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Abstract 

The Himalaya provide the most significant example of present-day orogenesis and 

consequently have been extensively studied to gain an understanding of the principle 

controls on the response of the crust to continental collision. However, our 

understanding of the prograde metamorphic evolution of the orogen remains poor. This 

thesis builds on recent advances in the study of PTt paths, using garnet chronometry, to 

better constrain the thennobarometric evolution of the Garhwal section of the Indian 

Himalaya. Results show that the metamorphic core of the Garhwal Himalaya - the High 

Himalayan Crystalline Series (HHCS) - records a complex, continuous prograde 

thermal history from initial burial -10 Ma after continental collision at -50 Ma, up to 

cooling and exhumation at 20-16 Ma BP. PT paths obtained from garnets indicate that 

prograde metamorphism occurred during crustal thickening and "peak" 

thermobarometric estimates show that the presently exposed HHCS records 

temperatures of -700 °C throughout the section accompanied by a decrease in pressures 

from --13 kbar at the base to -6 kbar at the top. However, chronometric information 

shows that reorganisation of the orogenic wedge resulted in the juxtaposition of rocks 

which attained different PT conditions at different times and places during orogenesis. 

Additionally, temperatures were sufficient in the early stages of orogenesis for the 

development of small leucogranitic bodies to form by fluid-present melting. The HHCS 

in Garhwal, therefore, cannot be considered as a single coherent crustal slice. 

Furthermore, the continued reorganisation of the orogen since collision also means the 

heat generation within the overthickened orogenic wedge is sufficient for anatexis of the 

crust to form the well-studied melts intruding the upper levels of the HHCS. 

However, interpretation of the results is complicated by the isotopic systematics 

involved in garnet chronometry and by the role of small inclusions with high 

concentrations of the critical elements of- Nd, Pb, Sr. The systematics of the Sm-Nd 
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system in garnet has been investigated by a comparison of concentrations obtained in- 

situ by LA-ICP-MS with those obtained by isotope dilution. Results show that while 

such inclusions can pose a problem to chronometry, their effects can be identified and 

constrained. 

In the course of such work data was obtained on the trace-element zonation in garnet, 

which acts as a monitor of the chemical evolution of the rock. While the controls on 

such zonation are still poorly understood the data presented here emphasise the 

importance of fractionation of the chemical system from which the garnet grows by 

both accessory minerals and by garnet itself. Furthermore, different minerals fractionate 

distinctly different elements this can be recognised in the trace-element zonation 

preserved in garnet. 
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Chapter 1- Introduction 

1.1 Introduction 

The redistribution of heat within the Earth is the main driving force behind plate 

tectonic processes (Turcotte and Schubert, 1982). As such knowledge of the pressure 

and temperature distribution within the Earth's crust, particularly during orogenesis, is 

essential to quantifying plate tectonics. While the broad processes involved in the 

thermal evolution of the oceanic lithosphere are rather simple and increasingly well 

understood (Parsons and McKenzie, 1978) the processes controlling the thermal 

evolution of the continents are less well-defined. In the continents the exposure of 

metamorphic rocks which have undergone high pressures and temperatures testifies to 

the movement of heat and mass within the continental crust. The petrological study of 

such rocks has led to an understanding of the processes involved and, in particular, the 

importance of continental collision. However, numerical modelling of simple collision 

emphasises the need to obtain not only pressure and temperature estimates but also time 

information (e. g. England and Thompson, 1984). This is of particular importance within 

the Himalaya, an ongoing example of a continent-continent collision which can be used 

to understand ancient collisional belts. Constraining different models of the evolution of 

the Himalayan belt has depended critically upon such time information (e. g. Hubbard 

and Harrison, 1989; Sorkhabi and Stump, 1993; Harrison et al., 1997b). However, due 

to the nature of the chronometers used much of the time information obtained is 

difficult to relate to the thermal history or has been restricted to the cooling of the belt 

and magmatic processes. Therefore our understanding of the early thermal structure of 

the belt is still poor. 

This thesis aims to build upon recent advances in garnet chronometry, an approach 

which allows us to obtain time information on prograde processes and, critically, relate 
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Chapter 1 Introduction 

timing to pressure and temperature information obtained from . the garnet and other 

major minerals (Vance and ONions, 1990; Vance, 1995). Through such techniques, 

combined with structural and traditional metamorphic studies of the belt, a better 

understanding of the thermotectonic evolution of the Himalayan orogeny can be 

obtained. 

1.2 Chapter format 

This chapter outlines the general geological setting of the Himalaya and then focuses 

upon the metamorphic belt with a review of the current state of knowledge concerning 

the different aspects of Himalayan tectonics. Key questions that remain open will be 

identified and briefly discussed. This chapter concludes with an outline of the structure 

of the thesis. 

Kara{onim Granites 200km N 
TranssHmalayan Bitholith 

Q Figh Fimalayan Tien Sian 
Crystalline Sines 

Tarim flýsin ,, 
ý 

""Oý Pamirs 
Karalmru. 

ýc 

výý 

Figure 1.1 Map illustrating the large-scale tectonic features of the Himalayan orogen and Tibetan plateau, 

after Massey (1994). NPHM= Nanga Parbat Haramosh Massif; MMT= Main Mantle Thrust; LH= Lesser 

Himalayas; TSS=Tibetan Sedimentary Series; MCT=Main Central Thrust; MBT=Main Boundary Thrust; 

ITSZ=Indus Tsangpo Suture Zone; A-B indicates the line of section in Figure 1.3 
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Chanter I Introduction 

1.3 Geological setting 

The following section gives an overview of the geodynamic framework of the Indian- 

Asian collision prior to the onset of continental collision, discusses our knowledge of 

the timing of collision and looks at the extent of, and constraints on, deformation since 

collision. 

1.3.1 The Himalayan Belt 

The Himalaya are considered a classic example of continent-continent collision. 

Orogenesis is ongoing and this mountain belt represents an ideal area for the study of 

thermotectonic processes. The 2500km chain extends from south-eastern China in the 

east to northern Pakistan in the west and is part of the Alpine-Himalayan chain which 

stretches all the way to Europe (Le Fort, 1975). The chain delineates the boundary 

between various fragments of Gondwana and the southern margin of Laurasia. 

To the north of the Himalaya lies the Tibetan plateau, comprised of at least three 

microplates which had already accreted to Eurasia by the time the closure of the Neo- 

Tethys resulted in the collision of the Indian plate. The remnants of the Neo-Tethys are 

preserved in the form of flysch, mollase and fragmented ophiolites in the Indus Tsangpo 

Suture Zone (ITSZ) (Figure 1.3) (Gansser, 1964). The Tethyan Sediments on the 

southern side of the ITSZ are recognised as the passive margin shelf deposits of the 

Indian Plate (Gaetani and Garzanti, 1991) which have been folded and faulted during 

the collision. The Trans Himalayan batholith found to the North of the ITSZ (Figure 

1.1) form a 2000km long belt of Andean-type magmatism, the geochemistry and timing 

of which suggest association with the northward subduction of the Tethyan oceanic 

lithosphere (Debon et al., 1986). The continent-continent collision that resulted in the 

Himalaya followed the closure of the Tethys. 
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Chapter 1 Introduction 

1.3.2 Timing of collision 

The timing of collision and closure of the Tethys is still poorly constrained, in part, due 

to difficulty in defining the meaning of "closure". Closure is, in the strictest sense, the 

first contact between continental lithosphere from either side. It is therefore useful to 

separate the collision into several stages; initiation of collision (indicated by plate 

bending and changes in sedimentation), ocean-continent transition (indicated by 

sediment type) and final suturing (locking of the collision zone). Some of the literature 

has been summarised in Table 1.1 and published timings have been assigned to one of 

the three possible stages of collision. Where the interpretation is not explicitly stated in 

the literature it has been assigned to one of the above options. 

One of the principal ways of identifying the collision is ophiolite emplacement and 

changes in sedimentation history. In Ladakh, Searle et al. (1997a) showed that the 

initiation of collision, as demonstrated by ophiolite emplacement, occurred as early as 

the Late Cretaceous and that the transition from oceanic to continental sedimentation 

occurred at 54-50 Ma. However, Gaetani and Garzanti (1991) concluded that collision- 

related sedimentation started in Zanskar at 50.7 Ma and terminated at 49-45.7 Ma: later 

than the timing proposed by Searle et al. (1997a). Further to the North in Waziristan, 

Pakistan, Beck et al. (1995) showed that sediments from the trench and accretionary 

prism were first thrust onto the passive continental shelf between 65-55 Ma with 

suturing complete by 49 Ma. However, Rowley (1996) suggests that the early initiation 

age obtained by Beck et al. (1995) relates to an infra-oceanic collision predating final 

closure of the Neo-Tethys proper. 

At Malla Johar in Nepal the initiation of collision is poorly dated to between 49 Ma and 

41.3 Ma (Rowley, 1996). In the Everest area the youngest unequivocal oceanic 

sediments suggest that the ocean was still extant sometime in the Lutetian (49-41.4 Ma) 

and perhaps later (Rowley, 1996). More recent work based on the subsidence history in 
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the Zhepure mountain of the Everest section shows that there is no accelerated 

subsidence up to the youngest rocks of 45.8 Ma and that, therefore, collision must post- 

date that age (Rowley, 1998). Much further to the east, beyond the eastern syntaxis in 

Nagaland, Cretaceous to early Eocene limestones are overlain by poorly dated coarse 

clastics with an age at least as old as middle Eocene i. e. 41.4-36.9 Ma. (Rowley, 1996) 

concludes therefore that collision was diachronous across the range commencing in the 

Northeast (<52 Ma) and occurring later in the East (41 Ma). 

A more indirect approach which was the first used to date the collision has been 

paleomagnetic studies of oceanic magnetic anomalies and sediments from either side of 

the suture zone. Using ocean floor magnetic anomalies, Patriat and Achache (1984) 

placed the collision between anomalies 22 and 21, -48-50 Ma based on the irregularity 

of India's motion at that time. Alternatively, Besse et al. (1984) combined apparent 

polar wander paths (APWP) obtained from southern Tibetan continental sediments with 

the data of Patriat and Achache (1984), suggesting the final suturing and locking of the 

ITSZ between 53 and 47 Ma. More recent APWP determined from paleomagnetic 

studies of Indian ocean sediments and basement rocks (Klootwijk et al., 1992) suggest 

that the northward drift of the Indian oceanic lithosphere slowed at -55 Ma. Combined 

with paleomagnetic studies from the continents, these data led these authors to conclude 

that initial collision in the Northwest occurred before the K/T boundary. Patzelt et al. 

(1996) also used paleomagnetics on southern Tibetan sediments and, by comparison 

with the Lhasa block to the North, calculated that contact was established by 65-60 Ma 

and suturing was complete by 55-50 Ma. 

Interestingly the ages obtained in the far west of the Himalaya (Beck et al., 1995) span 

the entire range obtained by all other collision ages including those obtained in the far 

East by Besse et al. (1984). Paleomagnetic studies, relying in part on magnetic stripes in 

the ocean floor (Besse et al., 1984; Patriat and Achache, 1984), suggest ages for 
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suturing around 50 Ma, whereas paleomagnetic studies carried out on sediments from 

the seafloor and continents (Klootwijk et al., 1992; Patzelt et al., 1996) suggest slightly 

older ages for suturing of 55-50 Ma and much older ages for the initiation of collision 

-65 Ma. The difference between initiation of collision, ocean closure and suturing may 

account for some of the timing variation. Sedimentological methods will depend upon 

the local geometry at the time of collision and may respond first to initiation of collision 

whilst APWP and determinations based on overlying sediments will take into account 

some shortening in the form of crustal deformation. In addition, calculations based on 

plate-tectonic scale processes will measure the response to plate stresses such as slab 

pull which may include significant time periods of absorbed deformation on the scale of 

the study. Taking into account these factors the data strongly suggest the accretion of 

some material as early as the K/T boundary, with the transition from oceanic to 

continental sedimentation around 55-50 Ma and the lock up of the ITSZ by 49 Ma. 

While Rowley (1996; 1998) suggests that the sediments of the Everest section record 

later initiation of collision and that there is some diachroneity along the orogen, the 

extent of such studies is still not large enough to draw strong conclusions especially 

given the poor quality data to the east of the orogen. 

1.3.3 Post-collision 

Whilst the northward movement of the Indian plate slowed at 50 Ma it did not stop and 

continues today at a rate of 58±4 mm/yr (Bilham et al., 1997). Assuming collision 

occurred at 50 Ma Patriat and Achache (1984) estimated that some 2500km of 

shortening between the Asian and Indian cratons is required. The distribution of this 

shortening since collision has been hotly debated and various mechanisms for achieving 

it have been proposed. These include: underthrusting of the Indian crust beneath Asia 

(e. g. Powell, 1986); homogenous thickening of the Asian lithosphere (e. g. England and 

Houseman, 1988); eastwards extrusion of the Asian lithosphere along major strike-slip 
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faults in Tibet (Figure 1.1) (e. g. Molnar and Tapponnier, 1975); or movement on thrust 

faults within the Himalaya (e. g. Coward and Butler, 1985; Searle, 1986). 

Seismic anisotropy measurements (Him et al., 1995) and seismic reflection profiles 

(Zhao et al., 1993) suggest that there has been some underthrusting of the Indian 

continental lithosphere to the South of the TTSZ. Since paleomagnetic studies by Lin 

and Watts (1988) suggest that some 2000±800 km of movement has occurred between 

the Lhasa block and Asia (a terrane that was accreted before the collision of India), 

significant shortening over the Tibetan Plateau can be inferred. Alternatively, Tapponier 

and Molnar (1976) suggested that lateral extrusion of Tibet along strike-slip faults could 

absorb some of the northward movement. Finally, estimates of the northward movement 

absorbed across the Himalaya vary from 1500 km (Patzelt et al., 1996), to 400±400 km 

(Besse et al., 1984), accommodated by underthrusting along major faults within the 

Himalaya (Coward and Butler, 1985; Searle, 1986) and crustal thickening to the South 

of the suture zone. 

1.4 Metamorphism and deformation in the Himalaya 

The accommodation of this deformation resulted in the burial, metamorphism and 

southward thrusting of the High Himalayan Crystalline Series (HHCS), the 

metamorphic core of the Himalaya. A simple, schematic, picture of faulting and the 

units within the Himalaya is shown in Figure 1.2 and Figure 1.3. A significant 

proportion of the deformation accommodated by southward thrusting is attributed to the 

Main Central Thrust (MCT) which juxtaposes the HHCS over Lesser Himalayan rocks 

(Ahmad et al., In press). The HHCS is bound to the North by a normal fault system 

known as the Southern Tibetan Detachment System (STDS) which places the weakly or 

unmetamorphosed Tethyan Sedimentary Series (TSS) on top of high-grade 

metasediments (Burchfiel and Royden, 1985; Herren, 1987; Burchfiel et al., 1992; 

Dransfield, 1995). 

