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ABSTRACT 
 

Theory, observation, and experimental studies in invasion ecology have led to 

what is known as the ‘invasion paradox’, where both the factors that determine the 

invasability of ecosystems, and the invasiveness of species are context specific. As the 

patterns observed and the underlying processes are sensitive to the extent and resolution 

of inquiry, paradox can best be understood by tracing patterns and processes across 

scales. In Hawai‘i, a mid-sized predatory grouper, roi (Cephalopholis argus) was 

introduced during the 1950s, and subsequently established and spread throughout the 

main archipelago. Yet, the seascape factors that drive their distribution, a determination 

of their impact on the native reef fish assemblage, and methods for assessing and 

managing roi populations, were previously unknown. To address this gap in knowledge, I 

conducted studies of roi in Hawai‘i at three levels of organization: 1) field observations at 

the population level; 2) field manipulative experiments at the community level; and 3) 

species distribution modeling at the seascape level. I trace salient factors of roi 

invasiveness and community invasability across the three scales, and relate these to the 

human social system, as the roi introduction effects, and is affected by human 

communities. I found that with low population mortality rates, introduced roi has the 

potential to be an effective invader. Yet, over a long-term predator removal experiment, 

roi had no effect on the abundance of their prey. Likewise, in the seascape context, 

populations of roi declined in relation to increasing densities of native fish species. In the 

broadest sense, this introduced species has inspired community-led conservation action in 

Hawai‘i through roi fishing tournaments and thus, roi present an opportunity to engage 

across sectors and strengthen collaborative ocean management. 
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CHAPTER I 

INTRODUCTION 
 

In an era of global change (Jackson et al. 2001, Mora et al. 2008), species range 

shifts are predicted to occur more frequently due to changes in climate. Humans provide 

a direct vector for exotics to establish in new environments through species introductions, 

thereby creating novel communities of organisms. With accelerating species extinctions 

(Barnousky et al. 2011) and homogenization of communities and habitats (Vitousek et al. 

1997), invasion ecology has emerged as a discipline apace with global change (Elton 

1956, Cadotte et al. 2006). The discipline can utilize global change as an instrument 

through which to understand biodiversity and adaptive capacity (Folke 2006), and in so 

doing lead the way to a sustainable future. As the planets most pervasive invading 

species, Homo sapiens are also the most inquisitive, and paradoxically are able to both 

destroy and reveal the secrets of nature. The avoidance of the former action relies on the 

timing of the latter.  

Since Elton’s seminal work on invasion ecology from an applied perspective 

(1958) and further work from basic science approaches (e.g. Baker and Stebbins, 1965) 

some guiding questions that have driven the field along parallel lines of research are: 1) 

What biological traits makes a good invader; 2) What determines the invasibility of 

ecosystems; and 3) How can knowledge of the first two be used to control invasions? The 

answer to these questions underpin our ability to manage for biodiversity conservation, 

the sustainability of ecosystem services, and ultimately, human well-being.    

It is generally agreed from theory and empirical studies across ecosystems and 

taxa that weedy species are more likely to be successful invaders and are likely to 

capitalize on the ecological space provided by disturbance, such as habitat degradation 

(Sax et al. 2005). The consequence of this advantage is expected to be an increased 

homogenization of communities with increased habitat disturbance (Cox 2004) and range 

shifts driven by climate change (Vitousek 1994, Feary et al. 2004).  

To the second question, on the invasibility of ecosystems, a paradox is revealed 

when traced across spatial scales, systems, and study types. An intuitive hypothesis, 

formulated by Elton (1958) is that species-rich areas are less likely to be invaded 
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compared to the species poor ones, assuming that the former are saturated in regards to 

niche space, and the latter is vacant in at least one dimension. Thus the prediction is that 

high diversity correlates with low invasibility.  

However, theory, observation, and experimental studies in invasion ecology over 

the years have led to what is known as the ‘invasion paradox’. A paradox is ‘‘something 

with seemingly contradictory qualities or phases’’ (Grove 1993) and the meaning here 

relates to contrasting lines of support for both negative and positive relationships between 

various measures of ‘success’ of alien species and the aspects of the recipient ecosystems, 

such as native species diversity (Fridley et al. 2007). The factors that determine the 

invasability of ecosystems, and the invasiveness of species are thus poorly resolved, 

because different approaches have revealed different results, depending upon the 

methodology used and the scale of study.  

For example, a variety of observational, experimental, and theoretical studies 

have documented negative relationships between the number of native species and 

exotics at fine scales (~ resolution of 10 m2 or less), and these studies have led to the 

conclusion that native richness protects ecosystems against invasions (Case 1990, Knops 

et al. 1999, Levine 2000). In contrast, broad-scale studies (~ resolution of 1 km2 or more) 

generally indicate the inverse pattern (Levine and D’Antonio 1999, Shea and Chesson 

2002, Byers and Noonburg 2003, Fridley et al. 2004, Davies et al. 2005), resulting in the 

opposite conclusion - that native species richness can enhance the invasion success of 

exotics (Davis et al. 2000, Huston 2004).  

As there is conflict both between the findings of experimental and observational 

studies, and between fine-scale and broad-scale observational studies, researchers have 

sought to explain this paradox (Fridley et al. 2007). Byers and Noonburg (2003) 

presented a Lotka-Volterra competition model that increased in resource availability 

(number of unique resources) with increasing spatial scale. Invasion probability was 

relatively low at fine scales with minimal resources, and the probability of invasion 

increased with scale in spite of increasing native species richness. Thus, investigating the 

relationship between native and exotic species, the shift from the negative to positive 

relationships with increasing spatial extent could be driven by the availability of 

resources that covary with increase in scale. Further, Levine’s (2000) reasoning from 
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meta-community theory was that, all else being equal, the environmental heterogeneity of 

large scales would make the diversity-invasibility relationship positive as increased 

resource types in the environment increases niche opportunities for both natives and 

exotic invaders alike. Along these lines, a conceptual model of ‘‘niche opportunity’’ was 

developed to explain the invasion paradox (Shea and Chesson 2002, Davies et al. 2005). 

This model indicated that, where heterogeneity in resources emerged with increasing 

scale, shifts in competitive dominance could lead to coexistence of both native and exotic 

species (Huston and DeAngelis 1994, Tilman 2004). Similarly, fluctuating resources over 

time would result in the same outcome (Davis et al. 2000).  

Further along these lines, Melbourne et al. (2007) proposed an environmental 

heterogeneity hypothesis of invasions whereby heterogeneity both increases invasion 

success and decreases impacts to native species in the community. The assumption is that 

environmental heterogeneity promotes invasion and coexistence mechanisms that are not 

present in homogeneous environments. Since range expansions and biological invasions 

are concurrent with homogenization of habitats from altered human land use and 

pollution, this distinction in invasibility and its impacts is an important one.  

Homogeneous environments are less likely to be invaded, but when they are, the 

event would result in ‘hostile take-over’ by those exotics. In other words, in homogenized 

land and seascapes, coexistence mechanisms are decreased and the invasion, when it does 

occur, is more likely to lead to native species extinction, with an associated decrease in 

biodiversity and the ecosystems services that biodiversity supports (Diaz et al. 2006). 

Therefore, environmental heterogeneity is an important factor in determining not only the 

invasability, but also the ecological impact of biological invasions. 

If communities are saturated, then they are under local control (Cornel and 

Lawton 1992), dominated by species interactions such as predation, competition, and 

mutualism. However, if speciation and dispersal provide fewer species than sites can 

support, then regional control over communities is dominant, local richness is 

unsaturated, and those areas are prone to invasion. Thus, Fridley et al. (2007) proposed 

that: 1) Broad-scale patterns of native and exotic species richness are influenced by 

abiotic factors such as evolutionary history, disturbance rates, landscape configuration, 

and environmental heterogeneity; and 2) species interactions are most important in 
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determining native–exotic richness patterns small spatial scales.  

Taken together, to resolve the conflict of the invasion paradox, spatial and 

temporal scales of study, as well as the environmental context in which they are 

embedded, must be explicit. This paradox underscores the importance of pattern and 

scale in ecology, where the patterns observed and the underlying processes are sensitive 

to the extent and resolution of inquiry (Levin 1992). Therefore, insight into the invasion 

paradox will likely emerge by uncovering scaling rules for linking fine and broad-scale 

patterns across ecosystems, and by tracing patterns and processes across scales (Fridley et 

al. 2007).  

Panarchy theory posits that small-scale processes aggregate to establish larger 

scale patterns, and in turn larger scales processes entrain the outcomes of phenomenon 

operating on the smaller scales (Gunderson and Holling 2002). As such, this theory is a 

useful heuristic to trace patterns and process across scales of organization. In its broadest 

sense, panarchy theory is concerned with the dynamic interactions between societies and 

ecosystems, and the sustainability of those interactions (Gunderson and Holling 2001). 

As a theory of adaptive change that spans human and natural systems, panarchy is a 

particularly useful to guide interpretations of studies in invasion ecology. With one foot 

rooted in the mission-driven science of conservation and restoration ecology, progress in 

invasion ecology necessarily means engaging with social issues regarding conservation 

and management. The knowledge generated is meant to guide solutions to environmental 

problems, and guide adaptive change of coupled human and natural systems into the 

future.  

 

Connecting panarchy theory to invasion ecology 

The dynamics of complex adaptive systems (Levin 1998), such as nature and 

human societies, can be understood through the conceptual framework of panarchy, 

which describes system structure and function in discrete spatiotemporal domains, and at 

hierarchical levels of organization (Holling 2001, Gunderson and Holling 2001). A 

system is complex if it is made up of diverse constituent parts, and it is adaptive if an 

autonomous process selects aspects of that system for replication or enhancement (Levin 

1998). The human-natural world, and its evolution, can be understood in terms of this 
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metaphor, as a set of complex adaptive systems undergoing change.  

Such system dynamics have been described as an adaptive cycle (Holling 1986, 

Gunderson and Holling 2001) where interactions between living and non-living elements 

develop, organize, and decay (Figure 1.1). In this cycle, a system proceeds through 

phases of growth (r), conservation (K), release (Ω), and reorganization (α) (Holling 

1986).  

 

 
Figure 1.1. The adaptive cycle. A representation of the four ecosystem functions (r, K, 
omega, alpha) and the flow of events among them. The cycle reflects changes in two 
properties: (1) Y axis—the potential that is inherent in the accumulated resources of 
biomass and nutrients; (2) X axis—the degree of connectedness among controlling 
variables. Low connectedness is associated with diffuse elements loosely connected to 
each other whose behavior is dominated by outward relations and affected by outside 
variability. High connectedness is associated with aggregated elements whose behavior is 
dominated by inward relations among elements of the aggregates, relations that control or 
mediate the influence of external variability. The exit from the cycle indicated at the left 
of the Figure suggests where the potential can leak away or where a change of state into a 
less productive and organized system is likely. From Panarchy: Understanding 
Transformations in Human and Natural Systems L.H. Gunderson and C.S. Holling, eds. 
Copyright © 2001 by Island Press. 
 

A system’s trajectory depends on the process of selection among novel 

combinations that are generated during the reorganization (α) phase. The emergence and 

maintenance of biodiversity (Lovejoy 2006) in a complex adaptive system can be 
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associated with the back loop of the cycle (release to reorganization) (Gunderson and 

Holling 2001). Novelty and selection are associated with adaptive capacity – the ability 

of a system to adapt to change. While the source of novelty may be chaos itself  (sensu 

Lorenz 1972) (e.g. an episodic disturbance such as a hurricane creates space for a new 

combination of species to settle in the rocky intertidal marine ecosystem – reviewed by 

Underwood 2000), the process of selection could, at least to some extent, be shaped by 

human actions.  

For humans to enhance the resilience of favored ecosystems, such as coral reefs 

over macro-algal dominated reefs, ecosystem-based management is essential (Levin and 

Lubchenco 2008). Resilience is the property of an ecosystem to withstand perturbations 

while still maintaining essentially the same processes and functions (sensu Holling 1973), 

and is associated with the conservation phase (K) of the adaptive cycle. Panarchy theory 

emphasizes interactions of adaptive cycles across scales, and that processes at one scale 

influence the system dynamics overall (Figure 1.2).  
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Figure 1.2. A panarchy. Three selected levels of a panarchy are illustrated, to emphasize 
the two connections that are critical in creating and sustaining adaptive capability. One is 
the "revolt" connection, which can cause a critical change in one cycle to cascade up to a 
vulnerable stage in a larger and slower one. The other is the "remember" connection, 
which facilitates renewal by drawing on the potential that has been accumulated and 
stored in a larger, slower cycle. The number of levels in a panarchy varies, is usually 
rather small, and corresponds to levels of scale present in a system. Excerpted from 
Panarchy: Understanding Transformations in Human and Natural Systems L. H. 
Gunderson and C. S. Holling, eds. Copyright © 2001 by Island Press. 

 

Drawing from the literature on ecological resilience (Holling 1973, Gunderson 

and Holling 2001, McClanahan et al. 2007) and its application to complex adaptive 

systems (Levin 1998), including links to human communities (Berkes et al. 2003, Folke 

2006), the third question in invasion ecology posed above is here re-phrased and is the 

central question that I seek to answer: How can we use insights from invasion ecology to 

enhance adaptive capacity in the face of global change? 

 

Ecosystem impacts of introduced aquatic species 

Introduced species can weaken coral reef ecosystem resilience and thus 

undermine ecosystem services (Vitousek et al. 1997, Ruiz et al. 2007). Invasive predators 

can reduce biodiversity and abundance of native species via predation or interspecific 

competition for resources (Balon and Bruten 1986, Faush 1988, Molnar et al. 2008). 

Marine introductions, though less pervasive than on land, have altered a number of 

ecosystems globally. In particular, in San Francisco Bay, more than 212 species were 

introduced, and presently no shallow water habitat therein remains unaltered by 

introduced species (Cohen and Carlton 1995). In the Great Lakes of North America, sea 

lampreys (Petromyzon marinus) were accidentally introduced, and now parasitize native 

fish species (Forney 1986). On coral reefs in the Caribbean, the invasive lionfish (Pterois 

volitans) has greatly reduced the recruitment and abundance of native fishes, which in 

turn can erode coral reef ecosystem resilience (Albins 2013, Albins and Hixon 2013). 

Together, biological invasions may constitute the largest single threat to the biodiversity 

of coastal waters (Lowe et al. 2000). 

In the future, species invasions are projected to occur more frequently. Certainly, 

as climates fundamentally change and habitats are degraded, species that can shift in 
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geographic ranges in order to adapt will do so, and the Anthropocene epoch (Crutzen and 

Stoermer 2000) will bear witness to widespread no-analog communities. This novelty 

will both provide opportunity for ecologists to discover the mechanisms that underpin 

coexistence and the evolution of life, as well as challenge human communities to 

operationalize this knowledge in the form of management for sustainability. Therefore, 

invasion ecology (Elton 1958), coexistence theory (Chesson 2000), resilience theory 

(Holling 1978), and social-ecological systems research (Starzomski et al 2004, Berkes 

and Folke 1998) are inexorably linked and mutually inform one another. When viewed 

through the panarchy framework (Holling 2001, Gunderson and Holling 2002), these 

disciplines together illuminate life as a complex adaptive system (Levin 1998), and 

feature perturbations as a necessity for sustainable development (Berkes et al. 2007). 

Here I present the case of an introduced marine predatory grouper in an isolated Pacific 

Island chain as an opportunity for growth in the theory and practice of adaptation to 

change.  

 

Effects of the introduced grouper roi in Hawai‘i:  

The Hawaiian archipelago, among the most isolated biogeographic regions in the 

world, hosts the highest percentage of marine fish endemism in the Pacific (Randall 

1987, Allen 2007). Therefore, compared with the rest of the Indo-Pacific region, 

Hawaii’s shallow-water reef fish assemblages evolved with a small number of benthic 

predators. In the 1950s, assessments of Hawaii’s fish assemblages determined that an 

empty ecological niche existed for shallow water game species such as the snappers and 

groupers. Therefore, it was thought that introducing several mid-size predatory fishes 

would enhance fish catches (Division of Fish and Game 1956, Maciolek 1984).  

Several species (12 grouper, snapper, and emperor fish) including the Peacock 

Grouper (Cephalopholis argus, family Serranidae), known by its Tahitian name roi, were 

selected based on their popularity as food fishes in their native ranges, as well as their 

ecological characteristic (Oda and Parrish 1982). The Hawai‘i Division of Aquatic 

Resources (DAR) made three introductions of roi between 1956 and 1961, releasing 

2,385 roi from their native range in French Polynesia. Of these, roi and two species of 

snapper (Lutjanus kasmira and Lutjanus fulvus, Family Lutjanidae) became established 
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(Gaither et al. 2012). After a 4-decade lag, these three species increased in abundance, 

and during the 1990s roi became one of the dominant larger bodied predators (with the 

possible exception of moray eels; Family Muraenidae) on many near-shore reefs 

throughout the main Hawaiian Islands (Friedlander et al. 2007).  

A recent study (Johnston and Purkis 2016) reported results of a biophysical 

computer model that combined the life history traits of roi with prevailing oceanographic 

conditions in the Hawaiian Islands to hindcast the trajectory of the introduced fish over a 

15-year period after initial introduction. The study was able to reproduce the 

establishment of roi (and the failure of the 9 other species to establish) in order to 

investigate the characteristics that predict invasion success. Their results suggest that low 

mortality rate, tolerance to water depth, age to maturity, and the quantity of individuals 

released are the best predictors of the establishment of the introduced fish in the 

Hawaiian Islands. Indeed, histological research on roi reproductive patterns determined a 

continuous spawning season and relatively early age at maturity (Schemmel et al. 2016), 

compounded with low natural and fishing mortality (Giddens et al. 2014) and relatively 

fast growth (Donovan et al. 2013). Together these attributes help explain the ‘success’ of 

roi in their introduced range due to intrinsic factors, despite the potentially limiting 

founder population effect (Gaither et al. 2012).  

However, local fishers never accepted roi as a target species, partially due to high 

rates of ciguatera poisoning (Bienfang et al. 2011). Without sustained fishing pressure, 

populations of roi continued to increase in abundance by 22% from 1999 to 2005 in west 

Hawai‘i (DAR, unpublished).  Roi have also spread throughout the archipelago at a rate 

of 21 km/year, and have now established populations as far northwest as French Frigate 

Shoals in the northwestern Hawaiian Islands (NWHI) (Friedlander et al. 2009). 

