidas na técnica ID-TIMS e alguns dados obtidos em zircão, epídoto, titanita, baddeleyita e rutilo de diferentes tipos de rochas de alguns domínios da região sul-sudeste brasileira e da Argentina e Uruguai.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    The Egyptian, May 13, 1936

    Get PDF

    Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites

    Get PDF
    Thermochemical properties have been either measured or estimated for synthetic monazite, LaPO4, and dissakisite, CaLaMgAl2(SiO4)3OH, the Mg-equivalent of allanite. A dissakisite formation enthalpy of −6,976.5±10.0kJmol−1 was derived from high-temperature drop-solution measurements in lead borate at 975K. A third-law entropy value of 104.9±1.6Jmol−1K−1 was retrieved from low-temperature heat capacity (C p) measured on synthetic LaPO4 with an adiabatic calorimeter in the 30-300K range. The C p values of lanthanum phases were measured in the 143-723K range by differential scanning calorimetry. In this study, La(OH)3 appeared as suitable for drop solution in lead borate and represents an attractive alternative to La2O3. Pseudo-sections were calculated with the THERIAK-DOMINO software using the thermochemical data retrieved here for a simplified metapelitic composition (La=∑REE+Y) and considering monazite and Fe-free epidotes along the dissakisite-clinozoïsite join, as the only REE-bearing minerals. Calculation shows a stability window for dissakisite-clinozoïsite epidotes (T between 250 and 550°C and P between 1 and 16kbar), included in a wide monazite field. The P-T extension of this stability window depends on the bulk-rock Ca-content. Assuming that synthetic LaPO4 and dissakisite-(La) are good analogues of natural monazite and allanite, these results are consistent with the REE-mineralogy sequence observed in metapelites, where (1) monazite is found to be stable below 250°C, (2) around 250-450°C, depending on the pressure, allanite forms at the expense of monazite and (3) towards amphibolite conditions, monazite reappears at the expense of allanit
    corecore