Timing of prograde metamorphism... C. I. Prince 8 



Chapter 1 Introduction 

Trans-Himalayan Batholith Tibetan Sedimentary Sequence 

hiolites O 

222 SIDS (where mapped) 
p 

High Himalayan Crystalline Series 
High Himalayan Main Central Thrust Leucogranites 

E Lesser Himalayan Sediments 

TIBET Main Boundary Thrust 
ýýM 

"N 

Lhasa 

N 
INDIA 

Mý O 

Kathrnand6 

Figure 1.2 Map of the Himalayan belt showing the principal lithotectonic units and the positions of studied areas. Z= 

Zanskar; GB= Garhwal-Badrinath; Mg=Mustang; MS= Manaslu; L= Langtang; E= Everest; Go=Gophu La 

Below the HHCS and Lesser Himalaya, and south of the MCT, lies the Main Boundary 

Thrust which places the Lesser Himalaya over the clastic rocks of the Himalayan 

foredeep molasse (Meigs et al., 1995) which are in turn thrust to the South along the 

Main Frontal Thrust. 

These fault systems (ITSZ, STDS, MCT, Main Boundary Thrust and Main Frontal 

Thrust) and tectonic units (Tethyan Sedimentary Series, HHCS, Lesser Himalaya) can 

be traced almost the entire length of the Himalaya and form a simple framework for 

study of the orogen (Figure 1.2 and Figure 1.3). 

1.4.1 Petrological and structural observations 

High Himalayan Crystalline series 

The HHCS is composed of gneisses, schists, calc-silicates, amphibolites, migmatites 

and leucogranites. The protolith is thought to be of Late Palaeoproterozoic to 

Mesoproterozoic age (Ahmad et al., In press) and was either deposited or underwent 

metamorphism around 550 Ma as shown by 87Sr/86Sr errorchrons (Pognante et al., 1990; 
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Ahmad et al., In press) as well as inherited zircon ages (Pognante et al., 1990; Parrish, 

1993). 

One of the most intriguing features of the HHCS is an inverted metamorphism whereby 

the preserved metamorphic field gradients increase up section to the sillimanite + K- 

feldspar zone. The latter isograd is often accompanied by intruded leucogranite dykes 

and sills culminating in leucogranitic plutons discontinuously distributed along the 

chain (Brunel and Kienast, 1986; Pecher, 1989; Inger and Harris, 1992; Metcalfe, 1993; 

Macfarlane, 1995; Neogi et al., 1998; Vannay and Grasemann, 1998). Exceptions to this 

occur at either end of the orogen, in Zanskar and Bhutan, where the highest grade rocks 

occur in the core of the HHCS and are surrounded by lower grade rocks (Pognante and 

Lombardo, 1989; Searle and Rex, 1989; Davidson et al., 1997). In upper levels of the 

HHCS, decompression textures are observed along the whole chain (Brunel and 

Kienast, 1986; Hodges et al., 1992; Inger and Harris, 1992; Hodges et al., 1993; 

Davidson et at, 1997; Neogi et at, 1998; Vannay and Grasemann, 1998). 

The HHCS has a well developed shear fabric generally dipping to the north as well as 

evidence of syn-kinematic metamorphism such as rotated garnets and staurolite, 

pressure shadows and mica fish (Brunel and Kienast, 1986; Stäubli, 1989; Inger and 

Harris, 1992; Davidson et al., 1997; Vannay and Grasemann, 1998). Both the fabrics 

parallel to the strike of the orogen and the evidence of syn-kinematic metamorphism 

suggest that mineral assemblages in the HHCS are predominantly a result of the 

Himalayan orogeny, although relict pre-Himalayan assemblages and fabrics have been 

suggested Pognante et al. (1990). 

Main Central Thrust Zone 

Below the HHCS proper lies a sequence of crystalline rocks which are generally more 

deformed and variable in lithology than the HHCS proper. The fault separating the two 

units is the MCT (Valdiya, 1980). Unfortunately, however, definitions of the MCT 
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vary from one area to another and structural, metamorphic and lithologic criteria have 

all been used. Also many authors prefer to describe the MCT as a wide zone of 

deformation (Hubbard and Harrison, 1989; Searle and Rex, 1989; Metcalfe, 1990; Jain 

and Manickavasagam, 1993; Macfarlane, 1995; Harrison et al., 1997b) and place the 

"MCT" proper either at the base or top of the zone. 

Taking descriptions of the MCT and MCT zone at face value the metamorphic grade 

within the zone varies along the length of the Himalaya: e. g. the top of the MCTZ in 

Nepal is in the sillimanite zone (Hubbard, 1989) and in Garhwal in the staurolite zone 

(Metcalfe, 1990). Some of the variation may result from post-metamorphic imbrication 

of portions of the HHCS with the Lesser Himalaya and a cutting of metamorphic 

isograds across the orogen by late reactivation of the MCT. 

However, it appears that there are two consistent features across the whole orogen: (a) 

that the base of the MCTZ is generally in unmetamorphosed to chlorite zone sediments 

(Jain and Anand, 1988; Srivastava and Mitra, 1995) and; (b) the MCTZ shows syn- 

kinematic metamorphism and an inverted metamorphic field gradient (see 1.4.1 Brunel 

and Kienast, 1986; Jain and Anand, 1988; Pecher, 1989; Stäubli, 1989; Metcalfe, 1993; 

Macfarlane, 1995; Vannay and Grasemann, 1998). 

A recent study by Ahmad et al. (In press) has shown that the MCT in the Garhwal 

Himalaya corresponds to changes in ENd across the section. Other studies have found a 

similarly marked variation in both ENd and detrital zircon ages across the MCTZ 

(France-Lanord et al., 1993; Massey, 1994; Parrish and Hodges, 1996). Ahmad et al. 

(In press) suggest that the MCT in the Garhwal Himalaya is thus best described as a 

terrane boundary. Whether this definition is applicable across the whole orogen is not 

yet clear, but a geochemical definition of the MCT is extremely useful due to the 

considerable difficulties in comparing field definitions of the MCT. 
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1.4.2 Present day geometry - major structures 

Perhaps the most important constraints on the present day geometry of the Himalaya 

come from the INDEPTH project (e. g. Zhao et al., 1993) in which major crustal 

reflections are attributed to the basal decollement (Main Himalayan Thrust - MHT) and 

the STDS. The MCT presently soles onto the MHT and is interpreted to have been the 

active basal decollement during its movement (Hauck et al., 1998). Such large scale 

geometric constraints are supplemented by detailed structural studies in the lesser 

Himalaya (e. g. Srivastava and Mitra, 1994) and in the Tethyan Himalaya (e. g. 

Ratschbacher et al., 1994). 

Also visible on the INDEPTH profiles (Hauck et al., 1998), and bounding the top of the 

HHCS, the STDS outcrops along the length of the Himalayan orogen and, at its base, 

places the low-grade sediments of the Tethyan Himalaya against the high-grade 

metasediments, gneisses and granites of the HHCS (Burg et al., 1984; Burchfiel and 

Royden, 1985; Herren, 1987; Burchfiel et al., 1992; Coleman, 1996; Edwards et al., 

1996; Inger, 1998). Detailed structural studies have shown that it is characterised by 

top-to-the-north shear indicating normal movement (Burg et al., 1984; Burchfiel and 

Royden, 1985; Herren, 1987; Burchfiel et al., 1992) although Pecher (1991) emphasised 

the dextral component of shear associated with it. The STDS may take the form of a 

series of sharp faults or as a zone of truncated isograds (Herren, 1987). It is certainly not 

a simple single fault (Searle, 1999) and may be highly variable in character across the 

orogen. Furthermore, many authors suggest that, prior to normal fault movement, the 

STDS was an active thrust (Burg and Chen, 1984; Gapais et al., 1992; Patel et al., 1993; 

Vannay and Hodges, 1996; Dezes et al., 1999). 

Such complicated history for the STDS and unclear definition for the MCT often make 

chronometric constraints on fault movements in the Himalaya difficult to assess. 

Nevertheless, from the INDEPTH studies it is clear that the two main structures in the 
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Himalaya are, at present, the MHT (of which the MCT was once a part) and the STDS. 

1.4.3 Kinematic constraints on deformation 

Main Central Thrust 

Displacement distances on the MCT thrust are poorly constrained but, based on the 

INDEPTH profile (Hauck et al., 1998) suggested a minimum of -200 km shortening 

along the MCT, comparable with the estimates of Schelling (1992) for the Nepal 

Himalaya but smaller than the 354-421 km estimate of Srivastava and Mitra (1994) for 

the Garhwal Himalaya. These estimates are all thought of as minima by the various 

authors and do not include any deformation within the HHCS. Thus displacements 

during MCT movement may be larger than those proposed and are likely to be in excess 

of 200 km. 

U-Pb data from Nepal place ductile movement on the MCT at 22 Ma (Parrish, 1993), in 

agreement with -20 Ma 39Ar/40Ar dates on hornblende considered to date peak 

metamorphism in Garhwal and Nepal (Hubbard and Harrison, 1989; Metcalfe, 1993). In 

the Marsyandi valley of Nepal, Coleman (1998) obtained monazite ages from a 

migmatised garnet, staurolite, kyanite bearing pelitic schist in the range 18-21 Ma and 

inferred this to be the time of metamorphism, pushing the timing of high-temperature 

metamorphism within the MCTZ to younger ages. 

Catlos et al. (1997) suggest that the MCT was reactivated at -8 Ma indicated by the 

preservation of 6.5 Ma monazite ages in garnet. Additionally they obtained monazite 

ages in gamets from the MCTZ between Nepal and Garhwal at 38 Ma and 17.5 Ma 

which are probably related to early tectonic burial and the main phase of MCT 

movement - as are the data for the lower part of the HHCS presented in Chapter 4. 

MacFarlane (1993) used 39Ar/4OAr to date the latest brittle movement on the MCT in 

Langtang to 2.3 Ma, with ductile movement terminating by 5.8 Ma. Thus the MCT and 
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MCTZ appear to have been active by 22 Ma and intermittently since. 

Unfortunately these data do not allow a precise estimate of the slip rate on the MCT. 

However, displacements on the MCT of >200 km principally between 22 Ma and 8 Ma 

implies slip rates of -14 mm/yr. This is, however, likely to be a minimum slip rate for 

the main period of movement because of the minimum displacement estimates and the 

probable periods of quiesence. Our detailed knowledge of thrust movements is still poor 

and while the error on such slip estimates is unknown, it is likely to be large. 

Southern Tibetan Detachment System 

The timing of movement and fault displacements are perhaps better constrained for the 

STDS than the MCT. In Zanskar Inger (1998) placed the initiation of movement on the 

STDS prior to 25 Ma. Vance et al. (1998a) confirmed that extensional movement in 

Zanskar started at -26 Ma. Other constraints on the movement of the STDS come from 

crosscutting leucogranites which suggest that STDS movement must have occurred in; 

Manaslu prior to 19-23 Ma (Harrison et al., 1999); Shisa Pangma predominantly after 

17 Ma (Searle et al., 1997b); Khulu Kangri until at least -13 Ma (Edwards and 

Harrison, 1997). It must be borne in mind, however, that the STDS is not a simple 

single fault plane (Searle, 1999) and different strands may have been active at different 

times and indeed, like the MCT, it may have been reactivated several times. 

Whilst movement of the fault may have occurred over a long period of time the work of 

Hodges et al. (1998), using a combination of U-Pb dating of titanite in a gneiss, 

xenotime in a sheared sillimanite gneiss and biotite 39Ar/4OAr cooling ages for a 

crosscutting leucogranite, constrained movement on the Qomolangma detachment on 

the north side of Everest to between 16.7 Ma and 16.4 Ma. This suggests that individual 

detachments within the system may have been associated with extremely rapid 

denudation rates of >_8.2 m na 1. In Zanskar vertical displacement based on shortening 

of metamorphic isograds by the fault has been estimated at -19 km (Herren, 1987). 
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More recently Dezes et- al. (1999) suggest vertical displacements of -12 km - calculated 

from relative thermobarometry estimates in the footwall and hangingwall. In Zanskar a 

minimum constraint on the rate of tectonic denudation can be obtained from the earliest 

movement at -25 Ma (Inger, 1998) and termination at -20 Ma (Dezes et al., 1999), 

resulting in tectonic denudation at rates of >2.4 mma 1. 

Summarising the available data it appears that the STDS was active as early as 25 Ma 

and continues to be active today, with the main phase between 23-17 Ma. The rates of 

displacement appear to be extremely rapid for individual segments of the fault and 

studies of the thermal response of the HHCS to exhumation suggest that cooling in the 

crust was delayed relative to the tectonic denudation (see 1.4.7 and (Vance et al., 

1998a). While there may be considerable along-strike variation in its activity (see 

Edwards and Harrison, 1997) it appears that in individual segments of the Himalaya the 

main phase of activity was restricted to periods -5-6 Myr long. 

1.4.4 Quantitative PT estimates in the HHCS 

To elucidate the inverted metamorphic field gradients, PT estimates across the HHCS 

have been determined for several sections. There remains, however, confusion over the 

robustness of many of the techniques as they often result in very different absolute PT 

estimates for different sections and, in some cases, different PT trends for the same 

sections (e. g. Inger and Harris, 1992; Macfarlane, 1995). 

One consistent feature, however, is that the HHCS as a whole displays an isothermal to 

inverted temperature profile (Hodges and Silverberg, 1988; Hubbard, 1989; Mohan et 

al., 1989; Inger and Harris, 1992; Macfarlane, 1995; Neogi et al., 1998; Vannay and 

Grasemann, 1998; Vannay, 1999). In most of these sections (except Sikkim) this 

feature, along with a normal pressure gradient (i. e. decreasing pressure up section), 

could explain the presence of sillimanite and migmatites at the top. Recent work in 

Sikkim and the Sutlej valley (Davidson et al., 1997; Vannay and Grasemann, 1998), 
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however, suggests that- the isothermal profile may be due, in part, to retrograde re- 

equilibration of the geothermometers. Such retrograde re-equilibration suggests that the 

true profile was originally even more pronounced with the highest temperatures at the 

top of the section as in Sikkim (Neogi et al., 1998). 