Population densities of roi are highest in Kona, on the leeward side of Hawai‘i Island. 

These populations appear to have peaked in abundance in 2004, but have since declined 

by 50% (Walsh 2011).  

The current estimate of population density on the west Hawai‘i coast is 20.2 roi 

ha-1 (Giddens et al. 2014), thus dominating the mesopredator guild (Dierking et al. 2009) 

along with moray eels. In contrast, roi in their native range of Moorea likely compete 

with thirteen other species in the same family, grow at a slower rate (J.H. Choat, 
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unpublished), and display reduced body condition compared to conspecifics in Hawai‘i 

(Meyer and Dierking 2011). Competitive release has been proposed for the successful 

proliferation of roi populations in Hawai‘i (Meyer and Dierking 2011). Their diet is 

composed almost exclusively of small fishes (97% diet, mean TL= 7cm), with an annual 

total consumption estimate of 8.2 million reef fish per year (Dierking 2007). With high 

relative abundances in the wild, the cumulative effect of roi predation on native reef fish 

is potentially substantial.  

A fishery is not feasible for roi in Hawai‘i due to their propensity for ciguatera 

fish poisoning (Dierking 2007). The perceived decline in native fishery species 

(Friedlander and DeMartini 2002, Williams et al. 2008, Friedlander et al. 2015) has 

occurred coincident with the spread and increase of roi populations. Local fishers 

attribute the decline in valued food fishes in Hawai‘i to predation by or competition with 

roi (Wood 2010). In turn, this belief has led to local efforts to remove roi from Hawaiian 

reefs. Multiple roi removal initiatives have been organized since 2008 (Wood 2010). “Roi 

Roundup” fishing tournaments are intended to be an environmental conservation 

movement by the fishing community, with the aim of restoring Hawaii’s native reef fish 

populations. This social response by the fishing community likely modifies the ecological 

impact of roi, creating a unique social-ecological linkage at the community-level of 

organization (Ostrom 2009).  

The aim of this dissertation is to draw insights from invasion ecology in order to 

inform sustainability science across disciplinary boundaries. I use panarchy theory as an 

organizing framework to examine the dynamics of an introduced predatory grouper, roi 

(Cephalopholis argus) in Hawai‘i. The point of this heuristic metaphor, is to organize the 

accumulation of knowledge over discrete studies and extract the salient factors that are 

consistent or change with scale: population (Chapter II); community (Chapter III); and 

seascape (Chapter IV). I synthesize these findings and relate them to a 4th level: coupled 

social-ecological systems (Synthesis/Chapter V). In ascending scales of organization, I 

address the following central questions: 

• What are the natural and fishing mortality rates of roi populations in 

Hawai‘i, and how effective are our methods to assess and control their 

numbers?  
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• What are the community-level effects of roi on native reef fish 

populations at the local scale? 

• Which environmental and anthropogenic factors predict the distribution 

and abundance of roi and does environmental heterogeneity play a role? 

Do biotic interactions (density of potential competitors and/or prey) play a 

role and what is the relationship between roi abundance and the densities 

of native species across the MHI? 

• How can the social response (fishers grass-roots invasive species 

tournaments) to the roi introduction be used to reinforce conservation 

behaviors and environmental stewardship more broadly? 

 

Utilizing this framework, this research aims to contribute to our understanding of 

global change and adaptive capacity by drawing insights from predatory reef fish invasion 

ecology from a coupled social-ecological perspective.  
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ABSTRACT 

Invasive species are a growing concern for marine biodiversity, particularly in Hawai‘i 

with its large proportion of endemic species. This research focused on the feasibility of 

removing the introduced predatory peacock grouper Cephalopholis argus, locally known 

as roi, as a management tool for Hawaiian coral reef ecosystem restoration. The 

objectives of this study were to investigate the dynamics of C. argus on 1.3 hectares (ha) 

of coral reef at Puako, Hawai‘i, and to (1) compare population density estimate methods 

in order to accurately evaluate abundance, (2) estimate population mortality and 

catchability rates, and (3) quantify the re-colonization rates by mapping distribution and 

movements in response to a depletion experiment. The number of individuals removed 

during a fish-down experiment provided a direct measure of initial population abundance 

(20.2 roi ha-1). A Leslie depletion model yielded the most accurate assessment of initial 

density (−15.8% error) compared to belt transects (+ 75.7% error) and tow-board census 

(−70.2% error). Estimates of total mortality were low (0.12 to 0.14), and fishing mortality 

ranged from negligible to 8.0% yr1 in west Hawai‘i. Roi movement was monitored 

through a mark and re-capture program. Tagged individuals traveled 50 to 150 m from 

the periphery toward the center of the removal area (1 roi every 1 to 2 months). This 

study engaged the local Hawaiian fishing community in assessing and managing marine 

invasive fish species, quantified the feasibility of roi removal as an ecosystem 

management tool, and provides evidence for effective roi population control through 

spear-fishing methods at the local (1.3 ha) patch-reef scale. 

 

KEY WORDS: Invasive species · Cephalopholis argus · Hawai‘i · Mortality rate · Leslie 

depletion · Predator  removal  ·  Marine  introduction  ·  Grouper  ·  Ecosystem  

restoration 
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INTRODUCTION 

Introduced species are a major anthropogenic stressor that weaken coral reef 

ecosystem resilience and undermine ecosystem services (Ruiz et al. 1997). Introduced 

predators can lead to reductions in biodiversity and abundance via predation or 

competition with native species for resources (Balon & Bruten 1986, Molnar et al. 2008). 

Although less pervasive than terrestrial introductions, marine introductions have 

dramatically altered a number of ecosystems around the world. In the Caribbean, the 

invasive lionfish Pterois volitans has had devastating effects on the recruitment and 

abundance of native fishes, which in turn has led to decreased coral reef ecosystem 

resilience and function (Albins & Hixon 2013). Because introduced species exacerbate 

modifications to systems already undergoing multiple environmental and anthropogenic 

stressors (Hughes et al. 2003, Mora 2008), biological invasions have been identified as 

one of the largest single threats to the diversity of the world’s coastal waters (Lowe et al. 

2000). 

The Hawaiian Islands are the most isolated archipelago in the world and host one 

of the highest marine fish endemism rates in the Pacific (Randall 1987, DeMartini & 

Friedlander 2004, P. Mundy & J. Randall unpubl.). Hawaii’s shallow-water reef fish 

assemblages evolved with a low diversity of benthic predators compared with the rest of 

the Indo-Pacific region (Hourigan & Reese 1987, Briggs 1999). Assessments of the 

composition of Hawaii’s fish assemblages in the 1950s determined that important 

shallow-water game fish had declined and families such as snappers and groupers were 

missing in the Hawaiian fauna. It was thought that the introduction of several mid-size 

predatory fishes into Hawaiian waters to fill this ‘empty niche’ would enhance catches in 

lieu of fisheries regulations (Division of Fish and Game 1956). Because Hawai‘i had few 

near-shore groupers (epinepheline, serranid), the peacock hind Cephalopholis argus or 

roi (as it is locally referred to by its Tahitian name) and several other species were 

selected for introduction based on their ecological characteristics and potential popularity 

as food fishes in their native ranges. 

The Hawai‘i Division of Aquatic Resources (HDAR) made 3 introductions of roi 

between 1956 and 1961 from their native range in French Polynesia, with a total of 2385 

roi released (Randall 1987). After a 4 decade lag, this species increased in abundance 
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during the 1990s and became the dominant predator on many near-shore reefs throughout 

the main Hawaiian Islands (Friedlander et al. 2007, Dierking et al. 2009). Due to high 

rates of ciguatera poisoning (Dierking & Campora 2009, Bienfang et al. 2011), many 

local fishers do not recognize roi as a target species. In the absence of sustained fishing 

pressure, populations of roi continued to rise another 22% from 1999 through 2005 

(HDAR unpubl. data), spreading 21 km yr-1 throughout the Main Hawaiian Islands and as 

far northwest as French Frigate Shoals in the Northwestern Hawaiian Islands (NWHI; 

Friedlander et al. 2009). Roi populations peaked in 2004 and have declined by 38% since 

the start of the HDAR fish monitoring program in 1999 (Walsh et al. 2013). 

In their native range of French Polynesia, roi compete with 13 other species in the 

same family (Meyer 2008). In their native habitat, they grow at a slower rate (J. H. Choat 

pers. comm.), have decreased longevity (10 to 15 yr in Moorea vs. 25 to 26 yr in 

Hawai‘i) (Donovan et al. 2013), and display reduced body condition compared to 

conspecifics in Hawai‘i, suggesting competitive release in the introduced range (Vignon 

et al. 2009, Meyer & Dierking 2011). In Hawai‘i, roi diets are composed almost 

exclusively of small fishes (97% diet, mean total length [TL] = 7 cm), with an annual 

consumption estimate of 8.2 million reef fish yr−1 based on data from captive individuals 

(Dierking 2007). The same authors subsequently noted that Hawaiian roi caught in the 

wild had a stomach vacuity rate of almost 50% (Dierking & Meyer 2009), a finding that 

is consistent with thousands of roi caught at tournaments annually (C. Wiggins pers. 

obs.). The published diet study did not account for intra-annual variations in prey 

availability, and therefore, the prey consumed in the wild is probably less than what the 

laboratory feeding study would predict. Nevertheless, the large-scale consumption 

potential and high relative abundance indicate that roi may play a major role in shaping 

native reef fish assemblages in Hawai‘i (Dierking et al. 2009). 

A fishery is not feasible for roi in Hawai‘i due to their association with ciguatera 

fish poisoning (Dierking 2007), although limited commercial harvest takes place. Local 

fishers attribute the decline in valued food fishes to predation or competition by roi (D. 

Tanaka pers. comm.). This in turn has led to grass-roots efforts to remove roi from reefs 

throughout Hawai‘i. Multiple roi removal initiatives have been organized at the 

community level since 2008 by fishers to combat the threat they perceive as decimating 
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Hawaii’s native reef fish populations. ‘Roi Roundup’ fishing tournaments are intended to 

be an environmental conservation movement with the aim of restoring Hawaii’s native 

reef fish populations by removing invasive fish, especially roi. While research has 

verified that the predation potential of roi can be substantial (Dierking 2007), it is unclear 

to what degree predation by roi (or competition by roi with other predators for prey) has 

detrimental effects and if roi removal is feasible as a management tool for restoring 

native reef fish assemblages. 

To address these concerns, this study focused on experimental in situ roi removal 

to assess its feasibility as a management tool and effectiveness as a restoration action. 

The specific goals were to (1) compare roi population density estimation methods in 

order to accurately evaluate fish abundance, (2) estimate roi population mortality and 

catchability to inform population models, and (3) quantify the re-colonization rates of roi 

by mapping their distribution and movements in response to the depletion experiment. 

 

METHODS 

Site description 

Two geographic areas were selected for this study. The depth range for both of 

these areas was between 12 and 18 m (Figure 2.1) 

Puako. The coral reef of Puako, West Hawai‘i, is dominated by 3000 to 5000 yr old lava 

flows and carbonate substrate (Hayes et al. 1982). Established in 1985, The Puako 

Fisheries Management Area (FMA) extends seaward 250 m, or to the edge of the fringing 

reef, and restricts gill net fishing (HDAR 2011), reducing confounding factors. The 

treatment site (1.3 ha) is comprised of relatively discrete patch reefs. 

 

Roi removal 

 Local fishers were contracted to assist with roi removal over 11 days during April 

and May of 2011 at Puako and over 4 days during August 2011 at Ka’upulehu. To the 

extent possible, fishing effort was kept consistent at each site. SCUBA spear fishers 

removed roi from both treatment sites, recording the number of fishers, hours fished, roi 

total length to the nearest 1 mm, weight to the nearest gram, and location of each fish 

caught. Dive times ranged from 37 to 56 min, with 1 to 3 dives per day. The effort of roi 
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removal was assessed by calculating catch per unit effort (CPUE) of roi removal at the 

treatment sites: 

CPUE=C/h 

 

where C is the catch, h is the number of hours, and total effort was averaged across all 

divers and dives for each day. 

The actual number of roi removed during the fish-down experiment at the Puako 

study site provided a direct measure of the initial population abundance. Because of the 

high visibility to divers of this large-bodied predator and the high site fidelity within 

fixed ranges (Meyer 2008), there is high confidence that all roi were seen and that > 90% 

of the population was re- moved. Regular site monitoring and spear-fishing occurred (1 

dive-day per month) in order to maintain depleted roi populations at the treatment reef. 

Population estimates: Leslie depletion model. In a closed population with a constant 

catch rate, estimates of the initial population size may be obtained by monitoring how the 

relative abundance decreases with increasing catch. The roi population may be 

considered closed and with a constant catch rate for this analysis based on the low ingress 

of fish from the adjacent area during the fishing activity (1 roi every 1 to 2 months; this 

study). Only the first 6 days of the 11-day fish-down were used in this analysis, to 

account for the learned avoidance behavior of groupers to spear-fishers, which might 

impact catchability rates over time (Côté et al. 2014, present study). Following this 

approach to estimating local abundance, we constructed a Leslie depletion model (Leslie 

& Davis 1939). The application of this model assumes that fishing effort in a small area 

over a number of days would reduce the local population size and that this reduction 

would be indicated by a significant decline in abundance with accumulated catch. Initial 

population is estimated by regressing the catch per fisher hour against the cumulative 

catch: 

 

Nt   = Nt –1– Kt 

where Nt is the population at time t, Nt–1 is the initial population, and Kt is the 

cumulative catch. CPUE is related to Kt by the slope q, where CPUE = qNt−1 − qKt 

(Leslie & Davis 1939). A regression of the cumulative catch Ccum against log(CPUE) is 
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used to estimate q and the initial population size, where the intercept is Nt−1 (Parkes et 

al. 1996). To assess catchability, or the gear efficiency for catching roi, we conducted a 

fish-down experiment in two locations and compared the rate of the declining catch per 

unit effort. 

SCUBA divers spent 19:26 hours spear-fishing at the removal site over 11 days 

and observed a change in roi behavior concurrent with targeted fishing effort. Whereas 

roi were initially relatively easy to approach and dispatch, over time, the dwindling 

number of individuals became very wary of divers and would flee immediately on sight. 

By changing approach tactics, some of these individuals were dispatched with great effort 

(1 roi per 3 dives). Others were struck but not landed, and two of these fish exhibited an 

aversion to divers sufficient to make them essentially uncatchable. Although we 

experimented with time of day, traps, and freediving to dispatch these individuals, none 

of the alternate methods were successful. This did allow us to differentiate between 

resident and re-colonizing roi, as the new arrivals were easily approached. 

Underwater visual survey 

Belt-transect survey. Nineteen permanent transects were established at the Puako patch 

reef treatment site, fixed with GPS location and marked for underwater recognition. 

Visual fish surveys were conducted along 5 x 25 m belt transects (Friedlander et al. 

2007), whereby 2 SCUBA divers swam a fixed bearing in tandem along parallel (~5 m 

apart) 25 m fixed replicate transects at a constant speed (~15 min per transect). All fishes 

observed within the transect were identified to the lowest possible taxon, and TL was 

visually estimated with size bins (0.0 to 4.9 cm TL, 5.0 to 9.9 cm TL, 10.0 to 14.9 cm TL, 

etc.). Divers were previously trained in visual underwater size and distance-estimation 

techniques (Kulbicki et al. 2010, Bozec et al. 2011). Each pair of diver observations was 

averaged to obtain the value of fish abundance for each transect. Live wet mass, W, of all 

fishes recorded during surveys was calculated from the visually estimated TL using the 

length–weight relationship W = aTLb, where a is the allometric growth parameter and b 

is a scaling constant. Species-specific length–weight parameters were obtained from 

published and unpublished sources (Donovan et al. 2013, M. Donovan et al. unpubl.). 

Fish transect surveys were conducted at Puako during March/April 2011 before any roi 

were removed in order to establish baseline conditions at the treatment site. Follow-up 
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surveys were conducted semi-annually during winter and spring following roi removal. 

At Ka’upulehu, surveys (n = 24) occurred over the course of 17 days during October 

2012. 

Tow-board survey. To assess roi population distributions throughout the wider area, fish 

censuses focusing solely on roi were conducted semi-annually in removal and control 

areas. This census was conducted using tow-boards following the National Oceanic and 

Atmospheric Administration Coral Reef Ecosystem Division protocols, and followed 

isobaths from 10 to 30 m, covering a total area of 0.4 km2 (Holzwarth et al. 2003). These 

census rounds took place in April, June, and November 2011 and in June and October 

2012. Paired divers were towed from a 50 m tow line, each with a planing board 

equipped with datasheet, timers, depth gauge, and signaling device for communication 

with the boat. Divers were towed along a pre-determined course designed to completely 

cover the area of interest at a constant speed. Maintaining depth ~3 m from the bottom, 

divers visually estimated and recorded the TL, time, and depth of each roi sighting within 

5 m of either side of the straight line trajectory. Communication was maintained between 

diver pairs both above water and during the survey to ensure that roi were not double 

counted. 

 

Mortality estimate model 

The equilibrium length of a population is inversely related to the mortality rate 

experienced by that population (Ricker 1975); therefore, the mean length of a fish 

population can be used to estimate the mortality rate from basic growth parameters. 

Beverton and Holt. Instantaneous total mortality rate Z was derived using the length-

based Beverton and Holt model (Beverton & Holt 1956): 

 

 
 

where L∞ is mean asymptotic length, K is the rate of decline in growth rate with 

increasing size, L is the mean length of the sample, and L’ is the lower limit of the 
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smallest length class included in the computation. This method assumes equilibrium 

conditions, an infinite exploitable life-span, and that the dynamics of the population are 

adequately described by the von Bertalanffy and exponential-mortality models (Beverton 

& Holt 1956). A range of estimates for Z were calculated by the same equation, based on 

adding and subtracting one standard error for each von Bertalanffy growth parameter 

from Donovan et al. (2013) (Table 1 in the present study). The Ault & Ehrhardt (1991) 

method for estimating instantaneous mortality was developed from a truncated equation 

for average length to more accurately represent the heterogeneous patterns observed in 

tropical artisanal fisheries. This method considers the length at first capture as well as the 

maximum retainable length in the catch and is sensitive to variations in these parameters: 

 

 
where L∞ is asymptotic length, Lt is length at maximum age, Z is total mortality, K is the 

rate of decline in growth rate with increasing size, L is mean length in the sample, and Lc 

is the length at first capture (Ault & Ehrhardt 1991). 