1.4.5 Timing of melt generation and intrusion 

There are two principal belts of leucogranites found in the Himalaya, the High 

Himalayan Leucogranites and the North Himalayan Leucogranites (see Harrison et al., 

1997a). The High Himalayan leucogranites form a discontinuous series of intrusive 

sheet complexes which form some of the highest peaks across the range, from Bhutan in 

the east to Zanskar in the west. They are small-volume melts produced at fairly constant 

PT while trace elements and isotopic compositions are consistent with derivation from 

the HHCS (Vidal et al., 1982; Vidal et al., 1984; Deniel et al., 1987; Le Fort et al., 

1987; Inger and Harris, 1993). Importantly for discussions of their formation, the largest 

leucogranite bodies are often found at the top of belt between the HHCS and the 

Tethyan sediments and may locally cross cut the STDS (Pecher, 1989; Searle et al., 

1993; Guillot et al., 1995). 

The North Himalayan leucogranites outcrop -80 km to the north of the main mountain 

belt, are generally younger, and possibly formed at higher temperatures than the HHL 

(Harrison et al., 1997a). However, their formation ages are 17-10 Ma and younger than 

the metamorphism in the HHCS which is the principal subject of study for this thesis 

and they will not be discussed further. 

The HHL formed from 24-17 Ma with the main phase of melt generation at 24-19 Ma 

(Harrison et al., 1998). Recently, Harrison et al. (1999) obtained detailed age data by 

in-situ dating of the Manaslu leucogranite in Nepal and suggested that magma 

generation occurred over a period of -4 Ma. The generality of this result remains to be 

tested elsewhere in the range. 
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1.4.6 Melt production conditions, chemistry and volume 

The chemistry of the melts, melt production mechanisms and their source regions are 

intricately linked (Harris et al., 1993). However, there is growing agreement that much 

of the present HHL formed by muscovite-dehydration melting from a source within the 

HHCS (Harris and Massey, 1994). Additionally, many lines of evidence suggest that the 

presently exposed migmatites at the top of the HHCS are not the source for the High 

Himalayan Leucogranites (Swapp and Hollister, 1991; Hodges et al., 1993; Inger and 

Harris, 1993; Harris and Massey, 1994; Barbey et al., 1996). Rather, the sources appear 

to lie in the lower section of the HHCS (see Chapter 5). While the bulk of the 

leucogranites are sourced from the lower structural levels of the orogen the contribution 

of various source regions in the HHCS is still not resolved. 

Geochemical constraints obtained by Harrison et al. (1999) for Manaslu suggest that a 

second phase of melting was produced at higher temperatures and with a lower 

87Sr/86Sri than the first. This is contrary to findings of Ayres (1997), for Zanskar, which 

suggest that the later intruded tourmaline leucogranites formed at lower temperatures 

than the earlier biotite leucogranites. 

1.4.7 Cooling (and exhumation) of the HHCS 

Subsequent to intrusion of the leucogranites the HHCS underwent a period of rapid 

cooling at 17-20 Ma which is well constrained from the large numbers of 39Ar/4OAr 

studies across the orogen. This is often attributed to movement on both the STDS and 

MCT which resulted in rapid tectonic denudation and exhumation (Hubbard and 

Harrison, 1989; Metcalfe, 1990; MacFarlane, 1993; see review in Sorkhabi and Stump, 

1993; Vance et al., 1998a). 

Studies in several sections across the range show that cooling occurred progressively 

later towards the base (Metcalfe, 1990; MacFarlane, 1993; Vance et al., 1998a). In a 

study of mica cooling ages across the Zanskar area Vance et al. (1998a) suggested that 
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the thermal response of the belt to extensional fault movement. varies with structural 

depth in the belt - the earliest response being felt closest to the normal fault. In fact the 

response of the core of the orogen in Zanskar to thermal perturbations caused by 

extensional faulting is delayed by some 3-5 Ma relative to earliest fault movement. 

Cooling rates for the centre of the orogen were nevertheless ? 50°CMa'. The rapid 

cooling rates in the rocks affected last may be a result of rapid exhumation compressing 

the isotherms in the exhuming rock pile (e. g. Whittington, 1995). The thermal response 

to tectonic exhumation and denudation is readily explainable in terms of simple thermal 

diffusivity constraints for the crust whereby a thermal perturbation - in this case the 

placement of cool rocks against hot rocks by the STDS - diffuses through the crust. 

1.4.8 Thermal and heat-producing properties of the crust 

The thermal-conductivity and heat-producing properties of the crust are extremely 

important for the thermal evolution of the orogen (e. g. England and Thompson, 1984) 

and are inextricably linked to geometry and tectonic displacements. Constraints for heat 

production within the lithosphere are usually obtained from standard models in which 

the heat producing elements are concentrated in the upper crust. However, tectonic 

processes will redistribute material in an orogenic wedge with important consequences 

for Jamieson et al. (1998). Additionally, tectonic processes will also result in a 

redistribution of rocks with different thermal properties and their geometries can 

dramatically effect the thermal regime within the crust (Jaupart and Provost, 1985; 

Grasemann, 1993). However, this aspect of Himalayan geology remains poorly studied. 

1.5 Outstanding debates 

1.5.1 Models for crustal anatexis 

The High Himalayan Leucogranites have posed a problem for Himalayan geologists 

because simple modelling suggested that, with collision at 50-55 Ma, there would not 
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have been sufficient heat for prograde crustal anatexis at 20 Ma (England et al., 1992). 

Alternatively, to explain their formation Le Fort (1975) suggested that the leucogranites 

could have formed during movement of the HHCS over the Lesser Himalaya along the 

MCT, resulting in the infiltration of fluids from the latter inducing melting in the 

former. However, geochemical modelling (Harris and Inger, 1992; Harris et al., 1993; 

Harris et al., 1995) suggests that the high Himalayan leucogranites formed by muscovite 

breakdown under vapour-absent conditions. While fluids could trigger melting under 

such conditions the slope of the muscovite-dehydration reaction in PT space allows 

melting to occur during the well-documented decompression of the HHCS (Swapp and 

Hollister, 1991; Harris and Inger, 1992; Harris et al., 1993; Hodges et al., 1993; Harris 

and Massey, 1994). 

Decompression melting requires extremely fast, adiabatic exhumation of the peak P-T 

assemblages (Harris and Massey, 1994) - something that might be expected beneath a 

large extensional fault. Such rapid exhumation rates have, in fact, been suggested by 

dating on the STDS (Hodges et al., 1993). However, high temperatures in the source 

region prior to decompression are still required at 25-20 Ma -a requirement that is at 

odds with simple thermal models previously mentioned (England et al., 1992). 

An alternative mechanism for the production of the leucogranites is the supply of extra 

heat, such as shear heating along the MCT. Despite the theoretical difficulty of 

producing high shear stresses in the crust in the presence of a melt, this idea still has 

proponents (England et al., 1992; Harrison et al., 1998). 

An assessment of the different potential heat sources requires a detailed knowledge of 

the thermal history of the source rocks prior to anatexis, something which is lacking at 

present. 

1.5.2 Inverted metamorphism 

In light of the recent findings that the MCT was reactivated in the late-Miocene (Catlos 
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et al., 1999) and the geographic relationships for the MCT and the HHCS in Kumaon 

and Garhwal, the MCTZ and the HHCS are best treated as separate entities and related 

only when firm evidence suggests this should be the case. Thus in the authors opinion 

there are two inverted metamorphic field gradients in the Himalaya: one in the MCTZ 

from greenschist facies at the base to lower- or upper-amphibolite at the top, the other in 

the HHCS from kyanite-zone at the base to sillimanite- or sillimanite+K-feldspar zone 

at the top. 

High Himalayan Crystalline Series 

The models used to explain the exposed profiles can be described in terms of two 

possible endmembers: i) the profile represents a frozen static geotherm or ii) the profile 

is purely the product of deformation. 

Falling into the first category, Hodges et al. (1988) suggested that the isothermal profile 

could result from the buffering of temperatures by anatexis and advection of heat by 

leucogranites from lower to higher levels. While such a model may explain the 

isothermal profile in the sections in which migmatites are found, it does not explain 

other areas, including Garhwal, in which the migmatites and leucogranites are restricted 

to upper levels of the HHCS. 

In the same category of model Jaupart and Provost (1985) suggested that elevated 

temperatures throughout the HHCS and principally at the top could have been produced 

by thermal blanketing caused by low thermal conductivity sediments on top of high heat 

production gneisses. 

Alternatively, the exposed profile could be the result of deformation - syn- or post- 

metamorphism - (e. g. Jain and Manickavasagam, 1993; Grujic et al., 1996). Syn- 

metamorphic models lie somewhere between the two endmembers and may result in an 

abnormal steady-state geotherm or a transient geotherm. In such models the timing 

relationship between deformation and metamorphism is critical - but is a feature often 
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poorly constrained. 

The two end members are not mutually exclusive such that processes producing 

elevated profiles may have acted alongside deformation. To assess the extent to which 

each may have contributed to the exposed field gradients and PT profiles requires both 

detailed structural studies and a detailed knowledge of the PT history of the HHCS. 

Unfortunately, while much is known about the timing of cooling in the Himalaya, little 

is known about the timing of prograde metamorphism. Furthermore, there is only a 

small amount of quantitative data on deformation in the HHCS (Jain and Anand, 1988; 

Grujic et al., 1996). 

Whether the Himalaya had an inverted to isothermal profile prior to exhumation is still 

poorly known and while few authors would deny that deformation has played a role in 

the exposed field and PT profiles the extent to which this controlled the field thermal 

profile is poorly constrained. However, it is clear that inverted metamorphic field 

gradients are a ubiquitous feature of the Himalayan orogeny suggesting a similar 

process along the whole chain. 

Main Central Thrust Zone 

Based on the end member of a frozen geotherm, Le Fort (1975) suggested that the 

inverted profile below the MCT was produced by the emplacement of the hot HHCS 

over the cold Lesser Himalayan formations, producing a sawtooth geotherm. However, 

2-D numerical modelling of overthrusting of a hot crustal slice (Grasemann, 1993) 

shows that the isotherms below the thrust can't be inverted with geologically feasible 

slip rates. 

Such constraints led some authors to suggest that shear heating along the MCT (e. g. 

England and Molnar, 1993b) may have contributed to the inversion of the metamorphic 

field gradients. This is not consistent with the PT data which suggests that the thermal 

high is not at the fault but, rather, slightly above it (e. g. Hubbard, 1989). 
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At the other end of the scale Stäubli (1989), Hubbard (1996) and Harrison et al. (1997b) 

all suggested that post-metamorphic deformation is the principal cause for the observed 

field gradients. The diachroneity of ages across the top of the MCT (Harrison et al., 

1997b) and the clear cross cutting relationships shown by the MCT in Garhwal (Jutogh 

thrust of Jain and Anand, 1988) support this view. 

In reality the process is likely to lie somewhere between the two endmembers and, in 

fact, an analytical solution of a syn-metamorphic deformation model in which the 

footwall is progressively accreted to an eroding hangingwall (Royden, 1993) produces 

PT profiles similar to traverses of the MCTZ in Nepal (Hubbard, 1989). 

1.6 Summary 

The present day exposure of the Himalaya can be represented by a simplified sequence 

from south to the north as follows; the unmetamorphosed Lesser Himalaya sediments 

are overlain by the metamorphic core of the Himalaya, the High Himalayan Crystallines 

Series (HHCS), along a broad zone of deformation often referred to as the Main Central 

Thrust Zone (MCTZ). Small leucogranitic intrusions are emplaced into the upper 

lithologies of the HHCS, the result of crustal anatexis during the Himalayan orogeny. 

Further to the north, the HHCS is bounded by a low angle normal fault which places the 

low-grade Tethyan sediments of the continental shelf against the high-grade HHCS. 

Whilst some of the differences in thermal models used to explain the various features 

preserved in the HHCS and MCTZ along the Himalayan belt may be the result of true 

along-strike variations, the consistency of the lithotectonic units, inverted 

metamorphism and leucogranite production point to broadly similar processes operating 

along the strike of the orogen. The current knowledge of the timing of these events 

permits us to describe an approximate outline for the evolution of the belt. After 

continental collision of India and Asia at -50 Ma metamorphism occurred in the HHCS 

at 35-25 Ma by post-collision thermal relaxation associated with crustal thickening 
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(Vance and Harris, 1999). Movement on the MCT, the STDS and-the formation of High 

Himalayan Leucogranites overlap along much of the orogen between 25-16 Ma 

(Schärer et al., 1986; Hodges et al., 1992) and was closely followed by a period of rapid 

cooling at the top of the HHCS (Sorkhabi and Stump, 1993). Movement in the MCTZ 

occurred either intermittently or continuously from -22 Ma until -2 Ma (Harrison et al., 

1997b). However, the exact relationship between the movement on both the MCT and 

the STDS and the formation of an inverted field gradient in both the MCTZ and the 

HHCS is still not well defined. 

1.7 Thesis structure 

Chapter 2 presents the results of structural and petrological studies of the Garhwal 

Himalaya and as such forms a reference point for later chapters in the thesis as well as 

constraining tectonic models applicable to the area. 

Chapter 3 presents thermometry and barometry carried out on samples in the transects 

presented in Chapter 2. 

Chapter 4 presents the garnet chronometry carried out by the author combined with in- 

situ monazite analyses. These elucidate the prograde thermal history of the Garhwal 

Himalaya, with special reference to the formation of inverted metamorphism in the 

HHCS and anatexis. 

Chapter 5 looks at the geochemistry of a small group of deformed leucogranites which 

indicate melting of the HHCS at 40 Ma by vapour-present melting. 

Chapter 6 explores the Sm-Nd systematics of garnet using new in-situ trace element 

analyses of garnet with LA-ICP-MS. Further analysis of the petrological information 

contained in trace-element zoning within garnet crystals is presented in Chapter 7. 

Finally the conclusions and tectonic model are contained in Chapter 8. 
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Chapter 2- Field Relations and petrology 

2.1 Introduction 

This chapter summarises field observations and presents general petrological 

descriptions for rocks of the Garhwal Himalaya based on fieldwork by the author and 

previous studies. These are followed by descriptions of the lithology, structure and 

petrology of the Bhagirathi and the Saraswati and Dhauli valleys (see Figure 2.1 for 

positions of the valleys). The Bhagirathi is treated separately from the other two given 

the lithological and structural differences. The ambiguities and some of the specific 

questions raised in this chapter are discussed in more detail at the end. 
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Figure 2.1 Sketch map of the Garhwal Himalaya showing the Bhagirathi, Alaknanda (Saraswati) and Dhauli valleys. 

Also shown are the tectonostratigraphic units used in this thesis. 

2.2 Previous work 

Auden (1937) first carried out reconnaissance work in the Garhwal Himalaya and, with 

the later work of Heim and Gansser (1939), identified the principal lithotectonic units. 

They suggested that the sequence from the Lesser Himalayan (LH) up through the High 
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Himalayan Crystalline Series (HHCS) resulted from the overthrusting of successive 

units from the north to the south. This work already highlighted the problem of inverted 

metamorphism. Later work, discussed in greater detail below, reflects the range of 

problems the area presents and has concentrated on specific aspects of the region, 

namely: the definition and nomenclature of the MCT fault systems and metamorphism 

in the Lesser Himalaya (Valdiya, 1980; Bahuguna and Saklani, 1988; Johnson and 

Oliver, 1990; Srivastava and Mitra, 1994; Oliver et al., 1995); structure and 

metamorphism of the High Himalayan Crystallines (Virdi, 1986; Hodges and 

Silverberg, 1988; Pecher and Scaillet, 1989; Metcalfe, 1990; Metcalfe, 1993); 

geochemistry, formation and emplacement of the leucogranites (Seitz et al., 1976; Stem 

et al., 1989; Scaillet et al., 1990; Searle et al., 1993; Scaillet et al., 1995; Searle et al., 

Subm. ); the stratigraphy of the Tethys Himalaya (Shah and Sinha, 1974); and uplift and 

exhumation (Sorkhabi et al., 1996; Searle et al., Subm. ). 

2.3 Petrography and field relations; Bhagirathi 

Though it is certainly true that, compared to many orogens, the Himalaya show a 

remarkable degree of lateral continuity in terms of the overall nature of the geological 

units exposed, there is still considerable complexity in detail. To some extent the large- 

scale simplicity may be more a reflection of a rudimentary state of knowledge than a 

real situation. Certainly, in detail, sections are highly variable throughout the Himalaya 

and the Bhagirathi, Alaknanda and Dhauli valleys are no exceptions. Nevertheless some 

generalisations can be made for the units. Here the deformation and metamorphism in 

each unit are assigned to different events on the basis of relative timing and kinematic 

or grade similarities. This may artificially separate different structural features which 

are in fact the result of a continuous process. Conversely, where the relationship 

between some of the features in any one unit remains ambiguous, this approach may 

mask a greater diversity in events. 
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2.3.1 The Main Central Thrust Zone 

Considerable confusion exists in the literature about the position of the MCT in the 

Kumaon and Garhwal Himalaya. The MCT was defined by Heim and Gansser (1939) as 

the first appearance of metamorphic rocks in the Alaknanda, Dhauli and, to the east, in 

the Kumaon Himalaya. Later workers, mostly from India, continued this tradition but 

showed that the metamorphic rocks in the area of Kumaon and Garhwal were in fact 

imbricated. A host of local names and terminology was developed with as many as three 

MCTs. 

This situation became increasingly complicated with the adoption of the apparently 

simple classification in Nepal. Studies by Valdiya (1980; 1988) attempted to correlate 

the known thrusts along the entire chain in line with the work in Nepal. This process 

was complicated by along strike variations in lithologies and structural style which are 

extremely pronounced even within the -200km section of the Kumaon and Garhwal 

Himalaya (Valdiya, 1980; Pati and Rao, 1983; Saklani and Bahuguna, 1983; Bahuguna 

and Saklani, 1988; Jain and Anand, 1988; Pecher and Scaillet, 1989; Metcalfe, 1993). 

However, one feature appears consistent in the Garhwal Himalaya: the position of the 

upper boundary separating gneisses on top from the imbricate zone below. It is this 

boundary, locally known as the Vaikrita thrust, that Valdiya (1980) termed the MCT. 

Metcalfe (1993) attempted to simplify the terminology by referring to the 

metamorphosed rocks below the Vaikrita thrust as the Main Central Thrust Zone 

(MCTZ). Unfortunately the lower Munsiari thrust does not coincide with more detailed 

studies in the same valley (e. g. Bahuguna and Saklani, 1988). However in view of the 

more widespread availability of the Metcalfe (1993) study his terminology is adopted 

here for the upper and lower thrusts bounding the MCTZ; the Vaikrita and Munsiari 

thrust respectively. Furthermore, Valdiya (1980) suggestion that the Vaikrita is 

equivalent to the MCT elsewhere is also accepted here. Thus the MCTZ is bound to the 
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south by the Munsiari thrust and to the north by the Vaikrita/MCT as shown on Figure 

2.2. The Munsiari thrust (Metcalfe, 1990; 1993) occurs just to the north of Sainj in the 

Bhagirathi valley and separates the quartzites of the lesser Himalaya from the MCTZ. 

The MCT at the top is based on a change in lithology and structural style from the 

highly sheared gneisses and schists of the MCTZ to the less deformed gneisses at 

Dabrani (Metcalfe, 1990; 1993). 

Structurally the MCTZ shows variable strike from E-W to N-S with a dip of 50-70° and 

often with the development of a low angle C plane dipping to the north. There is a well- 

developed NNE mineral lineation which lies almost parallel to the strike of the beds in 

some parts of the MCTZ (Figure 2.3). 

Although the dominant lithology varies within the MCTZ, rather than attempt to 

separate the MCTZ into distinct formations, it will be treated as one unit and the 

lithologies described separately. The base of the MCTZ in the Bhagirathi valley 

contains amphibolites, quartzites, augen gneiss and granodiorite, the last of which 

dominates for approximately 6km from the base of the section (Metcalfe, 1990). The 

MCTZ is highly tectonised but in places intrusive relationships are preserved (Figure 

2.4a) in which amphibolites are intruded by augen gneiss which is in turn intruded by a 

leucocratic granite-gneiss. The granodiorite and augen gneiss contain K-feldspar + 

plagioclase + biotite + quartz ± muscovite ± clinozoisite. It has inhomogeneously 

distributed high strain shear zones which have well developed quartz ribbon textures 

(Figure 2.4b). K-feldspar is rounded and shows breakdown to muscovite and quartz. 

Amphibolites occur throughout the MCTZ and consist of biotite + quartz + plagioclase 

± hornblende ± actinolite ± zoisite. The amphibolites retain igneous textures in the core 

but near the strained margins hornblende is replaced by actinolite (Metcalfe, 1990). The 

more high-strain samples develop S-C fabrics defined by biotite with small broken 

crystals of sphene. Biotite occasionally shows rutile exsolution fabrics. 
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lkm south of Bhatwari boudinaged aplite dykes intrude foliated biotite-schist and in the 

vicinity of Bhatwari small calc-silicate bands outcrop (Metcalfe, 1990). 

High-strain augen gneisses also occur throughout the section and become common from 

just north of Bhatwari until Gangnani. They contain K-feldspar + biotite + quartz + 

plagioclase ± muscovite. K-feldspar and plagioclase form sericitised augen in a fine- 

grained groundmass with quartz ribbon textures and muscovite fabrics wrapping the 

augen. 

Pelites occur throughout the section and garnet first appears south of Thrang (Metcalfe, 

1993). Pelites are intercalated, increasing in proportion upstream, with augen gneiss and 

amphibolites. Around Gangnani pelites become the dominant lithology and consist 

variously of garnet + biotite + quartz + muscovite ± plagioclase ± chlorite. Chlorite and 

muscovite form the fabric south of Gangnani with a few platy biotite at an angle to the 

fabric. At Gangnani the fabric is formed by biotite and muscovite with some 

retrogressive chlorite. Chlorite usually forms unoriented retrogressive rims to garnet but 

occasionally replaces a resistant mineral and forms in kinks (Figure 2.4d). Early 

deformation (SI) represented by small scale folds is preserved in the core of garnets 

from near Gangnani and is continuous with the matrix. Elsewhere garnet inclusion trails 

are at an angle to the main foliation. Staurolite + garnet assemblages are found north of 

Ghuttu in the Bhilangana valley to the east (Metcalfe, 1990). 

To the north of Gangnani chlorite-schists outcrop which contain quartz lenses 

characterised by isoclinal folds and a well developed S-C fabric. Pecher and Scaillet 

(1989) consider these the retrogressive parts of the HHCS and place the MCT to the 

south of Gangnani. Jain et al. (1995) place the MCT on the high point of the road to the 

north of Gangnani in the vicinity of a landslide. However, outcrops of amphibolites, 

calc-silicates and slivers of augen gneiss within, and to the north of this point, indicate 

that the lithological boundary lies further to the north and just south of Dabrani as 

Timing ofprograde metamorphism... C. I. Prince 31 



Chapter 2 Field Relations 

mapped by Bahuguna and Saklani (1988) and Metcalfe (1993) and shown in Figure 2.3. 

The gneisses and calc-silicates north of Gangnani are mylonitised (Figure 2.4e). D2, the 

main deformational phase, forms the axial planar cleavage, S2, to isoclinal folds in the 

pelites to the north of Gangnani. D2 is a top-to-the-south-west directed shear as 

indicated by C fabric relationships, rotated garnet inclusion trails and asymmetric augen 

(Metcalfe, 1990). The close association between high-strain mylonitic augen gneiss and 

schists displaying top-to-the-southwest S-C fabrics a few kilometres south of Gangnani 

suggests that the deformation of the augen gneiss and the production of the S-C fabrics 

in the schists occurred simultaneously. The similarity between these augen gneisses and 

the deformation in the augen gneisses and granodiorites lower in the sequence suggests 

that the same stress regime occurred throughout the MCTZ. The final deformation (D3) 

is represented by localised top-to-the-southwest brittle-ductile shears (Figure 2.4f). 

Around Gangnani early folds and fabric (S1) are preserved in garnet cores which grew 

under at least greenschist-facies conditions (MI). Rotated inclusion trails (Metcalfe, 

1990) indicate syn-kinematic growth for some garnet and the fabric wrapping garnets 

indicate continued deformation after their growth. The metamorphic assemblages lower 

down in the MCTZ do not constrain the grade although chloritoid has been reported just 

to the south of Bhatwari (Jain et al., 1995). M1 was followed by M2, a static 

retrogression to lower-greenschist facies conditions shown by chlorite overprints on 

garnet. Despite the scarcity of appropriate lithologies lower in the MCTZ a complicated 

field gradient is apparent from actinolite-bearing schists near the Munsiari thrust at 

Sainj up to lower-amphibolite facies, garnet-mica schists around Gangnani and back to 

greenschist facies chlorite-schists just north of Gangnani. 

The age of metamorphism within the MCTZ is constrained by a hornblende 40Ar/ Ar 

age that suggests that temperatures of -550°C where maintained until 19.8±2.6 Ma 

(Metcalfe, 1993). Additionally Metcalfe (1993) obtained K-Ar ages on muscovite 
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Figure 2.4 Field relations and petrological observations for the MC7Z in the Bhagirathi valley. Numbers in parentheses 

relate to sample numbers or localites for all figures in Chapter 2. (a) Intrusive relationships in the MCTZ of the 

Bhagirathi valley. Granite gneiss (foliated) intruded by leucocratic gneiss (white with black flecks); (b) 

Photomicrograph of biotite and quartz fabrics wrapping broken feldspar crystals (field of view (FOV) = 5mm) (60); (c) 

Photomicrograph of an augen ofplagioclase wrapped by muscovite. Well developed quartz ribbon textures in the matrix 

(FOV = 2mm) (47); (d) Photomicrograph of static overgrowth of chlorite on edges of garnet. (FOV = 2mm) (45); (e) 

Mylonites below the Vaikrita thrust (123): (f) Example ofa brittle thrust in the MC77indicated with awhile line (I J). 
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Figure 2.5 Field relations and petrological observations for the HHCS and Harsilformation in the Bhagirathi valley. (a) 

Landslide at Lohari Nag exposing migmatitic gneiss; (b) Photomicrograph of muscovite and myrmekite veins cutting 

through K feldspar crystals indicating fluid infiltration (FOV = 2mm) (51.4); (c) Photomicrograph of K feldspar 

porphyroblasts overgrowing biotite, muscovite and quartz assemblage. Only biotite and quartz are found within the K- 

feldspar (FOV = 3.5mm) (157); (d) Photomicrograph of garnet, retrogressed to biotite, in large kyanite porphyroblast 
(FOV=Smm) (55); (e) Photomicrograph offene needles of unidentified mineral growing in basal HHCS (FOV =1.5mm) 
(56); (n Photomicrograph of S, fabric preserved as inclusion trails in garnet. Orientation is perpendicular to the main 
fabric defined by biotite (FOV = 2mm) (56). 
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Figure 2.6 Field relations and petrological observations for the Harsil formation in the Bhagirathi valley. (a) 

Photomicrograph of retrogressed staurolite in the Bhagirathi HHCS. Note also the development of fine needles as for 

Figure 2.4e (FOV = 0.5mm) (62); (b) Pegmatite (white) cross-cutting the augen gneiss (foliated) at the top of the 

Bhagirathi HHCS (4K); (c) Photomicrograph of broken kyanite with the possible development of sillimanite. Harsil 

formation (FOV = 1.5mm) (100); (d) Photomicrograph of gedrite (large porphyroblasts) with the formation of small 

needles in the groundmass along grain boundaries. Harsil formation (FOV = 2mm) (88); (e) Photomicrograph 

staurolite overgrowth on garnet with rotated inclusion trails (FOV = 2mm) (79). 
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Figure 2.7 Field relations and petrological observations for the Harsilformation in the Bhagirathi valley. (a) A top-to- 

the-north brittle-ductilefault identified in the vicinity ofJhala bridge; (b) Photomicrograph of overgrowth of cordierite 

on staurolite. Pleochroic halo in circle (FOY=1.5mm) (135); (c) Photomicrograph ofsillimanite and biotite in cordierite 

overgrowths on staurolite (FOV = 2mm) (10/97); (d) Staurolite porphyroblasts overgrowing a crenulation cleavage 

which is almost parallel to the lithological layering (IN); (e) north verging fold in the Harsil formation which has 

developed reverse kinks (axial plane marked) (IN); 69 top-to-the-north shears on leucogranite dyke margins (IN). 
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within the garnet-mica schists as young as 5.7 Ma suggesting that temperatures of 

-350°C were maintained until that time. However the K-Ar and 40Ar/39Ar ages showed 

significant scatter, probably as a result of both later displacement along faults leading to 

recrystallisation and excess argon. Recently, monazite ages in the MCTZ of -6.5 Ma, as 

well as 17.5 Ma and 38 Ma, have been interpreted as indicating reactivation of the MCT 

at -8 Ma as for other parts of the MCT (Harrison et al., 1997; Catlos et al., 1999). The 

interpretation of these data is somewhat difficult as the temperature of monazite growth 

is unclear and the position of the samples in the MCTZ is critical but poorly 

constrained. However, the monazite data suggest that the MCTZ was affected by some 

early metamorphism as early as 38 Ma and underwent a sustained period of heating and 

metamorphism up to -20 Ma rapidly cooling afterwards. Later reactivation resulted in 

minor burial and subsequent cooling. 

2.3.2 The High Himalayan Crystalline 

The MCT is identified in this section by the change to a monotonous foliated gneiss. 