Minimum and maximum estimates were calculated by the same equation, based on 

adding and subtracting one standard error for each von Bertalanffy growth parameter 

from Donovan et al. (2013) (Table 2.1 in the present study). 

 

Linearized catch curve. A catch-curve was constructed to estimate total mortality based 

on a linear decline of individuals caught from age-based cohorts (Quinn & Deriso 1999). 

Based on assumptions of a closed population with constant recruitment, instantaneous 

mortality is modeled following continuous exponential growth where total loss of 

individuals is equal to total mortality. The log-frequency of catch of each age class is 

expected to increase until the age class is fully recruited to the fishery and then linearly 

decline with age. Age-at-length was calculated using an age-length key based on fish 

collected from the study area from July to November 2011 (Table 2.1 in the present 

study; Donovan et al. 2013). The probability of each age for a given length interval (2 
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cm) was used to construct an age-length key by which individuals were then assigned an 

age by randomly selecting individuals from each length interval (Kimura 1977). 

A linear model was fit to the cumulative log frequency of age, and the slope of this line is 

equal to Z, the instantaneous mortality. 

The percentage of annual mortality (A) is calculated as follows: 

 

A = 1 – e–Z 

 

Alagaraja model. Natural mortality was estimated by the Alagaraja (1984) method, 

which assumes that 99% of a cohort had died if it were exposed to natural mortality only: 

 

 
 

where S is survival (0.05), and Tm is longevity. Natural and the fishing mortality sum to 

the total mortality; thereby, the mortality due to fishing is calculated from the following 

relation: 

Z = F +M 

 

where Z is the total mortality, F is fishing mortality, and M is natural mortality. 

The population growth parameters were obtained from Donovan et al. (2013), who 

conducted an age and growth study of West Hawai‘i roi. 

 

Movements of roi 

Roi were tagged to assess the response of surrounding populations to the removal 

at the treatment reef. Three buffer zones of 250 m were designated with a specific tag-

type, color, and anatomical position on captured roi to facilitate underwater recognition 

of place of origin during subsequent underwater monitoring. In total, 67 roi from the 

areas adjacent to the defined removal sites were captured by pole and line (n = 7), in 
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diver-deployed barrier nets (n = 39), and using a modified pole spear with a tag applicator 

tip (N = 21). All individuals were tagged with a standard Hallprint tagging needle and 

dart tag (individuals caught with pole and line were measured and weighed) before being 

released at the capture location. Divers towed a float with a GPS in track mode during 

tagging and monitoring events. Tagging events were opportunistic from February to 

October 2011. Movements of tagged roi adjacent to and into the cleared area were noted 

during later monitoring events from June 2011 to July 2012. The geographic coordinates 

of tagged and re-captured roi were obtained by matching the recorded time of capture/re-

sight with the logged GPS time- track. The spatial distribution of all tagged, re-sighted, or 

collected individuals were mapped in ArcGIS10 (ESRI 2011), and distances and 

directions of movement between tag and recapture locations were measured. Time 

duration between removal and re-sighting in the treatment zone was used to calculate the 

immigration rate of surrounding populations after initial removal. 

All analyses were conducted in R 2.12.1 (R Development Core Team 2010), with tests 

considered significant at p ≤ 0.05. 

 

RESULTS 

Initial population abundance was measured by the number of individuals removed 

from the study site during the fish-down experiment (plus two remaining roi). Fishers 

removed 25 roi (totaling 22.5 kg) from the Puako treatment reef during the fish-down 

effort in late April and early May 2011. The size distribution ranged from 28.8 to 44.3 cm 

(mean ± SE: 36.8 ± 2.3 cm) (see Table 3). In total, 24 roi were removed from the 

Ka’upulehu treatment reef (totaling 21.7 kg) during 4 days from 15 to 18 August 2011, 

and the size ranged from 24.4 to 51.8 cm (mean: 36.2 ± 7.3 cm). The measures of initial 

population abundance provide a direct estimate to evaluate the accuracy of the three fish 

monitoring methods. 

 

Comparison of three roi population abundance estimate methods 

Leslie depletion model 

Declines in CPUE during the fish-down effort were modeled using a linear 

regression to relate CPUE to cumulative catch. Relating the catch per fisher hour to the 
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cumulative catch at Puako produced a regression slope of −0.19. The x-intercept along 

the cumulative catch axis predicted an initial population abundance of 22.7 roi (16.9 

ha−1) (Fig. 2.2). Since fishing was modeled for only 6 days, natural mortality, 

recruitment, and immigration are assumed to be negligible. Likewise, for Ka’upulehu, the 

Leslie depletion experiment predicted an initial population of 11.8 roi ha−1. 

 

Belt transect survey 

A total of 19 visual surveys (each 5 × 25 m = 125 m2) were conducted during 

April and May 2010 to quantify the entire reef fish assemblage at Puako. Roi occurred on 

44% of transects conducted at the treatment site before removal and accounted for 6.5% 

of the total fish biomass and 0.4% of the total assemblage numerical density at this 

location. The mean (±1 SE) population density of roi was 35.5 (± 9.3) ind. ha−1, and the 

mean biomass was 56.0 (± 6.7) kg ha−1. At Ka’upulehu, 24 transects were visually 

surveyed during October 2012. Roi were present on 46% of the transects with an 

estimated density of 41.6 (± 0.9) ind. ha−1 and biomass of 114.7 (± 4.0) kg ha−1. 

 

Tow-board survey 

A survey of the size structure and distribution of the adjacent roi population (0.4 

km2 area encompassing both treatment and adjacent patch reef sites) was conducted 

before and after targeted removal. Overall, roi populations decreased in density by 59.8% 

(from 9.2 to 3.7 ind. ha−1), though they maintained a similar size range, 18 months after 

roi removal (Fig. 2.3, Table 2.2). The final tow-board survey occurred one month 

following a community volunteer removal event in which 21 volunteer spear fishers 

captured 353 roi in two days within ~12 ha adjacent to the Puako study site. Tow-board 

surveys of roi before and after the community volunteer removal event documented a 

sharp decrease in population density, from 7.3 to 3.7 roi ha−1 (Fig. 2.2). 

The three methods for estimating roi population density yielded vastly different results 

(Table 2.3). The Leslie depletion model yielded the most accurate estimate of 16.9 roi 

ha−1 compared to the actual number of roi removed (20.2 ha−1) during the fish-down 

experiment. The tow-board survey method underestimated roi density by 70.2%, and the 

belt transect method overestimated roi by 75.7%. 
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Roi population mortality 

Roi population mortality was assessed by a variety of methods using growth 

parameters specific to North Kona roi populations (Table 2.1 in the present study; 

Donovan et al. 2013). Total mortality (Z) estimates varied by method. The age-structured 

catch curve (Fig. 2.4) yielded an estimate (±1 SE) of Z = 0.14 (± 0.03). The Ault and 

Erhardt method yielded a similar estimate of Z = 0.14 (± 0.02). The Beverton and Holt 

equation yielded a slightly lower estimate of Z = 0.12 (± 0.08). 

Natural mortality (M) was calculated using Alagaraja’s method, which yielded M = 0.17. 

The annual fishing mortality rate was calculated using the Ault and Erhardt method (0.0 

to 7.8%) and the Beverton and Holt method (0.0 to 5.8%; Table 2.4) with Alagaraja’s 

estimate of natural mortality. 

 

Comparisons of catchability at 2 locations 

CPUE in relation to cumulative catch was compared at Puako and Ka’upulehu 

(Fig. 2.2). The original roi density (mean ± SE) at Ka’upulehu (41.6 ± 0.01) was higher 

than at Puako (35.5 ± 9.2) and the catchability, or q, declined more steeply at Puako (q = 

−0.19) compared to Ka’upulehu (q = −0.03) (F1, 6 = 15.22, p < 0.01), implying that 

catchability depends on the initial population density. 

 

Roi movements 

In total, 67 roi were externally tagged in three zones stratified by distance (250 m) 

surrounding the treatment reef (Fig. 2.5). Six roi were re-captured and five were re-

sighted in 18 months of monitoring. Distances traveled by roi averaged (±1 SD) 94.1 (± 

38.4) m and generally occurred from the periphery of the removal reef toward the center, 

with an immigration rate of 1 roi every 1 to 2 months. 

 

DISCUSSION 

This study evaluated several methods for assessing the population density and 

mortality rate of a marine invasive fish (roi) species as well as the feasibility of roi 

removal as a management and restoration tool.  
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The 25 roi removed from the Puako treatment site, plus the two remaining, 

represent the initial population abundance and is the reference point with which to 

compare three population estimate methods. In contrast to stock assessment comparisons 

in which the initial population number is not known, this depletion experiment provided a 

unique opportunity to directly compare the accuracy of estimate methods to the lower 

bound of the initial roi density at the removal reef. 

The Leslie depletion model yielded the most accurate population density estimate, 

with an error of only 15.8%. This method assumes a closed population, which was 

reasonable for the six day period of the experiments. It was also assumed that the 

catchability coefficient (q) was constant, given that the same spear-fishers (i.e. same skill 

level) participated in the fish-down events. 

One source of error in the depletion experiment may be that, as a result of the 

removals, some individuals may have become overly cryptic and were thus not  counted  

during  the  removal  exercise.  If there were more individuals, or if individuals emigrated 

out of the study area during removal activity, that would lessen the disparity between the 

depletion model and actual vs. alternate population estimates. It is unlikely that 

emigration was of a sufficient magnitude to confound fish-down results. The treatment 

reef was separated from adjacent areas by distinct sand channels, and the continued 

presence of wary wounded roi on the treatment reef might indicate that site attachment of 

individuals (Meyer 2008) is substantially stronger than the emigration from removal 

areas. Further, only the first six days of the fish-down effort were used in the depletion 

model, thus reducing this possible source of error. The similarity of the depletion model 

estimate with the actual numbers of roi removed during the fish-down experiment 

corroborates the models predicting initial population numbers by using catch and effort 

data. 

The belt-transect method yielded the highest estimate of population abundance by 

far. Non-instantaneous surveys potentially over-count mobile species, as transects swum 

in ~15 min allows observers to record mobile fishes that are initially occupying a larger 

area than the transect dimensions. However, since roi are among the slower-moving of 

the mobile predators, the relative bias due to mobility would be less pronounced in this 

species (Ward-Paige et al. 2010). Other sources of error  in  the belt  transect method may 



	
33 

be specific to the behavioral patterns of roi. The mean home range of the species was 

estimated to be 1236 m2 (Meyer 2008), which would encompass multiple transects, 

increasing the probability of counting the same individual more than once during the ~1 

week survey period, as the density of transects along patches of reef was quite high (~15 

ha–1). Fixed-area visual survey methods may accurately determine abundances of new 

recruits and other cryptic species with small home ranges; however, population density 

estimates for large-bodied, territorial predators such as roi should consider the possible 

over-counting bias introduced with the fixed-area visual survey method for a small area 

heavily surveyed within a short (<1 week) time frame (present study). 

In contrast, the tow-board survey method underestimated roi population density at 

Puako by more than half compared to the actual number of roi removed from the patch 

reef during the fish-down experiment. Roi behavior may be alerted by engine noise, the 

oscillation of the tow line in the water, and/or the presence of two highly visible divers 

towed behind a boat, and wary roi may seek shelter without being observed within 5 m to 

either side of the diver. This behavior of a semi-cryptic species in a complex habitat 

likely explains the drastic difference between tow-board surveys and belt-transect 

methods in which divers survey close to the reef and can identify sheltered roi that might 

otherwise remain out of view during tow-board surveys of the same area. More time is 

spent in a smaller area during belt-transect surveys, maximizing the chance of observing 

benthic-associated individuals (Stamoulis & Friedlander 2013). The use of tow-boards 

for assessing abundances of fish species such as roi that are accustomed to the threat 

signaled by boats and divers should account for the bias introduced by this conspicuous 

method. While the consistent use of either the belt-transect or tow-board method could 

provide a relative measure of roi density, caution should be used when expanding the 

density estimates obtained by either for use in management planning. Belt-transect results 

might grossly overestimate the threat posed by roi populations, and conversely, tow-

board surveys might underestimate the threat. Both methods could be calibrated by 

comparison to estimates obtained using the Leslie depletion model (present study). 
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Mortality and catchability 

Total mortality (Z) estimates for North Kona roi populations differed among stock 

assessment methods. The Beverton & Holt (1956) model is best applied to long-lived, 

slow-growing species such as roi, which explains the better fit compared to the Ault 

& Ehrhardt (1991) method that is applicable to short-lived tropical species. Previous 

work suggests that roi growth does not conform well to the von Bertalanffy growth 

function  (VBGF), and therefore, models based on VBGF parameters should be 

interpreted cautiously (Donovan et al. 2013). Alternative methods, such as the re-

parametized VBGF (Francis 1988, Trip et al. 2008) and the double model (Porch et al. 

2002), performed better for roi in West Hawai‘i. Although ages were calculated from 

site-specific growth parameters (Donovan et al. 2013), calculated age becomes less 

accurate as fish samples approach the mean asymptotic length (Quinn & Deriso 1999), 

introducing error when including the larger fish in assessment calculations. 

The natural mortality rate (M) estimated from the Alagaraja (1984) method (0.17) 

is low compared to M of 0.40 estimated from the native range of roi (Froese & Pauly 

2011). However, most similar-sized groupers, besides Epinehelus guttatus (0.68), exhibit 

a lower M ranging from 0.18 to 0.30 (Polovina & Ralston 1987). The low M obtained in 

this study is reasonable for Hawai‘i roi because of their low vulnerability to predation, 

food fishing, and parasites (Meyer & Dierking 2011). 

Likewise, the calculated fishing mortality (F) estimate of ~0.0 to 8.0% yr−1 is low, 

though realistic for roi in Hawai‘i given their avoidance as a food fish due to associations 

with ciguatera poisoning (Dierking & Campora 2009). However, despite the risks of 

ciguatera, roi are targeted in reported commercial landings. A total of 1472 kg were 

reported from 2004 to 2009, which comprised ~1% of all state inshore commercial 

landings (HDAR 2010). This catch may be partly from roi round-up tournaments (J. 

Giddens pers. obs.), and recreational catch is likely much higher than commercial catch 

for many reef species (J. Kittinger et al. unpubl.). Catch peaked in 2010 at 1920 kg, and 

North Kona contributed 1% of the total landings statewide (HDAR 2010). This relatively 

low commercial fishing pressure explains the low F for this population of roi. 

Because catchability depends in part on the initial density (present study), efficacy of 

removal will vary by site. Fishing pressure may be high in localized areas where roi are 
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targeted in focused efforts during community roi-roundup events and during individual 

fisher efforts haphazardly throughout the year. Given the low natural mortality of roi, it is 

still unclear what broad-scale effect volunteer removal has on populations of roi. A 

statewide roi population and fisheries assessment will elucidate the larger impacts of 

removal efforts. Likewise, this manipulative field experiment opens the opportunity to 

test the ecological effects of the introduced predatory grouper in Hawai‘i (J. Giddens et 

al. unpubl.). 

 

Roi distribution and movements 

The removal experiment suggests that it is possible to fish down and maintain 

depleted (< 90%) populations with a sustained low level of targeted fishing effort. The 

slow immigration rate of 1 roi every 1 to 2 months indicates that 2-monthly, 1 day fishing 

efforts are sufficient to maintain a locally depleted population. Fish assemblage surveys 

every six months following removal show no roi at the treatment reef 2.5 yr following 

removal, as any new individuals were dispatched through routine maintenance dives 

throughout the study period. Given the low ingress of roi after 2 yearrs of tagging and 

monitoring, it is not likely that the additional community roi removal at an adjacent reef 

could have substantially impacted the immigration rate (Fig. 2.1). 

These results suggest that long-term roi eradication is feasible for communities in 

Hawai‘i. However, based on recurring SCUBA diving costs (compressed air, tank rental), 

fisher hours, and boat time, it was costly (~$400 ha−1) to remove roi via the SCUBA- 

spear fishing method. Alternatively, volunteer-based roi round-up events have the 

potential to impact a larger reef area over a shorter period of time. For example, the 

community-wide roi removal event with 21 volunteer spear fishers dispatched 353 roi in 

2 days in the ~12 ha adjacent to the Puako study site. Note that these events might 

decrease catchability over a larger area, making it more difficult for SCUBA spear-fisher 

removal, as was observed for lionfish that learned to avoid fishers after culling events in 

the Caribbean (Côté et al. 2014). Tow-board surveys documented a sharp decrease in roi 

population density (from 7.3 to 3.7 roi ha−1) following the volunteer fishing effort. A 

community roi tournament costs approximately $300 with food, one NGO (non–

governmental organization) staff member, and supplies (C. Wiggins pers. obs.). 
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Competitive roi tournaments are also expensive to conduct (costing approximately $2800 

for insurance, trophies, T-shirts, food, and entertainment; D. Tanaka pers. comm.), 

although the community-driven events fulfill social as well as ecological objectives. 

These events are community exchanges which likely reinforce the social institutions that 

lead to successful co-management of common resources (Basurto & Ostrom 2009, 

Kittinger 2013) and ease the fishing pressure on native species. 

Experiments on lionfish removal at replicate patch reefs in the Caribbean 

documented that even partial culling, while requiring substantially less resources than 

complete eradication, could halt the erosion of native reef fish biomass (Green et al. 

2013). Roi tournaments should prioritize accurate catch data collection to determine the 

broad-scale and site-specific effects of focused roi removal in Hawai‘i and should be 

designed to complement targeted removal efforts to maximize efficiency. 