The major mineral assemblage of the gneiss consists of quartz + K-feldspar + 

plagioclase + biotite ± muscovite ± garnet ± kyanite. The gneisses are well-foliated and 

strike NW-SE at between 40-60°N with a lower angle C fabric occasionally developed 

indicating top-to-the-south shear (Figure 2.3). Garnet shows slight retrogression to 

biotite. Approximately lkm to the north of Dabrani kyanite first appears. 

The gneisses give way to a thin band of calc-silicates before the large landslide south of 

Lohari Nag. The fresh landslide (Figure 2.5a) is comprised of migmatitic gneisses with 

layering on a 10-50cm scale. Leucosomes may locally form up to 70% of the rock and 

contain biotite + muscovite + quartz + plagioclase ± tourmaline ± apatite ± K-feldspar ± 

garnet. The mesosomes contain garnet + biotite + muscovite + tourmaline + epidote + 

apatite. The non-minimum melt composition of the leucosomes, the presence of epidote 

and the lack of any aluminosilicate phases suggest that the migmatites did not form by 
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anatexis. There is evidence for late fluid infiltration within the leucocratic layers, which 

contain veins of muscovite cross-cutting and altering the K-feldspar and plagioclase 

(Figure 2.5b). Outcrops just to the south of the landslide contain K-feldspar 

porphyroblasts, possibly metasomatic in origin, which have overgrown a biotite- 

muscovite assemblage and contain inclusions of biotite and quartz (Figure 2.5c). 

This lithology gives way after 2km to coarse-grained gneiss containing large kyanite 

laths which coincides with the beginning of leucogranitic aplite and pegmatite dykes 

and sills. Kyanite has overgrown garnet which is severely retrogressed to biotite (Figure 

2.5d). 

Within the lower unit kyanite and garnet form the primary assemblage (Ml) which grew 

over an earlier fabric (S1) that is sub-parallel to the later S-C fabric (Figure 2.50. 

Kyanite has inclusions of rutile and occasionally includes garnet. Later metamorphism 

(M2) severely retrogressed garnet to biotite and deformed and fractured kyanite. Small 

needles of kyanite or sillimanite occur along grain boundaries away from the garnet and 

kyanite (Figure 2.5e). 

750m south of Suki small outcrops of psammites and semi-pelites occur. Staurolite 

appears in these rocks but is severely broken down and may be forming sillimanite 

(Figure 2.6a). Garnet and kyanite are also breaking down to biotite and muscovite 

respectively. As seen in the assemblages further south, fine needles form along grain 

boundaries. 

To the north of Suki an augen gneiss outcrops with large porphyroclasts of plagioclase 

in a foliated groundmass of K-feldspar + biotite + quartz and accessories of sphene, 

allanite and muscovite (Metcalfe, 1990). This is cross-cut by pegmatites (Figure 2.6b). 

Further to the east, around the base of Shivling, gneisses of the HHCS contain kyanite 

which are broken and corroded by muscovite. Additionally fibrolitic sillimanite forms 

the fabric in biotite and other samples show that chlorite also forms parallel to the 
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schistosity. 

2.3.3 Harsil formation 

The augen gneiss is taken as the boundary between the HHCS and the Harsil formation 

in which pelites and psammites become dominant. The assemblages consist of biotite + 

quartz + plagioclase + muscovite ± kyanite ± garnet ± tourmaline ± sillimanite. Kyanite 

is broken (Figure 2.6c) and garnet is often severely corroded by biotite as in the gneisses 

in the HHCS. Just north of Jhala bridge fibrolitic sillimanite becomes visible in hand 

specimen and occurs along the foliation until mid-way between Jhala bridge and the 

bend in the river to the north. In thin section sillimanite forms along grain boundaries. 

Up to the bend in the river small layers of semi-pelite occur containing the ortho- 

amphibole gedrite (Figure 2.6d). The mineral assemblage was verified by 

electronmicroprobe and is thought to have been mistakenly identified as sillimanite by 

Metcalfe (1990). To the east along the Bhagirathi the dominant lithologies are pelites, 

semi-pelites and psammites which occasionally contain staurolite and kyanite. Some 

garnet is corroded by biotite. Gamet and staurolite are wrapped by the fabric and 

inclusion trails indicate syn-kinematic growth (Figure 2.6e). 

Within the Harsil formation around Harsil several generations of folds can be found 

indicating two phases of intrafolial folding, the second of which develops an axial 

planar foliation parallel to the main foliation elsewhere. The main foliation trends E-W 

at an angle of 33-60°N with a lower angle C fabrics indicating top-to-the-south shearing 

(Figure 2.3). The final deformation (D3) is a top-to-the-north phase represented by only 

a few brittle-ductile features (Figure 2.7a). 

The psammites and pelites found in the vicinity of Jhala to Harsil appear to be the same 

as those found to the east of Gaumukh, which also have kyanite + staurolite bearing 

assemblages but which additionally show overprints of cordierite (Figure 2.7b). Only 

rarely can fibrolitic sillimanite be found which cross-cuts cordierite (Figure 2.7c). 
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However, the Harsil formation in the area of Gaumukh shows a different structural 

history to the Jhala bridge area. Lithological layering, So, forms the main foliation and is 

broadly parallel to the main foliation in the Harsil area. However, the first recognisable 

deformation phase is the localised development of a crenulation cleavage (Si) bounded 

by So and overgrown by the Ml staurolite and kyanite porphyroblasts (Figure 2.7d). The 

rocks were subsequently folded by NE-E-verging asymmetric folds with axial planes 

striking -340°N (Figure 2.7e). The orientation of the folds and the reverse kinks 

indicate a top-to-the-north shear and have a similar orientation to the folds north-east of 

the Bhagirathis (Searle et al., 1993). The final stage of deformation is found on the 

margins of leucogranitic dykes with the development of top-to-the-northeast shear 

fabrics (Figure 2.7f). 

The relationship between the top-to-the-south shearing experienced by the Harsil 

formation in the west of the Bhagirathi valley and the top-to-the-northeast deformation 

in the Gaumukh area around Shivling is not determined but both post-date the growth of 

the primary metamorphic assemblage. In both areas leucogranitic dykes cross cut the 

main foliation and are only weakly deformed, thus bracketing the main deformation 

event between metamorphic mineral growth and leucogranite formation. The two 

deformation phases are designated D2,, and Deb in the west and east respectively. 

HHCS and Harsil formation. Tethyan sediments? 

Given the lack of agreement on the boundaries in the Himalaya the choice of boundary 

between the Harsil formation and the HHCS deserves some discussion. 

Metcalfe (1990) placed a tectonic boundary between the HHCS and the Harsil 

formation - the Jhala Normal Fault - just to the north of Jhala bridge which was based 

on the metamorphic grade change northward from apparently upper-amphibolite facies, 

indicated by sillimanite, to a maximum of lower-amphibolite facies indicated by 

hornblende-bearing calc-silicates. This author has two major disagreements with this 
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interpretation and classification of the units. Firstly the grade change is not as 

significant as suggested by Metcalfe (1990) as garnet + staurolite + kyanite bearing 

assemblages have been found, in the Harsil formation, to the north of the Jhala Normal 

Fault. Secondly, although minor brittle-ductile faults have been found (Figure 2.7a) they 

are unlikely to be responsible for major displacement and there is little, if any, structural 

data to suggest the existence of a major normal fault in the vicinity of Jhala. It is, 

therefore, not possible to confirm Metcalfe's proposition that the boundary between the 

HHCS and the Tethyan sediments lies at this point. 

Pecher and Scaillet (1989) appear to have used lithological criteria for the separation of 

the Bhagirathi section into Harsil formation and HHCS. However, their boundary lies 

significantly to the south of Suki resulting in the mylonitic augen gneiss north of Suki 

belonging to the Harsil formation. These authors also appear to incorporate the coarse 

gneisses to the south of Suki in the Harsil formation, although the latter is unclear due to 

the scale of mapping. 

Given the lithological definition for the MCT to the south, the sequence of rocks in the 

section have been separated into two formations: 1) the HHCS proper and; 2) the Harsil 

formation representing the more pelitic assemblages found to the north of Suki. This 

results in a few staurolite-bearing assemblages being included into the HHCS but the 

Harsil formation is exclusively psammites-pelites. This proposed lithological boundary 

can be correlated with the change in rock type found on the southern side of Shivling 

much further to the east. However, it must be borne in mind that this boundary may, in 

detail, be both gradational and imbricated. 

Metcalfe (1990) also suggested that the Harsil formation is the equivalent of the 

Tethyan sediments found elsewhere in the Himalayan orogen. These are generally low- 

to unmetamorphosed sediments as in the Dhauli valley at Malari (see "Malani Fault"). 

Indeed unmetamorphosed turbidites are known to outcrop to the north of Gaumukh. The 
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relationship between the Harsil formation and the unmetamorphosed Tethyan sediments 

cannot be easily investigated given the limited access to areas further north but the 

pelitic nature and probable sedimentary protolith of the Harsil formation suggest that the 

Harsil formation represents the basal section of the Tethyan sediments metamorphosed 

in the Himalayan orogeny (see Chapter 4 for further discussion of timing). 

2.3.4 Bhairongathi Granite 

A biotite-granite, intruded into the Harsil formation, has been correlated with other 

Palaeozoic granites in the Himalaya by Stem et al. (1989) based on its geochemistry. 

The biotite-granite is intrusive into the metasediments in the Ratkvam valley (Figure 

2.8a) but the contacts are poorly exposed elsewhere. The granite is foliated and folded 

along its basal contact though it is not penetratively foliated throughout (Stem et al., 

1989). It is cross-cut by leucogranite dykes, sills, and small plutons. 

2.3.5 Leucogranites 

North of Lohari Nag leucogranitic dykes intrude the Harsil formation and become 

increasingly prevalent towards the leucogranite laccoliths in the Gangotri area. Some 

leucogranitic dykes were intruded near the end of the deformation history of the rocks, 

and into an extensional regime, as shown by top-to-the-north C fabrics on dyke margins 

(Figure 2.7f). 

Leucogranite laccoliths and plutons stretch from Gangotri on the Bhagirathi river, where 

they form isolated small plutons intruded into the Harsil formation between the HHCS 

and the TSS, to east of the Alaknanda where they outcrop extensively in militarily 

sensitive areas. In the Gangotri region it is known as the Gangotri granite and in the east 

as the Badrinath granite. The Gangotri granite is spectacularly exposed in the faces of 

the Bhagirathi and Shivling mountains (Figure 2.8b). 

The leucogranite is chemically similar to other HHL bodies, is fine-grained, contains 
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quartz + K-feldspar + plagioclase + tourmaline + muscovite ± biotite ± garnet ± beryl 

with apatite as the most abundant accessory mineral (Scaillet et al., 1990). The high 

87Sr/86Sr ratios (0.746-0.780) and low initial 143Nd/144 Nd ratios (0.5119) (Stem et al., 

1989; Scaillet et al., 1990) indicate the granites generation from continental crust 

without a mantle contribution. The inhomogeneous distribution of 87Sr/86Sr in the 

granite suggests that little mixing occurred between the different batches of magma 

(Scaillet et al., 1990). 

Based on the shape of the laccoliths, deformation of feeder dykes below the intrusions 

and structures in the underlying gneisses, the granite is thought to have been emplaced 

syn- to post- extensional movement (Searle et al., 1993; Scaillet et al., 1995). Details of 

the internal structure, determined using magnetic studies Pecher (1989), however, fail to 

point to any clear role for top-to-the-north deformation but showed a component of 

dextral shear within the main body. 

Early K-Ar age determination by Seitz et al. (1976) from the Arwa Valley to the north 

of Badrinath gave cooling ages of 18.4±0.7 Ma. A later Rb-Sr isochron by Stern et al. 

(1989) gave an age of 64±11 Ma. This latter age probably reflects incomplete isotope 

mixing on the scale of sampling. Additional K-Ar and 40ArP9Ar muscovite cooling ages 

from the bodies in Gangotri cluster around -18 Ma (Stem et al., 1989; Sorkhabi et al., 

1996). A recent study by Searle et al. (Subm. ) obtained U-Pb monazite ages of 

23±0.2 Ma from the Shivling leucogranite. 

2.4 Petrography and field relationships: Alaknanda and Dhauli 

2.4.1 Main Central Thrust Zone 

Despite lithological differences in the MCTZ between the Bhagirathi and Alaknanda 

valleys the upper boundary to the MCTZ is termed the MCT/Vaikrita thrust and the 

base is termed the Munsiari thrust in line with the studies in the Bhagirathi valley 
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(Figure 2.9). 

Recent geochemical work by Ahmad et al. (In press) has shed more light on the nature 

of the lithological changes in the Alaknanda. They showed that the hanging wall of the 

Vaikrita thrust in the Alaknanda is characterised by ENd of -14 to -19 whereas the rocks 

of the MCTZ and the LH have a significantly lower ¬Nd of -23 to -28. This would place 

the major thrust, in this case defined as the boundary between two formations of 

different provenance, some 2V km south of the MCT as defined by previous authors. 

The isotopic MCT does not coincide with either the lithological change from schist to 

gneiss or the structural change from rotated minerals to unoriented garnet and kyanite. 

The more southerly, isotopic, MCT lies south of the garnet isograd, and, if accepted, 

garnet-mica schists containing rotated garnet would be included in the HHCS. 

The apparent dichotomy between the isotopic and field MCT may be the result of the 

imbrication of tectonic slices within the MCTZ, combined with sampling bias towards 

rock types predominantly sourced from one or other of the units. This may be the case 

in Ahmad et al. (In press) as all the measured samples to the north of the isotopic MCT 

are gneisses and, if imbrication within the MCTZ does occur, are likely to have been 

sourced from the HHCS. Despite these concerns the work shows that some of the rocks 

within the field-defined MCTZ have a distinct source from the HHCS. 

The present work, however, will be based on the field-determined position for the MCT 

as shown on Figure 2.9. 

The Munsiari thrust south of Helang is marked by the change from phyllonitic and 

highly-sheared dirty limestones to chloritic-schists. The chloritic schists do not show a 

tectonic break with the underlying quartzites and calc-silicates. The lithologies north of 

the chloritic schists are: (i) an amphibolitic schist, (ii) interleaved augen gneiss, 

quartzites and micaschists and, (iii) foliated gneisses of the HHCS at the MCTNaikrita 

thrust. In the Dhauli valley similar outcrops occur with more abundant amphibolite 
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layers. 

The pelites in the Alaknanda and in the Dhauli contain biotite + muscovite + quartz + 

plagioclase + graphite ± garnet ± staurolite ± tourmaline ± chlorite with accessory 

allanite, zircon and ilmenite. Garnets often contain rotated inclusion trails (Figure 2.1Oa) 

and isoclinal folds are occasionally preserved in the groundmass. Chlorite forms in the 

fabric in some samples but generally forms unoriented overgrowths to garnet. Thin 

bands of gneiss occur in the MCTZ with similar mineralogy to the pelites. 