The long-term effects of roi removal on the native reef fish assemblage are still 

unclear. This removal experiment presents the opportunity to assess the assemblage-level 

effects of roi in Hawai‘i. Further, roi population dynamics can be examined in relation to 

the recipient ecosystem regime to identify characteristics that may have contributed to the 

successful invasion of roi over the past several decades. Defining the relative 

contributions of bottom-up vs. top-down control of roi populations might elucidate a 

threshold-specific target for management (Kelly et al. unpubl.). 

For example, mesopredator release (Prugh et al. 2009) due to overfishing of top 

predators can lead to declining prey and local extinctions (Stallings 2009, Albins & 

Hixon 2013). Predation rates in the NWHI are high compared to the Main Hawaiian 

Islands, where roi dominate the piscivore guild (Friedlander & DeMartini 2002). Roi may 

be fulfilling a niche that is only opened by overfishing of the native predators. By 

comparison, in the Caribbean, larger predators such as sharks and groupers (Maljkovi et 

al. 2008) might be able to prey upon invasive lionfish or suppress foraging success 

through behaviorally mediated indirect effects, presenting a top-down biocontrol on 

lionfish populations (Côté et al. 2013). Similarly, in Hawai‘i, awareness could be brought 

to the preservation of top predators and their role in suppressing roi populations. 

In addition, the availability of prey may control roi populations. As generalist predators, 

roi may feed preferentially on those species most common on the reef (Dierking et al. 
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2009). Little is presently known about the recruitment patterns and the juvenile survival 

rates of roi in Hawai‘i. Further research in these areas relating to the greater ecosystem 

regime would inform our general understanding of predatory fish invasion biology and 

elucidate efficient measures for roi population control. 

For the public, the perceived decline in native reef fish may be disproportionally 

attributed to roi, compared to other anthropogenic sources such as run-off, eutrophication 

(Hamnett et al. 2006), and overfishing (Williams et al. 2008). Roi may be considered a 

‘scapegoat’ in this regard. Nevertheless, stakeholder participation in invasive species 

management could be an avenue by which to raise awareness of near-shore reef 

environmental issues and to engage citizens in addressing these concerns. The 

momentum around roi removal might catalyze collective action towards sustainable 

resource use and strengthen the community attributes, such as social cohesion and 

knowledge sharing, that characterize resilient social-ecological systems (Basurto & 

Ostrom 2009, Ostrom 2009). There is a potential for the ‘scapegoat’ to become a catalyst 

for sustainability. 

Our findings suggest that it is feasible to control roi populations at the local (<1.3 

ha) patch reef scale. However, because the near-shore environment of Hawai‘i is 

characterized largely by contiguous reef habitats, there is difficulty in directly scaling up 

this experiment ecologically and economically. Removal efforts should be conducted 

over a broad spatial scale to determine any additional challenges to sustained roi 

depletion over contiguous habitats, such as increased immigration rates from deep or 

adjacent reefs. A combination of the controlled fish-down method coupled with 

community-driven volunteer events may be the most cost-effective method for removing 

roi and, at the same time, raising fisher participation in community-based ecosystem 

management. Collaboration at the local and state level will be needed to efficiently 

reduce and maintain depleted roi populations for fisheries management and ecosystem 

restoration. 
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Fig. 2.1. (A) West Hawai‘i, showing study sites and the community removal site 

(outlined in bold), with details of the (B) Puako and (C) Ka’upulehu experimental roi  

removal areas. Hard bottom reef habitat  (dark grey) and depth contours from 0 to 30 m 

are shown 
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Fig. 2.2. Leslie depletion model for 25 roi removed from a 1.3 ha patch reef in Puako, 

West Hawai‘i (solid line) over 11 d from March to April 2011, and for 24 roi removed 

from Ka’upulehu, West Hawai‘i (dashed line) over 4 d in August 2011 

 

 

 

 

 

 

 

 

 

 

 



	
45 

 

 
Fig. 2.3. Roi distributions for (a) tow-board Census 1 before removal at the treatment site 

and for (b) Census 5 after removal at the treatment site in Puako, West Hawai‘i 
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Fig. 2.4. Age-structured catch curve of North Kona roi collected from July to November 

2011 (n = 203). The log-frequency of catch of each age class is expected to increase until 

the age class is fully recruited to the fishery and then linearly decline with age. The slope 

of this line is equal to Z, the total mortality. Only fish ≥5 yr old (fully recruited to the 

fishery) were included in this analysis 
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Fig. 2.5. Roi tag and recapture locations in 250 m zones surrounding the treatment reef in 

Puako, West Hawai’i. Arrows indicate direction and distance traveled by roi from the 

original tag location 
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TABLES 

 

Table 2.1. North Kona roi life-history parameters adapted from Donovan et al. (2013), 

where L∞ is the mean asymptotic length, K is the rate of decline in growth rate with 

increasing size, t0 is the theoretical age at which length is 0 cm, Lc is the minimum size 

of individuals fully recruited to the fishery, Lmax is the maximum size, Tmax is the mean 

of the oldest 20% of individuals, and L is the mean length. Values are mean ± maximum 

and minimum estimates 
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Table 2.2. Results of 5 tow-board population census rounds before (April 2011) and after 

the targeted fish-down event. The census is designed to cover the entire study area; 

therefore, the roi counts are summed. Numbers presented are totals (n = 1) for each 

survey. Note that the final census round (October 2012) follows a community-wide 

volunteer removal event in the ~12 ha adjacent to the study site 

 

 
 

 

Table 2.3. Comparison of Puako roi population density assessment methods and actual 

roi removed 
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Table 2.4. Mortality estimates based on intermediate and high estimates for L∞ and K 

from Donovan et al. (2013) 
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CHAPTER III 

 

Experimental test for assemblage-level effects of the introduced Peacock hind 

(Cephalopholis argus) on Hawaiian reef fishes  
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ABSTRACT  
 
The peacock hind Cephalopholis argus (family Serranidae), locally known as ‘roi’, was 

introduced from French Polynesia to Hawaii in the mid-20th century as a food fish. 

However, because of its association with ciguatera fish poisoning, it is rarely fished for 

food. Previous research indicates that roi could have a negative impact on native reef fish 

assemblages because of their high densities and prey consumption rates. However, it is 

unclear whether roi add to the cumulative mortality of prey (Predation Hypothesis), or 

whether predation is instead compensatory (Doomed Surplus Hypothesis). This study 

experimentally assessed the effects of roi on reef fish populations through a long-term 

(5.5 year) predator removal experiment. A Before-After-Control-Impact study design was 

used to assess changes in fish assemblages following the removal of roi on 1.3 ha of 

patch reef. Increases in the density of prey-sized fish (<15 cm TL) were observed 18 

months after roi removal. However, those effects did not translate into sustained 

increases in prey. While increases in potential competitors, wrasses (family Labridae), 

particularly the piscivorous ringtail wrasse Oxycheilinus unifasciatus, were observed on 

roi-free reefs, the fish assemblage did not diverge substantially in composition. Native 

reef fish appeared to resist the potential negative impacts of predation by roi, possibly 

through a refuge in size for some fish families. Management to protect intact fish 

assemblage size-structure could serve to bolster native resistance to invading species. In 

considering the threats facing coral reefs, and the possible solutions, roi removal alone 

will not likely replenish native fishery resources.  

 

Key words: Introduced species, predator removal experiment, mesopredator, doomed 
surplus, biotic resistance, Hawai‘i 
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INTRODUCTION 

Multiple stressors threaten the resilience of coral reefs (Nyström et al. 2000; 

Jackson et al. 2001; Hughes et al. 2011), and of those, introduced species are a human-

mediated pressure that is preventable with proper foresight and knowledge (Elton 1958; 

Vitousek et al. 1997). The diversity-invasibility hypothesis (Elton 1958; Levine and 

D'Antonio 1999), postulates that more diverse communities are less likely to become 

invaded because the ecological niche space is fully utilized (the “species packing” 

concept of MacArthur 1955, 1970). Such “priority effects” (Connell and Slatyer 1977; 

Shulman 2015) decreases the likelihood of an invasion since species that are already 

established outcompete those that enter an area in low numbers (Case 1990, 1991). A 

corollary to this is that there is an inherent vulnerability of islands because they are 

generally lower in species number than mainland geographies, with niche-space available 

for colonization (Herbold and Moyle 1986; Crawely 1987; Elton 1958).  

In the past, a number of species were introduced to the Hawaiian Islands to 

bolster the nearshore fishery (Oda and Parrish 1981). Due to its geographic isolation, 

Hawaiian shallow-water reef fish assemblages evolved with a comparatively small 

proportion of benthic predators (Randall 1987; Hourigan and Reese 1987; Heemstra and 

Randall 1993; Allen 2006). Because game species, such as snappers and groupers, were 

considered depauperate in the 1950s and 60s, the Hawaii Division of Aquatic Resources 

(HDAR) undertook a species introduction program to fill a perceived “empty ecological 

niche” (Oda and Parrish 1981). While the introduction of three (out of 12) of the mid-

sized predators was ‘successful’ in terms of establishment (Gaither et al. 2012), the 

intention of augmenting the fishery was not met. These species became a nuisance, rather 

than a boon to fishers (Randall 1987).  

The peacock hind (Cephalopholis argus, Family Serranidae), locally known by its 

Tahitian name roi, was introduced from French Polynesia in three phases between 1956 

and 1961 (Oda and Parrish 1981). A total of 2,385 roi were released in multiple locations 

in Hawaii. After an initial lag period, roi increased in abundance during the turn of the 

century and became the numerically dominant predator on many near-shore Hawaiian 

reefs (Friedlander et al. 2007; Dierking et al. 2009), with the possible exception of moray 

eels (Muraenidae). High propagule pressure (Johnston and Purkis 2016), early age at 
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maturity (Schemmel et al. 2016), and relatively fast growth rates (Donovan et al. 2012), 

compounded with low natural and fishing mortality (Giddens et al. 2014) together help 

explain the ‘success’ of roi in their introduced range, despite the potentially limiting 

founder population effect (Gaither et al. 2012). Furthermore, enemy release is a likely 

factor in the successful proliferation of roi in Hawaii (Meyer and Dierking 2011; Gaither 

et al. 2013). Roi in their native range co-occur with thirteen other species in the same 

family, grow at a slower rate, and display reduced body condition compared to 

conspecifics in Hawaii (Meyer and Dierking 2011). An understanding of the impacts of 

roi on the native reef fish assemblage is needed to assess the outcome of this species 

introduction.  

The role of predation: The diversity-invasibility hypothesis (Elton 1958; 

Levine and D'Antonio 1999), maintains that sites with higher biodiversity are more 

resistant to invasion. However, when invaders are superior competitors or use different 

resources than native species or are voracious predators, then the effect of diversity is 

likely to be weak (Tilman 2004). In these instances, the impact of an exotic species on 

native ecosystems is more likely determined by how the predator and prey interact, and it 

is this interaction that determines the availability of resources for a newcomer (Olyarnik 

et al. 2009). Previous research on roi in Hawaii suggests that the predation can be 

substantial, with consumption of up to 142 reef fish per year per individual (Dierking 

2007). In contrast, results from a long-term (>15-year) coral reef ecosystem-monitoring 

program in west Hawaii found no correlation between roi and native reef fish abundance 

(Walsh 2010), suggesting that roi do not affect abundances of prey species. Given this 

discordance, it is not clear whether predation by roi (or competition by roi with other 

predators for prey or territory) is having a detrimental effect on native reef fish 

assemblages. Predators can potentially have a large and potentially cascading effect on 

the ecosystem (Paine 1966; Hixon 1991, 2015). Alternatively, a predator may merely 

consume the ‘doomed surplus’ of the prey population (Errington 1946), (i.e., those 

individuals that would have suffered mortality due to limiting resources). These 

hypotheses (the ‘doomed surplus’ vs. the predation hypotheses) then represent the two 

extremes explaining the role of predation in structuring reef fish communities.  

Field manipulative experiments can help to elucidate the nature of predator effects 
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on the ecosystem (Doherty and Sale 1986; Hixon 1991, 2015, Hixon and Carr 1997; 

Albins 2015). For example, the invasive Red Lionfish (Pterios volitans) in the Caribbean 

dramatically decreased prey species abundance and diversity over short time scales (<2 

month) (Albins and Hixon 2008; Green et al. 2012; Albins 2013; Benkwitt 2013), yet 

these changes may not shift adult fish biomass over longer timescales.  A recent 

experiment (14 months) found no difference in adult fish biomass, though the diversity 

and abundance of small-sized fishes (<10 cm TL) were reduced within a few seasons 

after lionfish removal (Albins 2015). Explicitly distinguishing the time-scale of field 

manipulations is important in order to decipher the short vs. long-term response of a 

community after a disturbance (Levin 1992). 

In order to determine the ecological effects of roi in Hawaii, we conducted a long-

term (five and a half year) predator removal experiment and measured the effects of roi 

removal on the species composition and size structure of the fish assemblage. Roi 

preferentially prey upon juvenile and recruit fishes (Dierking 2007); therefore, the two 

size groups potentially affected by roi informed our three main predictions: 1) the density 

of small (<15 cm TL) prey-sized fish would increase following roi removal; 2) a time-

lagged difference in the density of fish > 15 cm TL would occur as prey fish released 

from predation at the juvenile stage survived to adulthood; and 3) other mesopredators 

that potentially compete with roi for prey would increase following roi removal.  

 

METHODS 

A Before-After-Control-Impact (BACI) (Smith 2002) approach was used to assess 

changes in reef fish assemblages associated with roi removal. The experimental removal 

and adjacent control sites consisted of a series of patch reefs with high roi densities (The 

Nature Conservancy unpublished data) in Puako, west Hawaii Island (Figure 3.1). The 

removal site was selected in part because it is a series of patch reefs surrounded by sand, 

thus facilitating removal efforts and slowing immigration. Though there were no similar 

sized isolated patch reefs in the area, we chose a control site that was surrounded by three 

sides with sand. An important consideration was that the control site was far enough from 

the removal site to be outside of the typical home-range) (A. Meyer pers. comm.). The 

habitat of both the removal and control sites consisted of finger coral (porites compressa) 
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reef in the depth-range of 6 to 15 m. We initiated baseline monitoring and community 

outreach in 2010. In May 2011 local fishers assisted with roi removal from the treatment 

reef via spearfishing. We removed and maintained depleted populations of roi from 1.3 

ha of reef, and followed the response of the fish assemblage for four and a half years after 

roi removal.  

 

Fish assemblage and benthic monitoring: Thirty-five (20 roi-removal and 15 

reference) permanent transects were established at randomly selected sites with similar 

habitat and roi population densities. Visual fish surveys were conducted along each 

transect by two scuba divers swimming side-by-side and identifying, counting, and sizing 

all fish within parallel 5 x 25 m belts. Divers swam each transect at a constant speed (c. 

10-15 minutes per transect depending on complexity of the habitat) and all fish observed 

within the transect were identified to the lowest possible taxon, with sizes estimated to 

the nearest cm. Surveyors were previously trained and calibrated in visual underwater 

size estimation techniques based on practice with various lengths of fish models that were 

later collected and measured. To establish baseline condition, the removal and reference 

reefs were surveyed twice (November 2010 and March/April 2011), prior to initiating roi 

removal. Following removal, surveys were conducted semi-annually, (Summer; March-

June and Winter; October-November) for the duration of the experiment.  

Analysis: Live wet mass (biomass), W, of all fishes recorded during surveys was 

calculated from the visually estimated total length (TL) using the relationship W=aTLb 

where a is the allometric growth parameter and b is a scaling constant. Species-specific 

length–weight parameters were obtained from published and unpublished sources 

(Donovan et al. 2012; Froese and Pauly 2011). In order to limit the effects of extreme 

observations, the response variables (fish biomass and abundance) were restricted to their 

species-specific 95% quantile range. Response variables for parallel transects were 

averaged to obtain a single value per site.   

Linear Models: We tested for changes in the fish assemblage due to roi removal 

via a Before-After-Control-Impact (BACI) experimental design, where a significant 

interaction between ‘site’ (removal and reference) and ‘time period’ (before and after) 

indicates a significant treatment effect (Osenberg and Schmitt 1996; Pinheiro and Bates 
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2000). We used a linear mixed-effects model (LMM) framework to account for the 

hierarchical structure of the data set (Zuur et al. 2009). First, the permanent transects 

were grouped by ‘site’ (removal vs. reference reef), so that in the LMM ‘transect ID’ was 

treated as a random effect, nested within ‘site’ as a fixed effect. Second, to account for 

our repeated measures of permanent transects through time, ‘survey date’ was treated as a 

random effect, nested within ‘time period’ as a fixed effect.  

Prey-sized fishes were grouped for analysis, and included all fishes < 15 cm TL, 

based on previous gut content analysis (Dierking at al. 2009) and field observations. The 

response of prey-sized fishes to roi removal was measured as abundance (number per 

m2), which is a more sensitive metric compared to biomass for small fishes. In contrast, 

reef fish biomass (g/m2) was used to capture the overall fish assemblage response. 

Potential competitors of roi include other reef mesopredators, therefore, the biomass 

(g/m-2) of those species with a trophic level rank of 4.0 and above (www.fishbase.org) 

were grouped for analysis to test for changes in potential competitor densities following 

roi removal.  

To meet the parametric assumptions of a normal distribution, response variables 

(biomass and abundance per m-2) were log10 +1 transformed and 4th root transformed, 

respectively. Mixed models were developed with the lme4 package in R, version 3.1.1 (R 

package lme4: Bates et al. 2014; R Core Development Team 2013). A maximum 

likelihood estimate was used to fit the models and approximate F-tests were used for 

hypothesis testing with the ‘Anova’ function in the package lmerTest version 2.0-32 

(Kuznetsova et al. 2015). Model fits were assessed by visual inspection of the residuals.  

In order to examine any species-level shifts in the fish assemblage after roi removal, 

general linear models were constructed for the community as a whole, and for each 

species present (134 in total). Multivariate analyses were conducted using the statistical 

package mvabund version 3.11.9 in R (Wang et al. 2012), which is a model-based 

approach to test shifts in assemblage composition. The procedure constructs a linear 

model both to test for shifts in the assemblage as a whole, and for each constituent 

species. The species-specific P-values are adjusted to control the family wise error rate 

by resampling through a Holm's step-down multiple testing process (Westfall and Young 

1993; Wang et al. 2012). Thus the species-specific effects were assessed in a hypothesis-



	
58 

testing framework. Raw count data (numbers per species) were modeled as a negative 

binomial distribution (to account for over-dispersion in the counts) in order to estimate 

the species-specific treatment effects of roi removal. The non-independence of the 

repeated measures design was accounted for by permuting the likelihood ratio test within 

time periods (survey round). 