Augen gneisses are similar to those found in the Bhagirathi valley with rounded K- 

feldspar overgrown by muscovite (Figure 2.10b, c). Amphibolites containing small 

south-verging folds outcrop throughout the MCTZ and, around Tapoban, contain 

hornblende + quartz + biotite + rutile + clinozoisite with a strong fabric defined by 

hornblende. Rare calc-silicates occur and contain calcite + clinopyroxene + garnet + 

biotite + quartz + muscovite. Quartzites occur throughout but occasionally form thicker 

bands as shown on Figure 2.9. 

The MCTZ has a well developed schistosity dipping at around 30-50°N and a well 

developed cross-cutting C fabric at 0-45°N (Figure 2.11). The numerous S-C fabrics 

attest to a top-to-the-south non-coaxial shear strain and occasional isoclinal folds can be 

found with a strongly developed axial-planar cleavage in both outcrop and hand 

specimen. The whole of the MCTZ is highly sheared but deformation is 

inhomogenously distributed (Figure 2.1Od). 

The deformation throughout the sequence is similar to the Bhagirathi valley with M1 

garnets preserving an early S1 fabric. The M1 assemblage is wrapped and deformed by 

biotite-muscovite S-C fabrics during D2. The isoclinal intrafolial folds and an attendant 

axial planar cleavage are cut by the pervasive low angle D2 C fabric but their 

relationship to M1 is not clear. The metamorphic assemblages suggest that Ml reached 

lower amphibolite facies and was subsequently overprinted by a syn-kinematic 
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greenschist facies metamorphism (M2). 

2.4.2 High Himalayan Crystallines 

The boundary between the HHCS and the MCTZ is marked by the MCT (Vaikrita 

thrust) (Valdiya, 1980; Virdi, 1986). The actual fault has not been identified by the 

author and Virdi (1986) suggests that there is, in fact, no tectonic break - as did Pati and 

Rao (1983) in the Bhagirathi valley. However, there is a marked change in lithology 

from the foliated intercalated quartzites and mica schists of the MCTZ to a less foliated 

biotite gneiss. The HHCS in the Dhauli and the Alaknanda valleys can be separated into 

three principal units, though the boundaries between each unit are gradational. These are 

the basal, middle and upper units. 

The biotite-gneiss of the basal-HHCS, just above the MCT, contains plagioclase + 

quartz + biotite ± muscovite ± garnet ± K-feldspar ± kyanite ± rutile and is segregated 

on a 2-20cm scale (Figure 2.12a). This unit gradually becomes more quartz-rich and 

grades into the massive dirty quartzite of the middle unit of the HHCS (Figure 2.9). 

Small calc-silicates can be found near the top of the basal-HHCS and throughout the 

rest of the HHCS. 

Garnet in the Dhauli valley just below the quartzites overgrew an early fabric (Si) 

(Figure 2.12b) but in less deformed rocks tends to be randomly oriented in the foliation. 

The biotite-gneiss contains isoclinal folds with a well developed axial-planar schistosity 

which is cut by a weak C fabric. This deformation event (D2) post-dates the Ml 

assemblage and rotates and deforms kyanite. A second generation of small acicular to 

stubby crystals form along grain boundaries (Figure 2.12c). The secondary crystals have 

been identified as kyanite by Hodges and Silverberg (1988) but the author has not been 

able to confirm their composition due to the extremely small size. The Ml assemblage 

shows retrogression by a second metamorphism (M2) in which biotite and platy 

muscovite cross-cut the fabric of the gneiss in many places. 
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The basal-HHCS also has open folds, found below Joshimath, but the relationship to the 

isoclinal folds is not clear. As for elsewhere in the Garhwal Himalaya, shear is 

inhomogeneously distributed throughout, and the Dhauli river garnetiferous mica- 

schists outcrop along with mylonitised gneiss (Figure 2.12d). 

The quartzites of the middle unit in both the Alaknanda and Dhauli valleys contain 

minor biotite and muscovite and are interlayered with calc-silicate and pelite layers up 

to 50cm thick. The quartzites then grade back into gneisses and near the top in the 

Dhauli valley, contain intrusions of granitic gneiss. The outcrops become gradually 

more biotite rich and some leucogranite intrusions can be found cross-cutting the 

foliation. The quartzites are openly folded on a 300m scale and are pervasively 

isoclinally folded (Figure 2.12e), with the axes of the folds rotated into the direction of 

the shear. Most fabrics within the quartzites indicate top-to-the-southwest shear sense 

but rare top-to-the-east ductile faults with biotite-muscovite fabrics can be found 

(Figure 2.12f). Thin calc-silicate layers are common in the quartzites and contain garnet 

+ clinopyroxene + hornblende + epidote + quartz + calcite + sphene. 

The upper units differ in the Alaknanda and Dhauli valleys. In the Alaknanda the 

quartzites grade into biotite gneisses and schists. Just to the south of Badrinath small 

intrusions of leucogranite occur which have been subsequently deformed (Figure 2.13a; 

Chapter 5). The sequence then changes orientation from northerly dipping gneisses to 

almost flat-lying calcsilicates near Badrinath. Just south of Mana the quartz-rich 

gneisses dip to the north, with increasing amounts of relatively undeformed 

leucogranitic dykes and sills. 

The area north of Mana is a highly sensitive military area where access is difficult to 

obtain and limited to the area south of Ghastoli. The Arwa valley, which is cut from east 

to west by a leucogranite pluton, contains no outcrop except at the base of the cliffs 

which are constantly bombarded by rock fall from the hanging glaciers along its length. 
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Figure 2.9 Schematic geological map of the Alaknanda valley compiled from field work by the author and from 
irdi (1986). 
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Figure 2.10 Field relations and petrological observations for the MC7Z in the Alaknanda and Dhauli valleys. (a) 

Photomicrograph of rotated inclusion trails in garnet (FOV =5 mm) (4a3); (b) Streaky augen gneiss with the 

development of a strong stretching lineation defined by deformed augen of feldspar; (c) Photomicrograph of edge of an 

augen of K -feldspar The augen is wrapped by a muscovite and quartz fabric (FOV = 10mm) (43/97); (d) Deformed 

schists and quartzites in the MC7Zindicating high shear. 
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Figure 2.11 Structural map of the Alaknanda valley showing dip and strike of the beds and mineral lineations. 
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Figure 2.12 Field relations and petrological observations for the HHCS in the Alaknanda and Dhauli valleys. (a) Gneiss 

of the basal HHCS (6A); (b) Photomicrograph of S, preserved in garnet cores at an angle to the main foliation (FOV = 
5mm) (8); (c) Photomicrograph of acicular needle growth in the basal-HHCS (FOV =I mm) (2B2); (d) Mylonitised 

gneiss, schists and granite from near the MCT in the Dhauli valley indicating high shear; (e) Isoclinal folds in the 
quartzites. The hinge axis has been rotated parallel to the stretching lineation (FOV = 2m); (I) TTE ductile fault in 
quartzites indicating influence of extensional tectonics -40ban south of the SIDS.. Shearzone -10cm wide. 
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Chapter 2 Field Relations 

Figure 2.13 Field relations and petrological observations for the upper-HHCS of the Alaknanda and Dhauli valleys. (a) 

Deformed leucogranite dykes (white) in the upper-HHCS of the Alaknanda valley Intrusion -im wide (G31(1)); (b) 

disharmonicallyfoldedgneiss in the Dhauli valley (FOV-1m); (c) Folded anatecticmigmatites in the Dhauli valley. Pale 

bands are tourmaline bearing leucogranites in a gray foliated gneiss. Main foliation forms axial plane to folds; (d) 

Photomicrograph offibrolitic sillimanite overgrown by muscovite. The muscovite forms at an angle to the main foliation 

defined by biotite on the bottom edge of the photograph (FOV = 0.5mm) (18). 
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Figure 2.14 Field relations and petrological observations for the upper-HHCS of the Alaknanda, Dhauli and Bhagirathi 

valleys. (a) Photomicrograph offibrolite in biotite (lop left hand corner) with slight retrogression to muscovite (center) 

(FOV = 1.5mm) (211); (b) Photomicrograph offibrolite cross-cutting tourmaline crystal in the deformed leucogranite 

shown in Figure 2.12a (FOV =2 mm) (G31(1)); (c) Photomicrograph of fibrolite-biotite fabrics cross-cutting garnet 

porphyroblasts (FOV = 1.5mm) (27/97); (d) Fault in Raktvarn valley potentially responsible for extensional fabrics (see 

text); (e) Peak 5167, east side of Gangotri valley. Possible fault boundary between Bhairongathi granite and the Tethyan 

sediments, tentatively correlated with the upper boundary of the leucogranites as shown in Figure 2.7b. 
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However, the characteristic erosion style of rounded valleys and smooth hillsides in 

contrast to the sharp valleys of the HHCS suggests that Tethyan sediments lie to the 

north of Ghastoli. Heim and Gansser (1939) report leucogranite, capped by garnet- 

bearing schists, at the end of the Satopanth valley to the west of Mana and also suggest 

that the meta-sediments of the TSS outcrop to the north of Ghasotli. Float from the 

Arwa valley, which has a very restricted drainage, also contains kyanite overgrown by 

cordierite. 

In the upper unit in the Dhauli river the dominant lithologies are a dis-harmonically 

folded gneiss (Figure 2.13b) and biotite-gneiss, both with minor calc-silicate. Many 

cross-cutting leucogranites and pegmatites occur from 3km above the quartzites until 

the fault at Malari. In the vicinity of Bhapkund anatectic migmatites can be found with 

leucogranitic segregations and abundant sillimanite and K-feldspar (Figure 2.13c). Just 

behind Malari a small, highly deformed, leucogranitic intrusion can be found. 

The gneisses of the upper unit in both the Alaknanda and Dhauli valleys contain garnet 

+ plagioclase + quartz + biotite ± tourmaline ± muscovite ± fibrolitic sillimanite ± K- 

feldspar with only one sample containing staurolite inclusions in garnet and another 

with kyanite inclusions in plagioclase. The sillimanite either forms parallel to the main 

foliation or as aggregates and is often retrogressed to unoriented muscovite (Figure 

2.13d). Further up section, around Jelam, sillimanite and biotite form the fabric (Figure 

2.14a) but there is still some retrogressive muscovite. In the Alaknanda valley some of 

the small leucogranite intrusions (Figure 2.13a) containing tourmaline and garnet, are 

cross-cut by sillimanite fabrics (Figure 2.14b). 

Sillimanite throughout the upper HHCS shows an extreme variation in style. It is 

predominantly fibrolitic but in some samples the fibrolite aggregates appear to be 

forming prismatic sillimanite. Sillimanite is often preserved in the cores of muscovite 

which form at an angle to the main foliation defined by biotite (Figure 2.13d). In other 
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samples fibrolite is intergrown with biotite (Figure 2.14a). Sillimanite is more abundant 

in the Dhauli valley than elsewhere in Garhwal. Furthermore there appears to be a 

pattern to the sillimanite fabrics in the upper unit of the HHCS in the Dhauli, whereby 

sillimanite intergrown with biotite increases in abundance towards the fault at Malari 

but is retrogressed to varying degrees throughout. Sillimanite is almost always fabric- 

forming and cross-cuts garnets (Figure 2.14c). 

The upper unit of the HHCS in the Dhauli valley shows a complicated metamorphic and 

deformation history and the relationship between the various events is poorly 

constrained. S1 is occasionally preserved in garnet cores as an inclusion fabric. Mta 

resulted in the primary assemblage which may have reached kyanite zone. The 

formation of small melts may have resulted from the first metamorphic event (MIb). The 

whole of the upper HHCS is pervasively deformed, producing isoclinal folds with an 

axial planar schistosity. Deformation certainly continued post-porphyroblast growth 

with the development of a strong fabric. In both the Dhauli and Alaknanda valleys late 

C fabrics, cutting the main foliation, indicate top-to-the-south shear. 

In thin section and hand specimen the primary assemblage of garnet and plagioclase is 

cross-cut by sillimanite-forming fabrics in both the Dhauli and the Alaknanda valleys. 

Sillimanite more pervasive in the Dhauli valley. M2 sillimanite stretching lineations in 

the Dhauli valley rotate from NNE to almost ENE, perpendicular to the fault at Malari 

(Figure 2.11), and shear fabrics containing sillimanite often demonstrate a top-to-the- 

northeast/east sense of movement. Whether sillimanite formed during top-to-the- 

north/northeast shear, or formed during top-to-the-south/southwest directed shear and 

was subsequently rotated is not clear. 

The isoclinal folds are cut by and thus predate the post-M1 top-to-the-south and top-to- 

the-northeast shearing, but the relative timing of the top-to-the-south and top-to-the- 

northeast deformation as well as the relative timing of M1 and isoclinal folds is 
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unresolved. However, the presence of extensional shears on the margins of undeformed 

pegmatites (Figure 2.14d) suggests that the extensional top-to-the-northeast fabrics 

formed late in the history of the upper-HHCS but as yet no clear cross cutting 

relationship has been found between the two fabrics either in hand specimen or thin 

section. The source for the pegmatites and leucogranites that occur north of Malari as 

well as the much larger plutons in the Bhagirathi and Alaknanda valleys is not clear. 

Folded anatectic migmatites, restricted to the Dhauli valley, contain sillimanite + K- 

feldspar overgrown by muscovite which is itself deformed; yet the dykes and plutons 

show very little deformation. Given both the deformation history and the small size of 

the anatectic migmatite outcrop it is likely that the source for the large leucogranite 

bodies near Malari is still unexposed. 

Malari fault 

The fault passing through Malari and Kailash Pur juxtaposes the very low-grade TSS 

against the high-grade gneisses and leucogranites of the HHCS. It is represented by a 

zone of brittle deformation from -200m to <20m wide comprising slivers of both 

footwall and hanging wall. The change in lithology either side of the fault can be clearly 

distinguished in the mountains around Malari, from the jagged peaks and sharp valleys 

of the HHCS to the more rounded valleys of the Tethyan sediments. Shah and Sinha 

(1974) consider the granites found just north of Malari to be intruded into a small sliver 

of the Martoli formation (Tethyan sediments) which has been considerably truncated by 

the fault. No intrusive contacts for the granite were found and, given the poor nature of 

the outcrop in the proximity of the village, it is not possible to confirm or deny this 

hypothesis. 

In the vicinity of Malari the fault is near vertical and trends at -330°N. It has been 

related to the Dar-Martoli fault or the Malari thrust (Valdiya, 1988). Evidence of normal 

movement to the ENE is principally derived from the presence of S-C fabrics in the 
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gneisses of the HHCS. Additionally the sillimanite lineations rotate to perpendicular 

with the fault (Figure 2.11). 