 

RESULTS 

One hundred and thirty-four fish species from 28 families were observed during 

the surveys. Fish biomass and abundance generally peaked during the winter and 

declined during the summer, showing a seasonal pattern at all study sites from 2010 to 

2015 (Figure 3.2 for small (<15 cm TL) fish abundance and Figure 3.3 for total fish 

biomass, respectively).  

Small (<15 cm TL) prey-sized fish abundance: Eighteen months post roi-removal 

(winter), the increase in small (<15 cm TL) prey density was significantly greater at the 

roi removal compared to the reference reef (F2,44 = 8.42, P=0.001, Figure 3.2). However, 

by month-24 (summer) differences were no longer significant by location. Results of the 

overall linear mixed effects model (LMM) did not show a significant effect of the site-by-

period interaction for the removal relative to reference locations (F1,349= 0.2, P=0.64, 

Appendix Table SI 3.1) indicating no effect four and a half years post-removal. The 

model was subsequently re-fit with additive fixed effects (period + location+ season) and 

a random treatment-by-date interaction.  The full hierarchical model with random effects 

explained 38.5% of the variability in the data (R2 =0.385), while the fixed effects-only 

model accounted for just 8.9% indicating the random factors accounted for much of the 

variability in the model. The removal site maintained higher overall small fish abundance 

(F1,25= 15.7, P<0.001) (Figure 3.2, Table 3.1), but the higher fish density observed was 

not due to roi removal.  

Total fish biomass: We observed no effect of roi removal on total fish biomass  

(F1,351= 0.08, P=0.76, Appendix SI 3.1) so, the model was re-fit with additive fixed 

effects (period + location + season) and a random treatment-by-date interaction. 

Although the treatment-by-date random term was not a significant predictor of total fish 

biomass, the magnitude and direction of the correlation parameter (-0.53) suggests that 
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with higher overall fish density, the treatment effect of removing roi decreased. The 

model explained 37% of the variability in the data. The treatment site was significantly 

higher in total fish biomass (F1,27=7.75, P<0.01) (Table 3.1), but the higher biomass at the 

treatment site was not due to roi removal.  

Both the control and the treatment sites oscillated within an upper and a lower 

bound. They diverged in low-density years, and converged in high-density years, so that 

the years with higher overall fish biomass experienced a smaller treatment effect. 

Because the convergence in fish biomass occurred yearly, the removal of roi did not 

impact overall fish biomass over the long-term (four and half years after roi removal).  

 Native Piscivores: Potential competitors of roi include other reef mesopredators. 

We found a significant increase in wrasse (Labridae) biomass at the roi removal site 

(F1,351 = 4.17, P=0.04, Table 3.2, Figure 3.4). This increase was driven primarily by the 

piscivorous ringtail wrasse Oxycheilinus unifasciatus (Figure 3.5).  

Species-level multivariate analysis: The total species-level assemblage did not 

shift significantly in response to roi removal (F1,120 = 34.48, P=0.48; Table 3.3). A null 

model was constructed with time alone as a predictor, in order to assess any treatment 

effects. The time-only model showed a significant difference in the assemblage 

composition (F1,122 = 163.5, P=0.04; Table 3.3). These results indicate that many small 

shifts in assemblage composition may in sum make up a significant difference over time, 

but none can be attributed to a single species, and that these changes cannot be attributed 

to roi removal.  

 

DISCUSSION 

The results of our long-term (five and a half year) field experiment reveal 

seasonal and fleeting effects of roi removal on the density of small (<15 cm TL) prey-

sized fish. However, removal of roi did not translate into sustained increases in prey, nor 

to increases in total fish biomass. Rather, both sites experienced seasonal and yearly 

fluctuations, and did not diverge in terms of total fish biomass over time. Thus, we found 

no indication that juvenile fish released from roi predation, experienced increased 

survivorship into adulthood. Instead, the seasonal predator effect on small size classes 

indicates that roi consume the “doomed surplus” (Errington 1946) of the prey 
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populations. This pattern is consistent with predation as a compensatory process, rather 

than an additive source of prey mortality in our system (Errington 1946).  

The effect of roi removal on the fish assemblage was negatively correlated to 

survey date across years, indicating that the higher the overall prey fish density, the 

smaller the effect of roi removal. The proportion of prey consumed per capita was 

reduced at high prey densities, thereby allowing the prey population to swamp any 

predator effects with sufficiently high densities. Thus the proportion of the prey 

population consumed declined even if predator consumption rates remained steady 

(apparent density-dependence, Sale and Tolimieri 2000; Hixon and Webster 2002; 

Tolimieri 2015).  

Increases in a potential competitor of roi, the wrasses, were observed at the 

removal site, indicating that prey released in the absence of roi could have been 

consumed by these potentially competing mesopredators. Further, although not measured 

here, transient predators such as sharks (Order Carcharhiniformes) and jacks (Family 

Carangidae) could have potentially aggregated at the roi removal reef and consumed the 

excess prey. Because predator aggregative responses can be heterogeneous over time 

(Hassell 1966; Oaten and Murdoch 1975; Murdoch et al. 1992), our sampling frequencies 

may not have coincided with transient predator visitations. A further methodological 

consideration is that benthic predators, particularly eels are underestimated in belt 

transect visual fish surveys (reviewed by Usseglio 2015). Further studies are needed to 

assess cryptic as well as transient predator responses in open reef systems.  

There are a few reasons why the effect of roi on prey fish in Hawaii could be 

minimal. First, the predation intensity may not be as intense as was previously reported 

(Dierking 2007). Introduced roi in Hawaii consume many small fish, as demonstrated by 

laboratory feeding experiments (Dierking 2007). However, laboratory studies risk over-

estimating a predator’s consumption rate as foraging in the wild is fundamentally 

different from feeding ad libidum in the lab (MacKenzie et al. 1990). When fed in 

captivity, the search time of a predator is essentially negligible (Abrams 1982) therefore 

laboratory methods could overestimate predator consumption rates (MacKenzie et al. 

1990). Indeed, observations of roi caught off of the west Hawaii coast noted a 44.9% 

stomach vacuity rate (prevalence of empty stomachs) in the 285 roi caught (Dierking and 
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Meyer 2009). The reported consumption rates of roi in captivity, likely represent an 

upper limit, rather than an expected mean in the wild.  

Secondly, roi are generalist predators (Shpigel and Fishelson 1989; Parrish 1987) 

with a wide dietary breadth. A study assessing prey selectivity of roi in Hawaii reported 

that half of the fish families present on the reef in 2003 were also represented in the diet 

(Dierking et al. 2009). However, selectivity for certain prey families was found, and these 

were attributed, in part, to the increased availability during recruitment pulses of settlers 

to the reef. Thus, as a trophic generalist, roi could consume by chance encounter the more 

common species on the reef (O’Brien 1974). By consuming the most abundant prey fish, 

roi could act as a source of density-dependent mortality for native fish in Hawaii, which 

is important for prey fish population regulation (Murdoch 1994; Hixon et al. 2002).  

In contrast, predators with selective feeding habits might extirpate rare species, if 

those were the preferred prey. Similarly, if predators reached sufficiently high densities, 

they could reduce abundance and diversity of the prey community even by consuming 

species in equal proportion (equivalent predation sensu Van Valen 1974) (Hixon 1986). 

Lionfish in the Caribbean are capable of extirpating rare species (Albins 2013), and 

dramatically decreased prey species abundance and diversity (Albins and Hixon 2008; 

Green et al. 2012; Côté et al. 2013), but this has not been observed with roi in Hawaii. 

 Thirdly, the availability of refuge space and other prey defenses may reduce the 

impact of roi on native Hawaiian reef fish. The same dietary composition study showed 

avoidance for certain species (the apogonids) that hid in small reef crevices that are 

inaccessible to roi (Dierking et al. 2009). Further, other cryptic families such as 

Blennidae, Scorpaenidae, and Gobidea were disproportionally absent in the diet, and this 

was attributed to their crypsis and close proximity to shelter in the reef (Dierking et al. 

2009). The ‘novel predator archetype’ (Cox and Lima 2006) and poorly defended prey 

(‘prey naiveté’; Diamond and Case 1986; Carthey and Banks 2014) have been invoked in 

explaining the lionfish’s success in the invaded range.  In contrast, roi in Hawaii appear 

to be naturalized, and even engage in multi-species hunting with native eels (J. Giddens, 

pers. obs). Many native Hawaiian fish species currently maintain connectivity with parent 

populations at other locations across the Pacific where predatory groupers are abundant 

(Eble et a. 2011a, 2011b, Bowen et al. 2013; Bowen 2016). Therefore, the novel predator 
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archetype and prey naiveté may not be pertinent hypotheses for explaining the success of 

roi in Hawaii, both because of the evolutionary history of reef fish in the tropical Pacific, 

and their time (more than half a century) since introduction.  

Nevertheless, roi are a dominant mesopredator (along with moray eels, Family 

Muraenidae) in their introduced range (Dierking et al. 2009). Predators can depress prey 

populations whether they are generalist or specialists, if predator densities are sufficiently 

high (Hixon 1986). With high relative abundances, the cumulative effect of roi predation 

is potentially substantial if native fish lack the ability to repel invaders, i.e., biotic 

resistance (sensu Levine 2000). Some prey fish species (e.g. parrotfishes, larger 

surgeonfishes, trumpetfish and filefish) can reach a size refuge as adults when they are no 

longer vulnerable to the gape-limited size selection of roi. These adults could continually 

contribute offspring to the next generation regardless of roi densities. Adult stages could 

therefore serve as an ontogenetic refuge from predation and as a source of high 

reproductive output, replenishing fish populations despite predation by roi on some 

portion of the juveniles of that species. Together, the predation intensity of roi could be 

effectively negligible over multi-year timescales because of the availability of shelter for 

prey and the size refuge reached in adulthood by some fish families.  

 

CONCLUSIONS 

While introduced reef fish predators represent a possible threat to coral reef 

ecosystems, our results indicate that roi in Hawaii do not additively diminish native reef 

fish populations in a patch reef system over multi-year timescales. Both the roi-removal 

and the control reefs experienced fluctuations in reef fish abundance and biomass, 

independent of roi density. Because roi at Puako exhibit higher densities than most 

locations in Hawaii (The Nature Conservancy unpublished data), we expect these results 

to be generally applicable to Hawaiian reef systems where roi are present. The native reef 

fish assemblage appears to maintain biotic resistance to potential negative consumptive 

effects of roi, for example through evasion and through a refuge in size for some fish 

families. However, if the apparent balance between predator and prey populations were to 

be disturbed due to other pressures such as overfishing or habitat degradation, then the 

ability of the native fish assemblage to resist invasion may be impaired. As intact 
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ecosystem processes likely foster coexistence mechanisms and thus bolster native reef 

fish resistance to invading species, management should address multiple angles to 

increase ecosystem resilience as a whole, and maintain the adaptive capacity of these 

diverse systems into the future. In considering the many threats facing Hawaiian reefs, 

and the many possible solutions, roi removal alone will not likely replenish native fishery 

resources.  
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FIGURES  
 
 
 

 
 
Fig 3.1 Map of roi removal study sites, in Puako, west Hawai‘i with substrate type (hard-
bottom vs. unconsolidated sediment) shown 
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Fig 3.2 Trend line for small (≤15cm) prey species during 5.5-year roi removal 
experiment at the Puako, west Hawai‘i study site. Fish-down event is marked by the 
dashed line. Error bars are standard error of the mean 
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Fig 3.3 Trend line for total fish biomass (excluding roi) during 5.5-year roi removal 
experiment at the Puako, west Hawai‘i study site. Fish-down event is marked by the 
dashed line. Error bars are standard error of the mean 
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Fig 3.4 Fish family-specific differences at the Puako, west Hawai‘i study site for 
piscivore biomass (trophic level rank > 4.0) 4.5 years after roi removal. Grey lines 
highlight the direction and magnitude of change (zero being no change in biomass) 
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Fig 3.5 Trend line for Labrid biomass during 5.5-year roi removal experiment at the 
Puako, west Hawai‘i study site. Fish-down event is marked by the dashed line. Error bars 
are standard error of the mean 
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TABLES 
 
Table 3.1 Model-fitted estimates of the fixed effects (Season + Location + Period) for 
(log+1 transformed) total fish biomass and for small (<15cm) fish abundance, significant 
p-values are in bold 
 
 

 
Predictor Coef B SE(B) df F p 

All fish      
 

 
Intercept 3.13 0.18  

 
<0.001 

 
Site 0.30 0.11 27 7.75 <0.01 

 
Period -0.16 0.17 9.0 0.93 0.36 

 
Season  0.18 0.13 8.9 1.95 0.195 

Small fish       

 
Intercept 0.84 0.02  

 
<0.001 

 Site 0.03 0.01 25.8 15.7 <0.001 

 Period 0.01 0.02 9.0 0.60 0.45 

 Season  0.01 0.01 8.9 0.45 0.51 
 
 
 
 
 
Table 3.2 Model-fitted estimates of the fixed effects (Season + Location + Period) for 
piscivores and Labrid (log+1 transformed) biomass, significant p-values are in indicated 
in bold 
 
 

 
Predictor Coef B SE(B) df F p 

Piscivores      
 

 
Site 0.26 0.06 62 5.15 0.28 

 
Period 0.05 0.11 9.4 0.11 0.19 

 
Season  0.08 0.06 9.1 1.96 0.12 

 Site*Period -0.16 0.12 350 1.16 0.19 
Labridae       
 Site -0.01 0.18 58.8 2.41 0.12 
 Period -0.40 0.21 9.13 1.39 0.26 
 Season  0.19 0.13 8.96 1.99 0.19 
 Site*Period 0.38 0.18 351 4.17 0.04 
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Table 3.3 Hypothesis test for multivariate changes in fish species composition after roi 
removal (negative binomial model for crossed site-by-time interaction), significant p-
values are indicated in bold 
 
 
 
Multivariate test: 

                                                  Res.Df       Df.diff        Dev          Pr(>Dev) 

Site X Time                                   121            1              34.48         0.48 

Time                      122            2             163.5          0.04 

Univariate Tests: 

All species not significant             120            1             11.849       0.64 <>1.0 

 
 
 
SUPPLEMENTARY INFORMATION 
 
SI Table 3.1 Table of non-significant interaction terms  
 

 
Predictor Coef B SE(B) df F p 

All fish      
 

	
Site	 0.27	 0.19	 7.67	 7.67	 <0.01	

	
Period	 -0.19	 0.19	 9.09	 1.01	 0.33	

	
Site*Period		 0.04	 0.13	 351	 0.08	 0.76	

Small	fish	 	 	 	 	 	 	
	 Site	 0.03	 0.01	 47.4	 11.5	 <0.001	
	 Period	 0.01	 0.02	 9.0	 0.53	 0.48	
	 Site*Period		 0.01	 0.01	 349	 0.20	 0.64	
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Fig SI 3.1 Model fitted values (4th route transformed small fish abundance) for control 
and treatment sites by survey date 
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Fig SI 3.2 Model-fitted values (log+1 total fish biomass) for control and treatment sites 
by survey date 
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ABSTRACT 

Global change is accelerating species range shifts. Whether ecosystems will be resistant 

or vulnerable to species invasions is an imperative question to answer, ultimately, for the 

sustainability of human well-being. In marine systems, at the seascape level, 

environmental heterogeneity has been proposed as an important component of ecosystem 

invasibility, with increased diversity and complexity leading to increased ecological 

opportunity, and therefore a greater likelihood of successful invasions. In Hawai‘i, a mid-

sized predatory grouper, roi (Cephalopholis argus; Family Serranidae) was introduced 

during the 1950’s, and subsequently established and spread throughout the Main 

Hawaiian Islands (MHI), yet their distributions, and the environmental, anthropogenic, 

and biotic community drivers of abundance were unknown. We used a machine learning 

technique (Boosted Regression Trees) to assess the importance of 22 environmental and 

anthropogenic predictor variables at the seascape level, as well as 2 community-level 

factors (density of potential competitors and prey) from a database > 4,000 sites compiled 

from various sources across the MHI. Seascape-level environmental predictors were the 

most important factors in explaining roi distributions (depth, habitat complexity, and 

coral cover). Measures of increased ecological opportunity, defined as a diversity of 

accessible resources as a result of environmental heterogeneity and habitat complexity, 

were also important predictors of roi densities. Anthropogenic factors were important, 

but ranked last in percent deviance explained by the final model. Biotic interactions were 

also important, explaining ~ 10 % and ~ 19 % of the deviance by piscivores and prey, 

respectively. A negative relationship between roi and native fishes at intermediate 

densities was found, and could be indicative of intraspecific competition in roi and/or 

biotic resistance by native species. However, this apparent resistance manifests itself only 

at sufficient densities of native fishes. Therefore, maintaining intact coral reef fish 

assemblages with high standing stocks of native species are likely important for 

ecosystems to resist the potential negative impacts of exotic species.  
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INTRODUCTION 

Human activity has re-shaped earth’s ecosystems through habitat modification, 

global climate change, and through species introductions (Vitousek et al. 1997; Halpern 

et al. 2006). The response of ecosystems to these mounting anthropogenic pressures is an 

uncontrolled experiment unfolding (Chapin et al. 2000; Scheffer & Carpenter 2003). 

Increased knowledge of the salient factors that facilitate or deter species invasions would 

enable foresight into the potential re-assortments of communities due to species range 

shifts with global change or introductions of non-natives that are transported by human 

vectors (Elton 1958; Lockwood et al, 2003). Our ability to manage for biodiversity 

conservation and the flow of ecosystem services relies on this fundamental understanding 

of invasion susceptibility vs. resistance (Hannah et al. 2002; Carpenter et al. 2009).  

Previous research has focused on the traits of successful invaders (Kolar & 

Lodge, 2001), yet properties of the ecosystem also influence the outcome of invasions 

(Vitousek 1986). Species interactions take place within the context of environments and 

scales of resource availability, therefore studies of traits alone can lead to conflicting 

conclusions about the drivers of ‘successful’ establishment, growth, and spread of 

invading species (Allen et al. 1999; 2006).  

The outcomes of species range shifts or introductions could be mediated by 

environmental heterogeneity or habitat complexity (Levin 1992; Tilman & Kareiva 

1997). A classic hypothesis is that environments with spatial and temporal heterogeneity 

are more open to invasion because of the increased ecological opportunity provided by a 

variable habitat (Davies et al. 2005; Melbourne et al. 2007). Heterogeneity can be defined 

as the variety of structural elements (spatial), or variability in physical parameters 

(temporal) (Stoner & Lewis 1985; Kovalenko et al. 2012). Habitat complexity here refers 

to spatial structure, as the texture of the landscape (sensu Holling 1992). Both types of 

environmental heterogeneity lead to increased microhabitat availability, which can 

provide colonizing species with resources such as food, or enemy-free space. This 

diversity of accessible resources that is underutilized by existing taxa is referred to as 

ecological opportunity (Losos 2010; Yoder et al. 2010; Kovalenko et al. 2012).  

At the community-level, biotic resistance through species interactions (e.g. 

interspecific competition) has been well studies in terrestrial plant communities, and is 
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thought to play a role in deterring or absorbing impacts of species invasions (Elton 1958; 

Levine & D’Antonio 1999; Levine et al. 2004). Under this hypothesis, the characteristics 

of the community determine resistance or vulnerability to invasions at the local scale 

(Cornel & Lawton 1992). However, less is known about the relative importance of 

human, environmental, and biotic community drivers of introduced species distributions 

in their exotic range, especially in the marine environment (but see Côté et al. 2013; 

Hixon et al. 2016).  

In Hawai‘i, a mid-sized predatory grouper, the Peacock Hind locally known by its 

Tahitian name, roi (Cephalopholis argus, family Serranidae) was introduced during the 

1950’s, and subsequently established throughout the main archipelago (Randall 1987). 

This species, (along with 11 others from the lutjanid, serranid and lethrinid families) was 

intentionally introduced to augment the nearshore fishery by filling a perceived empty 

ecological niche for benthic predators (HDAR 1950). Roi (and two snapper species) 

established as a results of these introductions, yet are avoided as food fishes because of 

the high incidence of ciguatera associated with these species (Dierking & Campora 

2009). Instead, the perceived declines in native fishery species are popularly attributed to 

predation by roi, which in turn has led to grass-roots initiatives to cull roi through 

spearfishing tournaments (Giddens et al. in prep).  

While previous studies identified species traits and historical events that 

facilitated the successful establishment and spread of roi in Hawai‘i (Johnston & Purkis, 

2016), the environmental, anthropogenic, and biotic drivers of their present distribution 

across the Main Hawaiian Islands (MHI) was unknown. To address this gap, we used a 

machine learning technique (Boosted Regression Trees) (Elith et al. 2008) to assess the 

importance of 23 environmental and anthropogenic predictor variables at the seascape 

level, as well as community-level factors (density of potential competitors and prey) from 

a database of > 4,000 sites compiled from various sources across the MHI. Our questions 

were: 1) Which environmental and anthropogenic factors determine the distributions of 

roi and does ecological opportunity provided by habitat complexity and environmental 

heterogeneity play a role; and 2) Do biotic interactions (density of competitors or density 

of prey) play a role and what is the relationship between roi and native species densities 

across the MHI? By investigating these questions, our aim was to gain an understanding 
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of the seascape factors that facilitate or deter species invasions on coral reefs.   

 

METHODS 

To examine roi population distributions across the MHI in relationship to biotic 

environmental (prey and piscivore biomass, benthic habitat composition), abiotic 

environmental, and human factors, existing data from underwater visual surveys of fish 

assemblages were compiled from current partnerships with federal and non-federal 

monitoring programs (Friedlander et al. in review; Costa et al. 2016). These data come 

from 20 different datasets contributed by 9 different collaborators since 2000. In total, the 

database consists fish data with 20,986 observations from 4,782 sites (Figure 4.1; Table 

SI 4.1). 

Each dataset was checked for errors and completeness, transformed into a 

consistent format, and standardized to account for overall differences in survey 

dimensions and methods. To standardize data among methods, calibration factors were 

calculated using an automated software program that utilizes general linear models and 

Monte Carlo simulations (Nadon 2014). Sites where surveys were conducted at more 

than one time were averaged. 

 

Statistical modeling 

Boosted Regression Tree (BRTs) models can be used to estimate relationships 

between reef fish variables (SI 4.1) and the biophysical predictor datasets (SI 4.2) (Elith 

et al. 2008). The estimated relationships can then be used to produce maps of spatial 

distribution, and determine the variable’s importance in predicting roi distributions (Elith 

& Lethwick 2009). Statistical modeling and spatial prediction were performed in R (R 

Core Team 2014) using the dismo (Hijmans et al. 2016) and raster (Hijmans & van Etten 

2014) packages. 

BRTs are useful for modeling nonlinear relationships without assuming a 

particular probability distribution. Tree-based approaches to model-fitting estimate 

relationships between the response and predictor variables by using a series of binary 

splits on the predictor variables. These splits partition the data into groups of response 

homogeneity (Breiman et al. 1984; De’ath & Fabricius 2000) and can handle the non-
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linear relationships and interactions of ecological data (De’ath & Fabricius 2000). BRT 

models employ a machine learning technique, where multiple trees are fit sequentially 

and then combined to generate an ensemble model (Schapire 2003; De’ath 2007; Elith et 

al. 2008). Each iteration of the tree-fitting process uses a random subset of ‘training’ data 

(a portion of the data set used to assess the model performance). This introduction of 

stochasticity to the model fitting process results in a reduction of total model variance and 

an increase in predictive performance (De’ath 2007; Elith et al. 2008). 

Roi biomass was modeled using a Gaussian (normal) distribution after fourth root 

transformation to improve the normality of the distribution. Survey data for the MHI 

were randomly divided into model training (70%) and test (30%) subsets, where the test 

dataset was withheld from model fitting and used to evaluate model performance. Models 

were fit for a range of parameter value combinations (learning rate, bag fraction, and tree 

complexity, see Elith et al. 2008), and for each parameter value combination, the optimal 

number of boosting iterations (trees) was determined using 10-fold cross-validation 

(described in detail in Elith et al. 2008). To select the optimal model, predictive deviance 

was computed by averaging the unexplained variation in the response variable (by 

comparing the test and training datasets at each iteration) and the number of trees that 

minimized predictive deviance was selected. A final BRT model was fit to the training 

dataset using the optimal number of trees and fitting parameter combinations identified 

through the model tuning process. For model simplification, the change in predictive 

deviance was computed relative to the initial model by sequentially dropping the least 

important predictor, and re-fitting the model (Elith et al. 2008). A final model was fit 

using the simplified set of predictor variables. For the final model, predictive 

performance was evaluated by calculating the predictive deviance through 10-fold cross-

validation of the training and test subsets. The mean predictive deviance across the 10 

iterations was used to calculate a cross-validation estimate of the percent deviance 

explained (PDE) (Elith et al. 2008). To compare how well the model performs when 

predicting data that was independent of model fitting, the “Test PDE” was determined by 

calculating the percent deviance explained by the model when evaluated using the model 

test dataset. Both test and cross-validation PDE indicate overall model fit, and higher 

values for these metrics indicate greater confidence in predictions across space, and 
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assessment of relationships between response and predictor variables.  

 

Prediction across space 

To calculate spatially explicit predictions and prediction uncertainties, 

bootstrapping can be used to generate a suite of fitted BRT models. Training data were 

repeatedly sampled with replacement to create 25 bootstrap samples. A BRT model was 

fit to each bootstrap sample and used to make a prediction to a spatially explicit gridded 

map using the values of the predictor variables at each grid cell. The set of 25 spatial 

predictions were used to calculate the prediction mean and coefficient of variation (Elith 

et al. 2008).  

 

Predictor variable importance and partial dependence 

In order to predict the ecological drivers behind the spatial distributions of roi, the 

BRT model outputs provided a summary of the relative importance of the predictor 

variables used in model fitting, based on how often a variable is used for splitting (Elith 

et al. 2008). Further, partial dependence plots were generated for each biophysical and 

community predictor variable to visualize the individual effect of the predictor variable 

on roi distributions (De’ath 2007; Elith et al. 2008). 

 

Predictor dataset 

We tested among four categories of environmental variables at the seascape 

(among-island) scale, which were: habitat composition, geography, topography, and 

oceanography (SI 4.1 and Table 4.1), following Stamoulis et al. (2016). Population 

density was used as a proxy for human influence (Williams et al. 2008). Wave power was 

considered an inverse proxy for human influence, as sites with higher wave power are 

less accessible to humans (Stamoulis et al. 2016). Environmental heterogeneity was 

measured by two factors that quantify the diversity of structural elements (Kovalenko et 

al. 2012), and they include the Shannon Diversity Index, which accounts for the richness 

and evenness of habitat-forming species in an area (Shannon & Weaver 1949), and the 

Proximity Index, which quantifies the spatial context of a habitat patch, including the 

diversity of habitat forming species, in relation to its neighbors (Gustafson & Parker 
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1994) (detailed descriptions of both metrics in Table 4.2). Habitat complexity variables 

(texture of the landscape, sensu Holling 1992) included measures of topographic 

complexity and spatial configuration from habitat variables.  

Measures of habitat composition were generated from benthic habitat maps for 

the MHI (Battista et al., 2007). These were simplified into five benthic cover classes, 

including crustose coralline algae (CCA), coral, macroalgae, turf algae, and soft bottom 

habitat. Geographic variables included projected latitude and longitude, distance to shore, 

and proximity to human population (SI Table 4.2 and Table 4.1). Seafloor topography 

variables were derived from a gridded synthesis of multibeam sonar and LiDAR (Light 

Detection and Ranging) bathymetry at 5 m resolution. From this information, depth and a 

suite of seafloor complexity datasets were derived. The mean and standard deviation of 

the 5 m resolution datasets were computed within a 60 x 60 m grid (SI Table 4.2 and 

Table 4.1). Metrics were derived for several neighborhood sizes (60 m, 120 m, and 240 m 

radii) to account for varying home-range sizes of fishes in Hawai‘i. Oceanographic 

variables were based off of a 10-year (2000-2009) hindcast model at 500 m resolution 

(Stopa et al. 2013) representing wave states around the MHI. Details of these landscape 

scale predictors are described in Stamoulis et al. (2016). 

Biotic variables at the community scale consisted of roi biomass, and the biomass 

of prey-sized fished (all fishes <15 cm TL) and potential competitor biomass (piscivores 

of trophic level > 4, Froese & Pauly 2011). Biomass was estimated from fish count data 

using the allometric length–weight conversion: W=aTLb, where parameters a and b are 

species-specific fitting parameters, TL is total length (cm), and W is weight (g). Fitting 

parameters were obtained from a comprehensive assessment of Hawai‘i reef fish length-

weight relationships (Donovan et al. in prep), and from published sources (Froese & 

Pauly 2011). 

Three BRT models were run to assess the relative importance, and the 

relationships of these environmental, human, and biotic community factors in 

determining roi distributions across the MHI. These were: 1) Roi biomass as a function of 

environmental and anthropogenic variables to determine rank order of importance, and 

whether environmental heterogeneity plays a role in predicting roi densities; 2) Model 1 

plus prey to examine the importance of prey (all fishes < 15 cm TL) as a predictor 
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variable, as well as the shape of the relationship between roi and prey densities; 3) Model 

1 plus potential competitors to examine the importance of competitors as a predictor 

variable, as well as the shape of the relationship between roi and competitor densities. 

Potential competitors are defined as all piscivorous fishes (trophic level ≥ 4). Models 1-3 

were compared in terms of the amount of deviance explained, to determine the predictive 

performance of environmental variables only, compared to when piscivorous or prey 

fishes are included in the model.  

We hypothesized that measures of seafloor structural complexity and diversity are 

primary predictors of roi abundance because of the increased ecological opportunity 

created by microhabitat availability in heterogeneous environments. Further, we 

hypothesized that these complexity and diversity measures explain more variability in roi 

distributions compared to measures of human impacts (human population density) or 

biotic factors (density of piscivorous or prey-sized fishes) because the larger scale 

environmental drivers entrain smaller scale community interactions and human impacts 

(Gunderson & Holling 2001). Furthermore, we hypothesized that roi and native species 

have a positive relationship, responding synchronously to increased ecological 

opportunity provided by habitat complexity and diversity. However, if biotic resistance 

by native species affected roi population densities, then we would see a negative 

relationship between roi and native species abundance across the MHI archipelago.  

 

RESULTS 

Environmental and anthropogenic variables: 

Environmental variables were most important in predicting roi densities (Figure 

4.2). Foremost was depth, which accounted for 11.9% of the variance explained, and 

showed a positive relationship where more roi were found with increasing depth (Figure 

4.3). Coral cover was the second most important variable, with a positive relationship that 

accounting for 10.2% of the variance explained by the model. Habitat structural 

complexity (slope of slope) was also positively correlated with roi densities, accounting 

for 8.5% of the variability. Latitude had a generally negative relationship, with less roi 

found farther north, accounting for 8.1% of the deviance (Figure 4.2). Roi were found in 

areas with very low and very high wave power, but in low densities at intermediate 
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values of this variable. (Wave power also interacted with depth, as there is less wave 

motion at deeper depths.) Slope of slope at the 240 m scale had a generally positive, but 

more variable relationship than at the 5 m scale (Figure SI. 4.1).  

Finally, distance to human populations played only a modest role in explaining 

the distribution of roi (13.1 % of relative contribution).  The final model accounted for 

53.6% PDE for the training data set, 21.2% for the test data set, and 27.3 in cross 

validation (Table 4.2).  

 

Biotic (prey and potential competitor) variables: 

Prey: A second BRT (model 2) was fit with environmental and human variables 

from model 1 described above, with the addition of prey biomass (all fishes < 15 cm TL) 

to investigate the relationship between roi and prey biomass across the MHI, while 

accounting for the effect of the seascape drivers identified in model 1. By investigating 

this relationship, we aimed to gain a better understanding of the role that biotic 

interactions (relative predator-prey densities) played in determining the community’s 

vulnerability or resistance to invasion. 

The five most important predictor variables for determining roi abundances, 

including the biotic interactions of prey species were habitat complexity (slope of slope) 

(25%), (depth) (23%), prey biomass (19%), latitude (18%), and wave power (15%), 

respectively (Figure 4.4). The overall model explained 44.2 % PDE for the training data 

set, 29.1% for the test data set, and 26.0% in cross validation. These measures indicate 

slightly less confidence in predictions compared to the environment only model, but with 

5 instead of 20 predictor variables, indicating more explanatory power for each individual 

predictor in the simplified model (model 2, accounting for prey biomass).  

  The relationship between roi and prey was non-linear and saturating (Figure 

4.5). There was an initial positive relationship, where increases in prey corresponded with 

increases in roi densities. At a threshold of prey biomass (~ 40 g/m-2) roi densities 

peaked, and then responded negatively to increases in prey biomass up to a limit. At ~ 50 

g/m-2 of prey biomass, roi densities remained constant at about 0.6 g/m-2.  

Potential competitors: A third BRT (model 3) was fit with environmental and 

human variables from model 1 described above, with the addition of piscivorous fish 
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biomass (fish of trophic level ≥ 4) to investigate the relationship between roi and 

potential competitor biomass across the MHI, while accounting for the effect of the 

seascape drivers identified in model 1. By investigating this relationship, we aimed to 

gain better understanding of the role that biotic interactions (interspecific competition) 

played in determining the community’s vulnerability or resistance to invasion. 

Piscivorous fish biomass was a relevant predictor of roi distributions, ranking 5th 

out of 10 in importance (accounting for 10.5% of deviance in the model), after 

environmental predictor variables (Figure 4.6). The top predictors in the piscivore model 

were similar in variable importance compared to models 1 and 2 (e.g. coral cover, depth, 

and topographic complexity). Yet an additional complexity at a broader spatial scale 

(slope of slope and bathymetric position index at 240 m neighborhood radius) was 

identified as important in predicting roi densities in the piscivore model (Figure 4.6). 

Piscivores had a similar relationship to roi compared to prey species; that is a non-linear 

saturating relationship (Figure 4.7). Both roi and piscivore biomass increased together 

with a positive relationship at low population density. At a peak of ~ 25 g/m2 for 

piscivores, roi density decreased, and finally plateaued at 0.55 g/m2. With increasing 

piscivore densities, roi densities remained stable.  

 

DISCUSSION 

To better understand the properties that make ecosystems vulnerable or resistant 

to invasion, we examined the relative influence of habitat, anthropogenic, and biotic 

variables in determining the invasion success of an introduced marine predatory grouper 

across the MHI. Measures of model performance (percent deviance explained) for our 

three BRTs indicated a well-performing model (Elith 2008). From these predictive 

models, we characterized the relationship of introduced roi population densities to the 

recipient ecosystem biophysical drivers of fish abundance, and here present the first 

assessment of roi distributions and their drivers at the seascape (among-island) scale.  

 

Roi distributions: 

Roi were found primarily in deep, coral rich, and topographically complex 

habitats. Coral cover was one of the most important drivers for roi abundance, whereas it 
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was not a primary driver for other fish assemblage metrics (biomass, richness) in Hawai‘i 

(Stamoulis et al. 2016). Instead, the principal drivers for resource fishes (those species 

caught for food), total fish biomass, endemic fish biomass, and species richness generally 

correlated with measures of structural complexity and human impacts (human population 

density and wave power as a proxy for inaccessible locations) (Stamoulis et al. 2016). Roi 

were found in higher densities in the southern and leeward parts of the archipelago, 

which may be an entrained response to the higher coral cover found in those areas (Costa 

& Kendall 2016). Higher coral cover and reduced wave action on the deeper fore-reef 

slopes, could also explain why roi densities increased with depth. In sum, high coral 

cover emerged as the prime habitat for roi, which distinguishes habitat affinities of this 

introduced predator from the general predictors of reef fish assemblage metrics that are 

well documented in the literature (refuge from humans and high topographic complexity) 

(Friedlander et al. 2007; Pittman et al. 2009; Williams et al. 2015; Stamoulis et al. 2016).  