2.4.3 Tethyan sediments 

The Tethyan sediments to the northeast of Malari along the Girthi Ganga range from 

Precambrian to Cretaceous in age (Shah and Sinha, 1974) and comprise shales, green 

quartzites, fossilliferous limestones and conglomerates. The entire sequence is affected 

by numerous small faults and folds. Cross bedding and grading indicate that many of 

the beds have been overturned while numerous shear indicators attest to the pervasive 

low-grade deformation. Shah and Sinha (1974) suggest that the Martoli formation, 

comprised of phyllites and greenish sandy slates, is unconformably overlain in the 

vicinity of Malari by the Ralam formation, a sequence of conglomerates with a quartzite 

matrix. Given the deformed nature of the outcrops behind Malari and the limited access 

allowed to the author, it was not possible to confirm this suggestion and large-scale 

variations in dip seen in the area north of Malari may equally be the result of faulting. 

2.5 Summary for the Garhwal Himalaya 

The deformation and metamorphic history of the Garhwal Himalaya are summarised in 

Figure 2.15. The area has been split into four tectonostratigraphic units which show. 

distinct structural, metamorphic and lithologic characteristics. 

The MCTZ in all three valleys consists of augen gneiss, amphibolites, quartzites and 

mica schists with intrusive and tectonic boundaries and may contain slivers of HHCS 

gneisses. Early fabrics are overgrown by syn-kinematic assemblages of up to lower 

amphibolite facies which have been subsequently sheared and weakly retrogressed to 

greenschist facies. The MCTZ is highly sheared throughout and the dominant transport 

direction is consistently S-SW. Given the relatively simple history it is plausible to 

suggest that the deformation and metamorphism is the result of a single S to SW- 
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Chapter 2 Field Relations 

directed thrusting event during the Himalayan orogeny. 

The upper boundary to this zone of deformation in both the Bhagirathi, Alaknanda and 

Dhauli valleys is the MCT, an enigmatic thrust locally called the Vaikrita Thrust which 

separates the MCTZ from the gneisses of the HHCS. An early randomly oriented 

metamorphic assemblage of garnet and kyanite has been deformed, with the possible 

development of secondary kyanite or sillimanite, and partially retrogressed with 

overgrowths of muscovite and biotite. Structurally, the basal HHCS contains isoclinal 

folds with a well-developed axial planar schistosity which has been deformed in top-to- 

the-south shears (D2). The relationship of these folds to the metamorphism is not clear 

and they may predate garnet and kyanite growth. The basal-HHCS in the Dhauli also 

contains zones of mylonitic deformation. Despite the differences between the basal- 

HHCS and the MCTZ, it is probable that south-directed shearing occurred 

simultaneously with that in the MCTZ; i. e. D2 in the MCTZ is simultaneous with D2 in 

the basal-HHCS. 

Above the basal HHCS the valleys differ greatly with a large thickness of quartzite 

separating the basal-HHCS from the upper gneisses in the Alaknanda and Dhauli 

valleys, whereas the HHCS is superseded by the Harsil formation in the Bhagirathi 

valley. However, in all three valleys the transition is from coarse gneisses to 

metamorphic rocks with sedimentary protoliths. While it is possible that the middle and 

upper HHCS in the Dhauli and Alaknanda valleys are equivalent to the Harsil formation 

they have distinct differences in crystallinity, deformational history and extent of 

metamorphism - implying a more pronounced reworking of the upper HHCS in the 

Dhauli and Alaknanda. 

The Harsil formation and the upper HHCS in the Alaknanda-Dhauli section may both 

have been characterised by the assemblage garnet + staurolite + kyanite but in the 

Alaknanda and Dhauli staurolite and kyanite have been replaced by biotite and 
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muscovite. The Ml assemblage in both areas overgrew a pre-existing fabric and grew 

syn-kinematically. In the Alaknanda early metamorphism may have resulted in crustal 

anatexis, as shown by deformed leucogranites. In both valleys post Ml deformation 

wrapped the early porphyroblasts. 

Sillimanite growth in the upper-HHCS is complicated but clearly postdates the main 

metamorphic assemblage in both the Alaknanda and Dhauli and was subsequently 

retrogressed to muscovite late in the deformation history of the rocks. Anatexis of the 

crust and intrusion of leucogranites occurred late in the history of the units and in the 

Dhauli valley some may have occurred during top-to-the-north-east extension. 

As for the upper-HHCS, deformation continued after Ml in the area of Harsil. However, 

there is no sign that anatexis occurred. In the eastern exposures of the Harsil formation 

M1 assemblages were overprinted by cordierite, indicating a high-T and low-P event as 

seen in calc-silicates in the Alaknanda valley. The high-T and low-P event is unlikely to 

have been caused by the intrusion of the leucogranites due to their small size. It is more 

likely to be the result of rapid decompression of an already hot sequence of rocks. 

However, the relationship between this metamorphism and the extensional top-to-the- 

northeast deformation - which would result in decompression - is, as yet, unclear. 

Z6 Discussion 

2.6.1 The Main Central Thrust: how is it defined and where is it? 

Across the whole orogen lithological, structural and metamorphic criteria have all been 

used by different authors to define the MCT in the field. However, difficulty arises 

when the boundaries chosen do not coincide and attempts are made to correlate from 

one "MCT" defined by certain criteria to another "MCT" defined by others. Indeed the 

lithological boundaries may control the metamorphic and structural styles. These 

problems become acute when discussing models for inverted metamorphism. 

Timing ofprograde metamorphism... C. L Prince 61 



Chapter 2 Field Relations 

Resolving this difference is key to some models of the evolution of the orogen. 

Implicitly the term "Main Central Thrust" has been used to distinguish one fault in the 

whole of the geographic Himalaya as the principal plane of transport bringing the high- 

grade rocks into contact with lower grade rocks. However, even a cursory study of the 

HHCS, MCTZ and the LH indicates that the entire sequence underwent significant 

shear and that transport of material occurred throughout: it is unlikely that it was 

restricted to any single definable fault. A detailed structural study within the MCTZ in 

the Garhwal Himalaya to the west of the Bhagirathi indicates that shear was 

concentrated towards but not restricted to individual thrusts (Jain and Anand, 1988). As 

long as no thorough structural analysis of the shear distribution in the valleys of interest 

has been undertaken, it is probably impossible to pin-point the zone of greatest transport 

and thus name it the main central thrust. 

In the Alaknanda and Bhagirathi valleys, field definitions of the MCT are relatively 

simple as there is a distinct lithological and structural boundary between the foliated 

biotite gneisses of the basal HHCS and the highly sheared schist, augen gneiss and 

quartzites of the MCTZ. The metamorphic criteria are less unequivocal but the MCT 

coincides loosely with the kyanite-in isograd in the Bhagirathi, Alaknanda and Dhauli 

valleys. Given the lithological difference across the field-mapped MCT, it is likely that 

deformation would be concentrated in the schists below. Furthermore, ignoring the fine 

detail of the Nd isotope systematics of the rocks in the MCTZ, it is clear that the bulk of 

the HHCS in Garhwal had a distinct protolith source region from some MCTZ rocks 

and the Lesser Himalaya. Therefore the MCTZ, as presently defined, is likely to be the 

upper boundary for the zone responsible for the transport of the crustal rocks of the 

HHCS over the Lesser Himalaya - and as such responsible for a significant proportion 

of the shortening since collision. 
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2.6.2 High Himalayan Crystallines and Tethyan sediments 

In a structural and P-T analysis of the Bhagirathi valley Metcalfe (1990) did not study 

the Harsil formation in detail as the Jhala Normal Fault (JNF) was thought to bring low- 

grade metasediments in contact with the sillimanite zone rocks of the HHCS. Therefore, 

the rocks above the "JNF" were part of the TSS and not related to, or containing 

information about, the metamorphic portion of the Himalayan orogeny. The JNF was 

thus correlated with the Southern Tibetan Detachment System found elsewhere in the 

Himalaya (e. g. Burchfiel and Royden, 1985; Herren, 1987). This causes geometric 

difficulties when one attempts to link the fault bounding the High Himalayan 

Leucogranites in the Gangotri area with the JNF. In contrast this work, carried out in 

two field seasons and guided by other workers (Jain et al., 1995), found examples of 

high-grade metamorphic assemblages in the Harsil formation. Field work carried out by 

the author and others failed to find any convincing structural evidence for a large 

normal fault in the vicinity of Jhala, although some minor faulting was found. Given the 

field evidence, the Harsil formation cannot be considered as low-grade to 

unmetamorphosed Tethyan sediments. If the Harsil formation is considered continuous 

across the Gangotri region as a formation in its own right, the mapping of the area is 

simplified in that outcrops of schists around Gaumukh, can be correlated along strike 

with the rocks around Harsil (as proposed by Pecher and Scaillet (1989)). 

The Harsil formation contains high-grade assemblages and is thus, based on the 

arguments presented above, part of the HHCS. Yet the Harsil formation is clearly 

sedimentary in origin and retains pre-Himalayan intrusive relationships. The same is 

true for the middle and upper units of the HHCS in the Alaknanda and Dhuali valleys 

which are quartzites and high-grade metasediments respectively. The author, therefore, 

tentatively correlates the base of the Harsil formation in the Bhagirathi section with the 

base of the quartzites in the Alaknanda-Dhuali section. 
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Moving up through the sequence, the Harsil formation in the Bhagriathi valley is 

intruded by leucogranites emplaced during extensional top-to-the-north shear movement 

(Searle et al., 1993; Scaillet et al., 1995). Any extensional shear is likely to have been 

concentrated on the boundaries of the leucogranites and specifically lie on the upper 

boundary of the leucogranites with the schists above as shown on Figure 2.2. The STDS 

would thus mark the boundary between the Harsil formation and the "Tethyan 

sediments", represented by the "black shales" on the peaks of the mountains (Figure 

2.8b). 

However, several other lines of evidence suggest, in fact that the Harsil formation is 

continuous with the "Tethyan" sediments above the leucogranites. Firstly the 

metamorphic grade of the rocks does not change dramatically upwards through the 

leucogranites as garnet schists have been reported from above the leucogranites in the 

Satopanth valley (Heim and Gansser, 1939) and staurolite has been reported in the 

schists above the leucogranites at Gaumukh (Stem et al., 1989). Below the leucogranites 

the pelites are also staurolite-kyanite grade schists. Secondly, the outcrop pattern of the 

intrusion in the Kedar Valley (Scaillet et al., 1995) shows that little disruption of the 

rocks occurred and that, therefore, there is a continuous sequence from the Harsil 

formation below the leucogranites to the TSS above the leucogranites. 

If the STDS does form the roof of the leucogranites then it does not juxtapose 

unmetamorphosed sediments against high-grade gneisses as elsewhere in the Himalaya. 

Also the distinction between Harsil formation (part of the HHCS) and TSS is arbitrary 

and it is only the fortuitous juxtaposition of low-grade material against high-grade 

material by normal faults that allows the distinction to work in most situations. 

Therefore, it is possible that the Harsil formation and Tethyan sediments in the Gangotri 

region represent a complete, right way up metamorphic sequence which has been 

disturbed by limited north-directed shearing and leucogranite intrusion. Mapping the 
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STDS as a single fault is a simplification and in greater detail it is likely that the 

extensional faulting is distributed through either broad shear zones or on multiple faults. 

Nevertheless the above arguments still stand as to the relationship between the Harsil 

formation and the Tethyan sediments. 

This hypothesis, of a continuous sequence from HHCS (Harsil formation) to the TSS, is 

supported by mapping of the area to the east of the Dhauli and to the north of Nanda 

Devi, in which the Malari fault is shown to cut E-W through the Tethyan sediments 

which have a non-tectonic boundary with the HHCS (Valdiya, 1988). 

Thus the normal faulting which is part of the orogen wide Southern Tibetan Detachment 

System is not necessarily the boundary between high-grade and unmetamorphosed 

sediments. This may account for the gradational change in the Lhozhag-La Kang area of 

southern Tibet, where the upper-amphibolite injection complex rocks of the HHCS 

appear to have no structural or metamorphic discontinuity with the Tethyan Mesozoic 

sediments above (Burchfiel et al., 1992), although the isograds are foreshortened. This 

hypothesis could be tested using geochemical comparisons between metasediments of 

the HHCS and unmetamorphosed sediments of undisputed Tethyan sediments and by 

structural analyses in areas where the STDS is postulated to lie in the Tethyan 

sediments. One place where this appears to occur is to the north of Nanda Devi 

(extremely inaccessible) or possibly in the Kumaon Himalaya along the Goriganga 

valley, where mapping suggests that the HHCS grade into the Tethyan sediments and 

that there is no tectonic break between them (Heim and Gansser, 1939; Thakur and 

Choudhuri, 1983). 

2.6.3 Normal Faulting, where is it, and does the "Jhala Normal Fault" exist? 

In the Garhwal region normal faulting has two contrasting styles - the Malari fault and 

the fault bounding the leucogranites in the Gaumukh area - both of which share features 

of the STDS as seen elsewhere along the orogen. 
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in the Caumukh area. other workers have consldctcd normal faulting to occur above dw 

lcucogtanitcs or the Cangotti area (Scatic ct at.. 1993: Scaillct ct at.. 1995). 

Unfortunately the normal movement is mostly constrained by the geometry of the 

Icucogranlics and some shcatcd icucogranitc dykes (Searle ct Al.. 1993: Scaillct ct al.. 

1995). Searle ct al. (1993) rcpnrts top-to-tim-NNE S-C fabrics conccntratcd around the 

Icucogrnnitc Intrusions as weil as open folds with vertical axes striking at 133'N behind 

the IIhagirathi peaks in the Chaturangi glacier. Interpreted as the result of gravitational 

collapse. 

Work prescntcd hcre suggcsts that the main foliation to the cast of Gaumukh was 

deformed as a result of north-dircctcd shearing. 1'1w relationship of this north-dircctcd 

shearing to any single structure is not well constrained but two possible faults exist: i) a 

fault Identified In the eastern sidc of the Raktvarn valley (Figure 2.14e) which is 

orientated similar to the kink axes and the N-verging (old axes and has garnet-schists in 

its footwall; ii) the postulated fault above the lcucogranites. Additionally. field evidence 

suggests that on the north side of the Raktvarn valley a (lat"1)ing fault juxtaposes the 

biotitc-granite and mctasedimcnts (Figure 2.141). although this has not been property 

identified because of the altitude of the exposure. This fault may be the continuation of 

the fault bounding the Icucogranitcs (Figure 2.8b and figure 2.2) and would be simile. 