 

Relationship to biophysical drivers of fish abundance:  

Roi had a generally linear and positive response to depth and coral cover. Positive 

relationships were also observed with measures of topographic complexity and 

environmental heterogeneity (diversity of elements), as expected under the environmental 

heterogeneity hypothesis (Melbourne et al. 2007), which postulates that a greater 

diversity and abundance of species is found in more complex and heterogeneous 

environments. These findings correspond with the literature and have been documented 

in empirical research (Friedlander et al. 1998; 2003; Graham & Nash 2013; Stamoulis et 

al. 2016). The physical diversity and complexity of habitat structures in Hawaiian coral 

reefs present open ecological opportunities for roi to establish.  

Roi had a bimodal response to wave power as they were found in abundance in 

areas with low and high, but not at intermediate levels of wave energy. To explain their 

peak in abundance at low and high wave energy sites, the former could be an entrained 

response due to their habitat affinity with high coral cover, which is found in low wave 

energy sites. The latter could be indicative of a response to human impacts. Areas of low 

fishing pressure generally correspond to areas that are inaccessible to humans, such as 

high wave power (and deeper) sites. Thus, wave power has been used as an inverse proxy 
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for human impacts in previous studies (Williams et al, 2008; Stamoulis et al. 2016). Here, 

this measure could signal a de facto refuge from humans in areas with higher wave 

power. Fish biomass, especially for resource species, was strongly correlated with high 

wave energy areas across the MHI, as opposed to leeward sites that are easily accessible 

to humans on a year-round basis (Stamoulis et al. 2016). The relationship of increased roi 

densities with higher wave energy could be a response to a direct lack of human fishing 

pressure, or indirectly through an increase in food availability at these sites.  

Roi and human population density also had a bimodal relationship, with high roi 

densities in areas with no humans, that dropped dramatically, but not incrementally with 

increasing human population densities. This signal could be heavily influenced by the 

effect of increased overall fish biomass in no-take marine protected areas (no humans) 

(Friedlander et al. 2007). After the initial decrease in roi densities, the relationship was 

only slightly negative with increasing human population, as roi are generally not targeted 

for food due to risk of ciguatera (Dierking & Campora 2009). They are targeted in culling 

tournaments and opportunistically across the state (Giddens et al. in prep), which could 

contribute to their decrease in densities with increasing human population.   

 

Seascape variable importance and the role of environmental heterogeneity in 

determining invasion success at the seascape level: 

Measures of habitat composition, geography, and topography were strongly 

correlated with roi densities. Proxies for refuge from human pressure, such as wave 

power and depth were strong correlates, but second to environmental drivers. These 

findings are consistent with studies in the MHI (Stamoulis et al. 2016) and across the 

Pacific Ocean (Williams et al. 2015; Heenan et al. 2016) for drivers of reef fish 

abundance and distributions in relation to human and environmental variables at the 

seascape (archipelagic and between archipelago-scale). Measures of environmental 

heterogeneity (Shannon Diversity Index and Proximity Index) were less important in 

determining roi distributions across Hawaiian reefs, compared to measures of structural 

complexity. Environmental heterogeneity can facilitate establishment, but the structural 

complexity provided by physical texture was a more prominent driver in this marine 

system (Friedlander & Parish 1998).  
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Role of biotic interactions (prey and potential competitors) in determining invasion 

success at the community-level: 

Roi correlations with prey and piscivore groups were characterized by non-linear 

and saturating relationships. At intermediate densities, a negative relationship revealed 

decreasing roi biomass while native fish biomass increased. This pattern could indicate 

either intra- or interspecific competition as limiting roi population growth. Given that 

native species densities increased while roi decreased, biotic resistance by native species 

could serve to limit roi populations (Elton 1958; Tillman 1999). The priority effect 

(Shulman et al. 1993; Almany 2003), whereby the prior establishment of species deters 

newcomers and determines the species assemblage through competition or predation, 

could function to increase ecosystem resistance to invasions.  

Alternatively, the pattern of decreasing roi densities at intermediate biomass 

levels could be indicative of self-limiting population growth as a result of intraspecific 

competition. Direct demographic density dependence occurs when there is positive 

population growth rate at low densities and a negative population growth rate at high 

densities, and can be measured through changes in the per capita gain rates and/or loss 

rates of a population (Murdoch 1994; Hixon et al. 2002). This regulated growth was 

observed in invasive lionfish in the Caribbean through a field manipulative experiment, 

which measured demographic rates (growth, recruitment, immigration, and loss) in a 

gradient of experimental plots from naturally occurring to increased lionfish densities 

(Benkwitt 2013). Lionfish exhibited direct density dependence in individual growth rates, 

however, there was no evidence for density dependence in recruitment, immigration, or 

loss (mortality plus emigration). The likely mechanism was intraspecific exploitative 

competition indicating that lionfish numbers could be limited by prey availability 

(Benkwitt 2013).  

In comparison, space may be the limiting resource causing intraspecific 

competition and ultimately regulating populations of roi in Hawai‘i. Unlike transient 

native piscivores such as jacks, roi form harems and hold home ranges. Also, unlike other 

serranids, roi do not undertake spawning migrations (Shpigel & Fishelson 1991). Instead 

they remain in their home ranges year round where males defend their territory and the 
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females within their social group against conspecifics. Thus, the dominant male secures 

the opportunity to mate with females within his home range (Donaldson 1995). Female 

home ranges are nested within the male’s range, with the dominant female holding the 

largest territory (up to 100 m2 in the Red Sea) (Shpigel & Fishelson 1991). An earlier 

study in Hawai‘i (Meyer 2008) documented a mean home range of 1236 m2 for roi, 

which generally included several shelter sites (mean of 598 m2) in areas of high reef 

complexity where roi spent the majority of time (Meyer 2008). Defending these home 

ranges, and the status within the social hierarchy that territory confers, may ultimately 

limit roi population densities in Hawai‘i.  

While our results show a negative relationship between roi and native reef fish at 

intermediate densities, our study is based on correlation analysis, and therefore cannot 

distinguish the causative mechanism behind the pattern, only that there is one. Field 

manipulative experiments are needed to distinguish the role of inter vs. intraspecific 

competition in limiting roi densities, by measuring demographic rates at a range of roi 

population densities with appropriate controls (Hixon 1991; Benkwitt et al. 2013).  

In both Hawai‘i and the Caribbean, if biotic resistance were to play a role in 

limiting predatory fish invasions, there would need to be sufficient densities of native 

predators and competitors to suppress populations of non-native species. The diversity-

invasibility hypothesis (Elton 19958; Tilman 1999) states that areas with high native 

species richness and/or biomass are less likely to be invaded by an exotic species because 

of decreased ecological opportunity where a reef is saturated at the community level. Our 

results are consistent with this hypothesis, as the observed negative relationship appears 

only at sufficiently high native fish densities.  

 

Scale-dependence 

Our study shows a non-linear relationship between roi and native fish biomass, 

such that the correlation of the introduced predator with native species had a different 

sign depending on the densities of species. A positive relationship of native and 

introduced species alike may reflect a biotic response to increasing resource availability 

and ecological opportunity provided by environmental heterogeneity and habitat 

complexity, and/or a refuge from human pressures (Menge et al. 1985; Friedlander et al. 
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2003).  

Previous studies on the impacts of exotic species in invaded ecosystems have 

shown contrasting results (Allen et al. 1999). Likewise, previous studies testing the 

diversity/biomass-invasibility hypothesis have been contradictory, and have shown 

positive, negative, or neutral relationships between diversity and invasibility in various 

systems and at various spatial and temporal scales (Sax & Brown 2000). Together our 

results indicate that studies to determine the effect of an introduced species on the native 

fish assemblage could have different results depending on the initial densities of species, 

as well as the environmental context. As our correlational results show a non-linear 

relationship to environmental and human drivers of roi distribution and abundance, we do 

not expect that the impacts of this introduced species will be consistent in different 

seascape contexts.  

To understand the general factors that determine predatory fish invasion success, 

including traits of the predator, prey, and recipient ecosystem, a comparison between 

Caribbean and Hawaiian fish introductions would be a fruitful area of further research 

(Cote et al. 2012; Hixon et al. 2016). Lionfish and roi share similar traits that could be 

associated with invasiveness; they are trophic generalists (Shpigel & Fishelson 1991; 

Albins & Hixon 2008; Harms-Tuohy et al. 2016), with early age at maturity (Morris 

2009, Schemmel et al. 2016) and continuous reproduction (Morris et al. 2011, Schemmel 

et al. 2016), and they have a tolerance for a wide range of environmental conditions (e.g. 

depth) (Cote et al. 2013; Johnston & Purkis 2016).  Other factors are distinct between the 

two regions. For example, prey naïveté and the novel predator archetype (Cox & Lima 

2006; Sih et al. 2010) are proposed species traits of the prey and predator, respectively, 

that facilitated the lionfish invasion of Caribbean reefs (Albins 2015; 2016; Anton et al. 

2016). These are unlikely explanations for the ‘success’ of roi in Hawai‘i, first because of 

the substantial time since introduction (> 60 yrs), and also because native fish maintain 

connectivity with parent populations in other areas of the Pacific where serranids are 

present (Eble et al. 2011a; 2011b; Bowen et al. 2013; Bowen 2016).  

One factor common to both locations is that potential competitors and predator 

biomass has been severely decreased compared to historical levels (Jackson et al. 2014; 

Pandolfi et al. 2005), compared to remote areas (Jackson et al. 2014, Friedlander & 
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DeMartini 2002, Willams et al. 2010; Williams et al. 2015), and compared to what can be 

expected given the environmental conditions and socioeconomic capacity of the area 

(Cinner et al. 2016).  

Altered ecosystems are more vulnerable to invasions and are prone to regime 

shifts following disturbances such as coral bleaching events or storms (Vitousek 1990; 

Scheffer et al. 2001; Hughes et al. 2003). Disturbances can trigger ecosystem shifts from 

coral to maco-algal dominated states, with the associated loss of ecosystem goods and 

services (Folke et al. 2004). Without intact ecosystem structure, invasions can have more 

dramatic effects (Hobbs & Huenneke 1992). For example, in Hawai‘i, invasive algae 

(Stimson et al. 2001; Vermeij et al. 2009) required intensive human resource efforts to 

control the spread and impact to coral reef ecosystems (Conklin & Smith 2005). 

Managing ecosystems prone to regime shifts requires action before the critical bifurcation 

point is reached (Scheffer et al. 2012). Effort to restore a system that has undergone 

change to an alternate stable state (Mumby et al. 2007) will be more costly or impossible 

(Selkoe et al. 2015). Therefore, to maintain invasion resistance of coral reef ecosystems 

in an era of global change, it is imperative to maintain high standing stocks of native 

species to preserve intact structure and resilience of ecosystem functions.   

 

Conclusions:   

Our results show that environmental variables are of principal importance in 

predicting the distribution and abundance of introduced roi in Hawai‘i. Studies on the 

impacts of invasive species at the local level (e.g. patch reef-scale) may result in different 

conclusions depending on their environment and the densities of native species at the site. 

Therefore, the environmental context at the seascape level (environmental heterogeneity 

and habitat) in relation to the densities of species at the community level, may explain the 

contrasting results of previous studies.  

Biotic resistance could play a role in limiting roi populations, possibly through 

the priority effect of established native species. Alternatively, intraspecific competition 

by roi defending territories against other roi could explain the negative relationship 

between native species and roi at intermediate densities. If territory space limits roi 

densities, but not native species at intermediate densities, we would expect to see the 
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negative relationship noted above. Experiments are needed to decipher between the 

relative roles of inter- and intraspecific competition if either or both are indeed important. 

Regardless of the exact mechanism, what is clear is that intact ecosystems are more 

resilient to invasion, and management should strive to maintain high standing stocks of 

native species to bolster resistance to disturbance, such as invasive species.  
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FIGURES  

 

 
Figure 4.1. Map of compiled reef fish survey datasets for the Main Hawaiian Islands. 
Acronyms: FERL - Fisheries Ecology Research Lab, University of Hawai‘i; TNC - The Nature 
Conservancy Hawai‘i Marine Program; NPS - National Park Service; FHUS - Fish Habitat 
Utilization Study, NOAA Biogeography Program; CRED - Coral Reef Ecosystem Division, 
NOAA Pacific Islands Fishery Science Center; DAR - Division of Aquatic Resources, State of 
Hawai‘i; CRAMP - Coral Reef Assessment and Monitoring Program, University of Hawai‘i. Map 
by Joey Lecky. Modified from Donovan et al. in review 
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d) 

Figure 4.2 Predicted roi densities for a) Hawaii Island; b) Maui Nui; c) Oahu; and d) 

Kauai and Niihau based on boosted regression tree modeled relationships between roi 

biomass and environmental predictor variables.  
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Figure 4.3. Model 1 (human and environment) Boxplot of environmental and 
anthropogenic variable importance (mean ± SE) in explaining roi densities across MHI. 
Abbreviations are shown in Table 4.1.  Open circles represent outlier observations. Color 
illustrates the predictor categories 
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Figure 4.4. Boxplot of anthropogenic, and biotic (prey) predictor variables (mean ± SE) 
that determine roi distributions in the MHI. Abbreviations are shown in Table 4.1. Color 
illustrates the predictor categories  
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Figure 4.5. Model 2 (with prey) partial dependence plot of roi with prey. Y-axis is fitted 
values for roi biomass (g m2). Grey shaded area shows the 95% confidence interval of the 
model predictions  
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Figure 4.6. Model 3 Boxplot of anthropogenic, and biotic (potential competitor) 
predictor variables (mean ± SE) that determine roi distributions in the MHI. 
Abbreviations are shown in Table 4.1. Open circles represent outlier observations. Color 
illustrates the predictor categories 
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Figure 4.7. Model 3 (with potential competitors) partial dependence plot of roi with 
piscivores. Y-axis is fitted values for roi biomass (g m2), grey shaded area shows the 95% 
confidence interval of the model predictions  
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TABLES 

 

Table 4.1. Table1. Simplified predictor data set with descriptions for BRT modeling of roi 
distributions in the MHI.  1. Indicates community scale, all others are at the seascape scale. 
B=Biotic, C=Complexity, H=Heterogeneity 
 

Name Abbrv Units Category Measure Description 

Prey biomass prey g/m2 Biotic  B1 Biomass of prey (<15 cm TL) 
Piscivore biomass pisc g/m2 Biotic  B1 Biomass of piscivores (trophic level >4) 
Sum human population 
within 15km dist2pop 

Number 
of people Geographic NA 

Sum of human population in a 15 km 
neighborhood 

Distance to shore dist2shore Meters Geographic NA Straight line distance to the shoreline 
Latitude lat Meters Geographic NA Latitude at model grid cell centroid 

Edge density of coral ed_cor m/hectare 
Habitat 
composition C 

Seascape configuration - amount of edge 
present 

CCA cover pls_cca Percent 
Habitat 
composition C Seascape composition 

Coral cover pls_cor Percent 
Habitat 
composition C Seascape composition 

Macro algae cover pls_mac Percent 
Habitat 
composition C Seascape composition 

Soft bottom cover pls_sof Percent 
Habitat 
composition C Seascape composition 

Turf cover pls_tur Percent 
Habitat 
composition C Seascape composition 

Proximity index mean pro_mn Untless 
Habitat 
composition H Seascape composition 

Shannon diversity index shdi Untless 
Habitat 
composition H 

Richness and evenness of habitat-forming 
species 

Wave power wav_Pmn 
Kilowatts/
meter 

Oceanograp
hic NA Wave height x wave period 

Aspect standard 
deviation asp_sd Degree Topographic C Max rate of change in depth 

Bathymetry depth Meters Topographic NA Seafloor depth  
Bathymetric position 
index bpi Meters Topographic C Location relative to surrounding area 
Bathymetric position 
index at the 240 m scale bpi_240 Meters Topographic C Location relative to surrounding area 
Cosine aspect cosasp Untless Topographic C Max rate of change in depth 

Planar curvature plcurv Radians Topographic C 
Seafloor curvature - converge or diverge 
over the curve 

Profile curvature prcurv Radians Topographic C 
Seafloor curvature - accelerate or 
decelerate over the curve 

Sine aspect sinasp Untless Topographic C Max rate of change in depth 
Slope of slope slpslp Degree Topographic C Max rate of change in seafloor slope 
Slope of slope at the 240 
m scale 

slpslp_24
0 Degree Topographic C Max rate of change in seafloor slope 
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SUPPLEMENTARY INFORMATION 
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Figure SI 4.1 Model 1 (human and environment) Partial Dependence plots. 
Abbreviations are as in Table 1. Y-axes are fitted values for roi biomass (g/m2) 
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Table SI. 4.1. List of compiled reef fish survey datasets including source, geographic 
coverage, number of transects, and years 

 

Program Geographic coverage # Transect Year range 

FERL Kāne‘ohe Bay, Oahu 180 2012-2013 

FERL Pūpūkea, O‘ahu 80 2010 

FERL Lana‘i 74 2012 

FERL & TNC Ka‘ūpūlehu-Kiholo, Hawai‘i 299 2012 

FERL & NPS Hanalei, Kaua‘i 120 1992-2012 

FHUS (NOAA Biogeography) Hanauma Bay,  
Pūpūkea, Honolua, Kealakekua 

1,006 2002-2008 

NOAA CRED NWHI and MHI 6,585 2000-2013 

NWHI RAMP NWHI 120 2005 

DAR - Kona West Hawai‘i 8,138 1999-2012 

DAR - Oahu O‘ahu 462 2007-2012 

DAR - Maui Maui 1,640 2000-2012 

CRAMP O‘ahu, Maui, Kaua‘i 380 1998-2012 

NPS Kalaupapa, Moloka‘i and Hawai‘i 501 2004-2012 

TNC Maui, Hawai‘i, O‘ahu 452 2008-2012 

TNC Kaho‘olawe 42 2009 

FERL Mo‘omomi, Moloka‘i 6 2000 

FERL La‘au, Moloka‘i 18 2005 

FERL Lāwa‘i, Kaua‘i 17 2007 

FERL Hā‘ena, Kaua‘i 55 2013-2014 

DAR & CRED Kahekili, Maui 811 2008-2013 

 
Acronyms: FERL - Fisheries Ecology Research Lab, University of Hawai‘i; TNC - The Nature 
Conservancy Hawai‘i Marine Program; NPS - National Park Service; FHUS - Fish Habitat 
Utilization Study, NOAA Biogeography Program; CRED - Coral Reef Ecosystem Division, 
NOAA Pacific Islands Fishery Science Center; DAR - Division of Aquatic Resources, State of 
Hawai‘i; CRAMP - Coral Reef Assessment and Monitoring Program, University of Hawai‘i 
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Table SI 4.2. Table of environmental predictor variables and descriptions 
 
Metric Class Type Description Analytical tool 
Surface aspect Bathymetry Aspect Slope direction DEM Surface Tools 

(Jenness 2013) 
Depth (mean) Bathymetry Depth Average depth ArcGIS Spatial Analyst 

tools (ESRI 2011) 
Bathymetric 

position index 
(60m, 120m, 
240m) 

Bathymetry Seascape 
context 

Relative topographic position of 
a point based its elevation 
and the mean elevation 
within a neighborhood 

Benthic Terrain Modeler 
tool (Wright et al. 
2012) 

Cosine aspect Bathymetry Aspect Cosine of slope direction 
(derived from transforming 
the mean aspect into 
“northness”) 

ArcGIS Spatial Analyst 
tools (cosine 
function) (ESRI 
2011) 

Planar curvature 
(mean & sd) 

Bathymetry Structure Second derivative of slope DEM Surface Tools 
(Jenness 2013) 

Profile curvature 
(mean) 

Bathymetry Structure Second derivative of slope DEM Surface Tools 
(Jenness 2013) 

Rugosity (240m) Bathymetry Structure Surface area to planar area ratio DEM Surface Tools 
(Jenness 2013) 

Sine aspect Bathymetry Aspect Sine of slope direction (derived 
from transforming the mean 
aspect into “eastness”) 

ArcGIS Spatial Analyst 
tools (sine function) 
(ESRI 2011) 

Slope (60m, 240m) Bathymetry Slope Maximum rate of change from a 
cell to its neighbors 

ArcGIS Spatial Analyst 
tools (ESRI 2011) 

Slope of slope Bathymetry Structure Second derivative of slope ArcGIS Spatial Analyst 
tools (ESRI 2011) 

Percent of 
landscape 

Habitat 
compositi
on 

Class Area-Edge Percent of 60m "landscape" 
made up of each cover type 

Exhaustive sampling 
using a 60m radius 
moving window 
analysis in Fragstats 
v4.2 

Edge density Habitat 
compositi
on 

Class Area-Edge Edge length of each cover type 
divided by total landscape 
area 

Exhaustive sampling 
using a 60m radius 
moving window 
analysis in Fragstats 
v4.2 

Patch shape index 
(mean) 

Habitat 
compositi
on 

Class Shape A measure of cover type patch 
shape complexity 

Exhaustive sampling 
using a 60m radius 
moving window 
analysis in Fragstats 
v4.2 

Fractal dimension 
(mean) 

Habitat 
compositi
on 

Landscape 
Shape 

Mean patch complexity at the 
landscape level 

Exhaustive sampling 
using a 60m radius 
moving window 
analysis in Fragstats 
v4.2 

Contiguity index 
(mean) 

Habitat 
compositi

Landscape 
Shape 

Mean spatial connectedness of 
patches 

Exhaustive sampling 
using a 60m radius 
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on moving window 
analysis in Fragstats 
v4.2 

Contiguity index 
(sd) 

Habitat 
compositi
on 

Landscape 
Shape 

Variation in patch spatial 
connectedness, large 
contiguous patches result in 
larger values 

Exhaustive sampling 
using a 60m radius 
moving window 
analysis in Fragstats 
v4.2 

Proximity index 
distribution 
(mean) 

Habitat 
compositi
on 

Landscape 
Aggregation 

Measure of patch isolation Exhaustive sampling 
using a 60m radius 
moving window 
analysis in Fragstats 
v4.2 

Shannons diversity 
index 

Habitat 
compositi
on 

Landscape 
Diversity 

Diversity of benthic cover types 
in the landscape 

Exhaustive sampling 
using a 60m radius 
moving window 
analysis in Fragstats 
v4.2 

Proximity to 
human 
population 

Human 
impacts 

Human impacts Sum human population within 
15km radius (Williams et al. 
2008) 

ArcGIS Spatial Analyst 
tools (ESRI 2011) 

Wave power 
(mean) 

Wave 
exposure 

Wave power Wave height x wave period 
(Holthuijsen, 2010) from 
500 m resolution SWAN 
model,Booij et al., 1999. 

 

Matlab 

Wave power (sd) Wave 
exposure 

Wave power Variation in wave power 
(Holthuijsen, 2010) from 
500 m resolution SWAN 
model,Booij et al., 1999. 

Matlab 

Distance to shore Land based/ 
human 
impacts 

Distance to 
shore 

Distance to nearest land ArcGIS Spatial Analyst 
Euclidean Distance 
tool (ESRI 2011) 

Latitude Geographic 
location 

north/south Angular distance north or south 
on the earths surface 

Marine Geospatial 
Ecology Tools (MGET, 

http://mgel.env.duke.e
du/mget) 

Longitude Geographic 
location 

east/west Angular distance east or west on 
the earths surface 

Marine Geospatial 
Ecology Tools (MGET, 

http://mgel.env.duke.e
du/mget) 
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CHAPTER V 

 SUMMARY  

 

The purpose of this dissertation was to evaluate the impact of introduced roi 

(Cephalpholus argus) on the native reef communities of Hawai‘i. Because a 

determination of the invasiveness of species and the invasability of ecosystems is 

sensitive to the extent and resolution of inquiry, this ‘invasion paradox’ can best be 

understood by tracing patterns and processes across scales. Therefore, I conducted studies 

of roi in Hawai‘i at three levels of organization: 1) field observations at the population 

level; 2) field manipulative experiments at the community level; and 3) species 

distribution modeling at the seascape level. I traced salient factors of roi invasiveness and 

community invasability across the three scales, and related these to the human social 

system, as the roi introduction effects, and is affected by human communities.  

 

Chapter 2 (population): What are the natural and fishing mortality rates of roi 

populations in Hawai‘i, and how effective are our methods to assess and control their 

numbers?  

• This research focused on the feasibility of removing roi as a management 

tool for Hawaiian coral reef ecosystem restoration. Estimates of total 

mortality were low (0.12 to 0.14), and fishing mortality ranged from 

negligible to 8.0% yr−1 in west Hawai‘i. Roi movement was monitored 

through a mark and re-capture program. Tagged individuals traveled 50 to 

150 m from the periphery toward the center of the removal area (1 roi 

every 1 to 2 mo). This study provided evidence for effective roi population 

control through spearfishing methods at the local (1.3 ha) patch-reef scale. 

 

Chapter 3 (community): What are the community-level effects of roi on native reef fish 

populations at the local scale? 

• This study experimentally assessed the effects of roi on reef fish 

populations through a long-term (5.5 yr) predator removal experiment. 

Increases in the density of small (<15 cm TL) prey-sized fish were 
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observed 18 months after roi removal. However, those effects did not 

translate into sustained increases in prey over time. While increases in 

potential competitors, including wrasses (Family Labridae), especially the 

piscivore ringtail wrasse Oxycheilinus unifasciatus, were observed on roi-

free reefs, the fish assemblage did not diverge substantially in 

composition. Native reef fish appear to resist the potential negative 

impacts of predation by roi. Some fish families reach a refuge in size from 

predation by roi. Management to protect intact fish assemblage size-

structure could serve to bolster reef fish resistance to invading species. In 

considering the many threats facing Hawaiian reefs, and the many possible 

solutions, roi removal alone will not likely replenish native fishery 

resources.  

 

Chapter 4 (seascape): Which environmental and anthropogenic factors predict the 

distributions of roi and does environmental heterogeneity play a role? Do biotic 

interactions (density of potential competitors or density of prey) play a role in the 

distribution of roi, and what is the relationship between roi abundance and the densities 

of native species across the MHI? 

 

• Seascape-level environmental predictors were the most important factors 

in determining roi distributions (depth, habitat complexity, and coral 

cover). Measures of increased ecological opportunity, defined as a 

diversity of accessible resources as a result of environmental heterogeneity 

and habitat complexity, were important predictors of roi densities. 

Anthropogenic factors were important, but ranked last in percent deviance 

explained by the final model. Biotic interactions were also important 

predictors, explaining ~ 10 % and ~ 19 % of the deviance by piscivores 

and prey, respectively. A negative relationship between roi and native 

fishes at intermediate densities was found, and could indicate biotic 

resistance by native species. Alternatively, intraspecific competition by roi 

defending territories against other roi could explain the negative 
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relationship observed at intermediate densities. If territory space limits roi 

densities, but not native species at intermediate densities, we would expect 

to see the negative relationship noted above. Experiments are needed to 

decipher between the relative roles of inter- and intraspecific competition 

if either or both are indeed important. 

 

We return to the final question posed in the Dissertation Introduction. Most broadly, I 

asked: How can we use insights from invasion ecology to enhance adaptive capacity in 

the face of global change? Given that the impacts of the roi introduction in Hawaii 

depend upon the scale of study, the overall outcome lies in how we as an ocean 

community choose to respond. The social response (fishers grass-roots introduced species 

tournaments) to the roi introduction could be leveraged to reinforce conservation 

behaviors and environmental stewardship more broadly, and thus enhance social-

ecological adaptive capacity in an ever-changing world.  

 

SYNTHESIS: Social and ecological dimensions of roi in Hawai‘i; an approach for 

leveraging community participation in science and management 

 

While it is widely recognized that human activities substantially impact the health 

of coral reefs through pollution, habitat modification, and species introductions 

(Knowlton 2001; Jackson et al 2001), there is also considerable evidence for the ability of 

human communities to successfully self-organize to address environmental problems and 

maintain flows of benefits from ecosystems (Ostrom 2009). Community-based 

management (CBM) is recognized as a viable solution to environmental degradation from 

local threats such as land-based pollution, overfishing, and invasive species, particularly 

in island ecosystems with long histories of community management (Johannes 1992, 

Cinner et al. 2009). Research on historical human-environmental relationships (Kittinger 

et al. 2011, McClenachan and Kittinger 2012), cultural knowledge systems and practices 

(Johannes 1992, Poepoe et al. 2007, Friedlander et al. 2013) and comparative studies of 

community attributes (Basurto 2008, Cinner 2009b) show that under certain scenarios, 

human behavior patterns and resource use intensity levels can constitute sustainable 
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interactions with ecosystems rather than causing degradation and decline (McClenachan 

and Kittinger 2012). In order to understand and support ‘successful’ ecosystem-based co-

management initiatives, there is a need to identify the key social and ecological factors 

associated with sustainable resource use (Ostrom 2009). 

To address this gap, studies of ecosystem change have begun to incorporate 

research that considers the effects of human dimensions. This area of research is 

characterized as ‘social-ecological systems’ (SES) research, because it focuses on the 

linkage between human and environmental systems and the sustainability of these 

interactions. Within the past few decades, SES frameworks have been advanced in a 

general form (Turner et al. 2003, Redman et al. 2004, Ostrom 2009) and for coral reef 

SES in particular (Basurto 2008, Kittinger et al. 2012, Cinner and Kittinger 2015). This 

SES perspective, because of its focus on adaptability to change, is an instructive lens 

through which to view the dynamics of a marine invasive species, and their management 

in Hawai‘i.  

The roi introduction to Hawai‘i is novel from a Social-Ecological Systems (SES) 

standpoint because of the unique sociocultural legacies that have developed in the 

Hawaiian Islands. Often, traditional resource management of islands systems reflects a 

reciprocal relationship between the environment and human society (Johannes 1992). 

Social-ecological reciprocity is linked by environmental feedbacks to social systems 

(e.g., social perceptions and institutions), as well as societal feedbacks (e.g., actions and 

policies from human institutions) to ecosystems. The sociocultural traditions for reef 

resource management that have developed in Hawai‘i may be driven by the island-

specific awareness of resource limitation (Kittinger 2012). However, in large-scale and 

globalized systems, the relationship between environmental resource limitation and the 

reciprocal institutional response from society may become decoupled (Cinner et al. 

2009). 

Studies from the fields of environmental psychology (Lewicka 2011) and 

sociology (Giddens 1984, Bandura 1991) have shown that conservation action is linked 

to the sense of human agency, the sense that individuals are co-creators and not objects of 

their reality. Social cognitive theory (Bandura 1989) states that agency and self-efficacy 

(people's beliefs in their abilities to produce effects) is what makes individuals feel 



	
133 

responsible to the larger social-ecological system. This theory predicts that if humans do 

not perceive that they make a difference, if they do not detect reciprocity (feedbacks) 

between levels of the social system (i.e. government and institutions), then they are less 

likely to feel political responsibility. Likewise, if people do not detect reciprocity 

between human action and environmental feedbacks, they are less likely to engage in 

conservation activities.  

Ocean stewardship behavior (and by extension, fisheries rule compliance) can be 

built through social-network learning. A recent study of Hawai‘i long-line fishers showed 

that individual fishing behaviors (e.g. employing methods to avoid by-catch) were linked 

with the social-network in which the fisher was associated, not with other factors such as 

ethnicity, indicating that fishing behavior can be shaped through social learning (Barnes-

Mauthe et al. 2013). Social norms can evolve rapidly through learning (Ehrlich and Levin 

2005) and the social cohesion reinforced at invasive species tournaments might represent 

such an opportunity for the cultural evolution of sustainable resource management.  

Hawai‘i invasive species tournament participants might form a social network that 

collaboratively manages the common pool fisheries resource in an ecological dimension 

by shifting targets away from heavily exploited species, and in a social dimension by 

raising awareness to modify individual-based fishing behavior to ocean stewardship 

behavior. Roi fishers could represent a shift in the conventional SES framework, from a 

top-down to bottom-up process regulating fishing control rules (Tissot et al. 2009, 

Friedlander et al. 2013, Ayers and Kittinger 2015). This bottom-up approach to fisheries 

management would reverse the conventional social-systems framework whereby fishers 

participate in setting the conditions and control rules for successful CBM, demonstrating 

individual agency and efficacy, in a tightly linked reciprocal relationship among social 

and ecological sub-systems. Fishing tournaments present an opportunity for social 

learning, and adaptive co-management could function as a selective agent, reinforcing 

conservation ethic and norms. It is imperative to connect scientists, managers, and fishers 

to achieve this goal, and one step in this direction is to support fisher’s environmental 

stewardship (invasive species tournament) initiatives through a fisheries assessment. 

In this synthesis, I frame my dissertation in the context of linked social-ecological 

systems research. The dissertation’s ecological results presented herein, can be arranged 
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into a social-ecological systems framework, thus identifying the linkages that occur 

between systems, and the pertinent questions arising from the interaction (Figure 5.1).  

 

 

 

 

 
 

Figure 5.1. Social-Ecological Systems Framework revised from McGinnis and Ostrom 
(2013). In my study, the Focal Action Situation is invasive species management. On the 
ecological side (in green) the resource unit is the introduced roi in relation to native reef 
fish populations, which I examine in Chapter II. The resource systems are the coral reef 
biophysical regimes across the archipelago, which I examine in Chapter IV. On the social 
side (in blue) are the actors (fishers) who are participating in management and resource 
use. I discuss the linkages and feedbacks between these activities in my dissertation 
synthesis (Chapter V).  
 

Supporting fishers who organize to control roi populations: a fisheries assessment 

Engaging with introduced species tournaments to collect and share fisheries data, 

can serve to build the relationships between scientists, managers, and fishers. This 

dissertation is meant to develop knowledge, and through the process develop 

relationships, thereby laying the groundwork for social-ecological research of introduced 

species management. This synthesis ties the ecological research on an introduced marine 
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predatory grouper in Hawai‘i, to the wider goals of supporting coral reef ecosystem and 

fisheries management, and fostering resilient social-ecological systems into the future.  

Returning to the panarchy metaphor and the adaptive cycle (Figure 1.1 and 1.2), I 

argue that the novel element of invasive species disturbance (release), and the social 

norms that are evolving through tournament events as a response to the introductions (r 

phase), is an opportunity for collaborative management to encourage and select for ocean 

stewardship behavior (K phase). Therefore, the social response to ecosystem change is an 

opportunity to organize sustainable behaviors, and enhance social-ecological adaptive 

capacity. 

 

Summary and synthesis across the studies:  

We found that with low population mortality rates, introduced roi has the 

potential to be an effective invader. Yet, over a long-term predator removal experiment, 

roi had no effect on the abundance of their prey. An increase in a potentially competing 

piscivore was found, but no overall shift in the reef fish community assemblage resulted 

from experimental roi removals. Therefore, predation by roi is likely to be a 

compensatory rather than an additive process, as roi apparently consume the ‘doomed 

surplus’ of native prey-sized fishes. This result indicates that larger processes such as 

recruitment pulses, possibly swamp predator consumptive effects at the local scale. 

Likewise, in the seascape context, roi distributions were driven by environmental 

variables such as habitat complexity. At intermediate densities, populations of roi 

declined in relation to increasing densities of native fish species. This pattern points to 

some biotic limiting factor that limits roi populations, and larger scale experiments are 

needed to explain the causative mechanism. At the level of the coupled human-natural 

system, roi tournaments have engaged community member across the state, not only with 

the intention of culling roi populations, but also to raise awareness about ocean 

conservation issues more broadly. Tournaments shift fishing targets from exploited 

species directly to the invader. They also have potential indirect effects, operating at the 

scale of distal drivers, where socially learned attitudes and perceptions shape human 

behavior towards sustainable interactions with the sea. In sum, a potentially effective 

invader minimally impacted the native reef fish assemblage, and showed signs of 
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population limitation at the seascape scale. In the broadest sense, this introduced species 

has inspired community-based management of ocean resources in Hawai‘i. Thus, the 

introduction of roi presents an opportunity to engage across sectors and strengthen 

collaborative ocean management for a sustainable and thriving future. 
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