In orientation, to the shallow dipping STDS in Nepal. although the grade change across 

it is not as significant as described In section 2.6.2. 

In contrast, the position of the fault in the Dhault valley is not in doubt and the structural 

style and metamorphic grade change is very different from the faulting in the Ciaumukh 

area. }acre the fault is a stccply dipping brittle feature which produced ductile 

deformation in its footwall. Hot springs can be found along its length and rocks on 

either side demonstrate a large metamorphic grade change from siilin nitc zone to sub- 

grccnschist Packs with brittle deformation in a wide zone betwccn. 'The grade change Is 
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similar to that found in most of the Nepalese STDS sections (ilurchficl ct a1., 1992) and 

to the Zanskar shear zone (1Icmn, 1987). f iowcvcr, the fault at Malart is much steeper 

than elsewhere and the movement on the fault (NI. 4) it different from that inferred in 

the ßaumukh area (N). It is intriguing that the orientation of the Malars fault i3 similar 

to the Ciangotri fault postulated to lie between the 13hagirathis and Shivling (Figure 2.2) 

and may represent a different tectonic regime from the normal fault above the 

leucogranites. 

2.64 and finally. 

The rocks of the IIIICS, the h arsil formation and the M CM show a complicated 

history of igneous activity. metamorphism and deformation. This is clearly 

demonstrated by the intrusion of granites. thought to be -550 bta, Into the h arsil 

formation as well as by the Igneous relationships in the IIIICS and MCIZ It is. 

therefore. probable that the development of some of the structural and metamorphic 

features relates to events that predate the collision of the Indian and Asian plates. This 

may account for some of the fabric relationships described above. 

Even for events that are clearly Himalayan in age many features remain ambiguous, 

such as the relationship between the decompression events in the Gaumukh area 

(cordierite coronas) and the compressional events In the Ilarsil area or the relative 

timing of the sillimanite fabrics and anatexis In the Dhaull valley. To constrain these 

requires not only chronometric information but also detailed structural and petrographic 

studies of the area. 

One of the more intractable problems remains the nomenclature of the 

tectonstratigraphic units and fault systems which prevents effective communication 

between geologists working on the same areas and/or processes. For example. of the 

three principle studies of the Uhagirathi valley (this study, Pechcr and Scaillet. 1989: 

Metcalfe. 1990) there are three different boundaries for the itarsil formation and two 
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different boundaries for the MCT. Given the complicated nature of the outcrops, the 

logistical problems and the difficulty in field mapping at 1: 150000, this may take some 

time to resolve. With this taken into account the author freely admits to 

oversimplification and in his desire to see order may have created it where there was 

none. 
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In the previous chapter several tectonostratigraphic units were identified within the 

Garhwal Himalaya, each with different metamorphic and structural histories. 

Specifically these are the Main Central Thrust Zone (MCTZ), the high Himalayan 

Crystalline Series (HHCS) and the Harsil formation. In the Alaknanda the HHCS was 

further subdivided into the basal-, mid- and upper-HHCS. One aspect of particular 

interest is the inverted metamorphic field gradient, based on index minerals: (i) within 

the MCTZ, from chlorite zone to staurolite zone, and (ii) from the basal-HHCS to the 

upper-HHCS in the Alaknanda and Dhauli and the less distinct inversion in the 

Bhagirathi between the HHCS and the base of the Harsil formation. In the Bhagirathi 

this takes the form of a transition from kyanite zone to sillimanite (fibrolite) zone at the 

base of the Harsil formation with only limited fibrolite development elsewhere. In the 

Dhauli and Alaknanda there is major development of fibrolite in the upper-HHCS and, 

in contrast to other areas of the Himalaya, only a few outcrops of K-feldspar + 

sillimanite bearing migmatites (restricted to the Dhuali valley). Throughout this chapter 

"metamorphic field gradient" will refer to the exposed sequence of index minerals and 

"temperature or pressure field gradient" will refer to PT estimates obtained from 

exposed assemblages. 

While it is possible to identify different metamorphic assemblages and structural styles 

it is important to quantify the depths and temperatures the rocks were subjected to in 

order to constrain the movement of heat and material during orogenesis. The various 

approaches to this problem depend upon correlating the mineral assemblages in the field 

to known mineral relationships determined experimentally. At present there are many 

different methods for relating experimental and theoretical data to the natural system 

although in all cases there are necessary simplifications. 
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The aim of this chapter is to constrain the pressures and temperatures in the Garhwal 

Himalaya and, perhaps more importantly, the pressure and temperature differences 

within and between different lithotectonic units. To this end PT estimates obtained 

along the Alaknanda and Dhauli valleys will be presented followed by pseudosections 

determined for rocks from the MCTZ, HHCS and Harsil formation. First, however, a 

brief description of the different methods used for PT determinations, along with their 

advantages and inconveniences, is presented below. 

3.1 PT Methods 

Many different methods have been used to extract P and T information from 

metamorphic rocks in the Himalaya and it is worth briefly describing the methods, their 

advantages and drawbacks here. In the case of all the methods described below, the 

same basic thermodynamic dataset for mineral phases can be used. In the last 10 years a 

number of internally-consistent databases have become available (e. g. Berman, 1988; 

Holland and Powell, 1998) and all the work described here uses that of Holland and 

Powell (1998). 

9 Petrogenetic grids represent the earliest method of determining P and T and are 

the familiar basis for the interpretation of metamorphic assemblages. With a 

combination of experimental equilibria, petrological observations and simple rules 

the phase relationships for different minerals in a model compositional system can 

be obtained. Such methods usually model a limited chemical system, such as 

KFMASH (K, Fe, Mg, Al, Si, H20), and predict the phase relationships between 

minerals in that system. Such grids can be used to: (i) relate mineral assemblages 

to specific PT conditions and; (ii) interpret reaction textures from poorly 

equilibrated systems. 

0 Specific calibrated equilibria or so-called "conventional" barometers and 
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thermometers are based on experimental calibrations of individual equilibria 

among phases that are common in metamorphic rocks. Examples include the Fe- 

Mg exchange thermometer between garnet and biotite (e. g. Ferry and Spear, 

1978) and a number of mass transfer\Ca exchange equilibria involving garnet and 

plagioclase commonly used as barometers (e. g. Newton and Haselton, 1981). 

Equilibria which are steep in PT space make good thermometers and those which 

are shallow make good barometers. One potential pitfall of this method is that the 

effective blocking temperatures for different equilibria may vary, such that the Fe- 

Mg exchange between garnet and biotite may only cease below 550°C whereas Ca 

exchange would be expected to close at a higher temperature as it depends on the 

net transfer of material rather than diffusional exchange. Indeed it has been 

suggested that this may explain the isothermal profiles obtained elsewhere in the 

Himalaya (Vannay and Grasemann, 1998). Additional difficulties arise from the 

great difference in temperatures obtained using different calibrations, differences 

that appear to be largely due to uncertainties and imperfections in the activity 

models for complex mineral phases. 

Thermocalc is a program with the facility to examine all the independent 

equilibria recorded by the assemblage of a given rock (Powell and Holland, 1994; 

Powell et al., 1998) and uses the internally-consistent database of Holland and 

Powell (1998). It then calculates a best-fit pressure and temperature defined by the 

overlap in P-T space of all these reactions. The additional advantage of 

Thermocalc is that it weights the importance of each reaction according to both 

uncertainty in the thermodynamic dataset and uncertainty in endmember 

activities. The intersection of the independent reactions is calculated using 

average PT (avPT) and the statistical fit of the point in PT space to all the 

reactions allows the estimation of realistic errors. Additionally disequilibrium 
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mineral phases can be identified by dramatic improvements in the fit resulting 

from their omission. The method is discussed in more detail below and in 

Appendix B. 

" Pseudosections. Petrogenetic grids correspond to all compositions in a specific 

model compositional space (e. g. KFMASH) so that all reactions for all sub-bulk 

compositions are calculated. In many cases, a specific bulk composition will not 

encounter some of the reactions and stability fields (e. g. low Al pelites may not 

develop aluminosilicates even though the rock reaches PT conditions where they 

are stable). However, given a sufficiently large compositional system and 

internally consistent datasets (e. g. Powell et al., 1998), the mineral assemblage 

and their compositions can be accurately predicted for a specific bulk 

composition. Pseudosections produced in this manner can be used in a similar 

way to petrogenetic grids for interpreting reaction textures or inclusion 

assemblages and have the added advantage of predicting mineral compositions 

which can be used, for example, to interpret garnet compositional zoning. This is 

a potentially powerful method for interpreting metamorphic rocks, especially for 

high variance assemblages in which the compositional contours can be used to 

better constrain PT. Such an approach has been used successfully in the Zanskar 

Himalaya (Vance and Mahar, 1998). Pseudosections have the additional 

advantage, shared with any phase diagram based approach, of portraying the 

phase relationships in a wide area of PT space so that inter-relationships between 

different stability fields can be visualised. 

All the above approaches assume that the mineral assemblages are in equilibrium, 

although petrogenetic grids and pseudosections can be used to interpret disequilibrium 

textures. It is clear, however, in almost all samples in the Garhwal Himalaya that 

equilibrium is rare - especially when taking into account that garnet zoning is a 
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disequilibrium feature. This may result in the use, in exchange reactions, of mineral 

pairs which have never been in equilibrium or, for pseudosections, the calculation of 

mineral assemblages based on incorrect determinations of the effective bulk 

composition. While calibrated mineral equilibria cannot be readily assessed for 

equilibrium, multiple mineral equilibria methods using internally consistent data sets 

often highlight suspect data. 

A second problem is that the different methods do not always give consistent results for 

the same mineral data and it is impossible to be sure which is more accurate. 

Furthermore many exchange reactions quote errors significantly less than the variation 

between the different calibrations. To circumvent this problem many authors use a 

single set of calibrated reactions so that the relative PT can be better estimated. 

Lastly it is usually assumed that the extant assemblage and mineral compositions 

represent the peak conditions obtained by the rock. However, as previously mentioned 

many of the exchange reactions in a rock may not stop at the peak if sufficiently high 

temperatures are maintained. While this problem is not resolvable with any of the 

present methods, it may limit the accuracy and precision of many of the methods 

described above. 

Two of the advantages of Thermocalc are that it determines realistic errors for PT 

estimates and can highlight suspect data. For these reasons it will be used consistently 

throughout this chapter and while the errors may be large, the relative errors will be 

significantly smaller and can be calculated (Worley and Powell, 1999). This chapter is 

separated into two sections: section 3.2 which will use rim thermobarometry to look at 

the PT variation along a transect across the HHCS and; 0 which will look more closely 

at the PT evolution of selected samples using pseudosections. 

3.2 Rim thermobarometry along the Alaknanda-Dhauli traverse 

PT determinations on a suite of samples (Figure 3.1) from the Dhauli and Alaknanda 
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Figure 3.1 Sample localities used for PT estimates in theAlaknanda andDhauli valley. 
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valleys have been obtained using Thermocalc. The advantage of this transect is that the 

MCT has the smallest degree of imbrication and the transect extends to the Malari fault 

(equivalent to the STDS) at the head of the Dhauli river. 

3.2.1 Analytical methods and data selection 

Mineral analyses were made using the electron microprobe at the Open University and 

the Jeol at the University of Cambridge. Analyses obtained at the University of 

Cambridge were made by Dr Judy Baker and indicated in the Appendix E. Traverses of 

garnet established the extent of intracrystalline diffusion and the development of Mn- 

rich rims - thought to represent the resorption of garnet and back diffusion of Mn 

(Vance and Mahar, 1998). Matrix minerals were analysed and, where appropriate, 

traverses taken. Biotite in contact with garnet was avoided due to the well known 

retrogressive diffusion of Fe and Mg between biotite and garnet. Selected mineral 

analyses are presented in Appendix E and a full data set is available on CD-rom by 

request. 

To ensure mineral compositions used for PT estimates approached equilibrium, garnet 

rim and matrix minerals were used. In zoned garnets for which a selection of rim 

compositions were available, the garnet rim with the lowest Mn concentration and, 

where possible the highest Fe/Fe+Mg ratio, was used. For garnets with an increase in 

Mn at the rim, the composition just within the increase was chosen, except for the 

garnets in the upper-HHCS which displayed no clear zoning pattern, in which case the 

rim values were selected. In theory this should result in the calculated P-T most closely 

approaching the thermal maximum. Muscovite analyses were compared and, where 

possible, separated into different chemical groups. Commonly there was no significant 

variation between petrologically defined groups (e. g. c-fabric muscovite, muscovite 

with sillimanite, etc. ) and in such cases the most representative analysis was chosen. 
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Where large variations occurred, low-Si and high-Na muscovite were chosen. Again 

this should lead to the P-T conditions most closely approaching peak conditions 

(Waters, 1999). Although biotite showed a consistently lower X(Fe) for c-fabric biotite 

compared to s-fabric biotite, the difference did not significantly effect the calculated PT. 

Feldspar rim values were used. Where present aluminosilicates were included. 

Activity values for use in Thermocalc were calculated using non-ideal solutions with the 

mineral recalculation program Ax98. The calculated activities are, however, sensitive to 

the temperature at which they are calculated. To constrain the appropriate temperature 

to use for activity calculation an initial estimate was entered into Thermocalc. The 

resulting calculated temperature was then reused in the calculation of the end-member 

activities in an iterative fashion until the temperature obtained from Thermocalc and 

used in the calculation of activities were within 50°C. Solid-solution models are given 

in Appendix B. Thermocalc was used in average PT (avPT) mode and a sample 

Thermocalc output and a description of how Thermocalc determines PT and errors is 

provided in Appendix B. 

Pressure and temperature estimates using Thermocalc are often highly sensitive to water 

activity as many of the independent reactions involve dehydration. However, there is no 

readily accessible way of determining water activity in the rocks of interest. A priori the 

rocks in the Garhwal Himalaya are likely to have been fluid saturated and have had a 

water activity of unity. This is because the rock protoliths are pelitic and quartzitic 

sediments and other fluid sources, such as carbonates (CO2), are limited. Therefore the 

PT traverse presented below is calculated assuming water saturation in all the samples 

unless otherwise stated. The problem of water activity is, however, discussed further in 

section 3.2.3. 
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Figure 3.2 Pressure and temperature profiles along the Dhauli and Alaknanda calculated from mineral equilibria 

using Thermocalc. Data are separated into lithotectonic units described in Chapter 2; MCTZ (blue diamonds), basal- 

HHCS (pink squares), mid-HHCS (brown circles) and upper-HHCS (yellow diamonds). Samples from the Alaknanda 

have black fills. Horizontal distances are measured from the base of the MCTZ (Munsiari thrust). The Vaikrita 

thrust/MCT is marked and the position of the Malari fauldSTDS (80 km) is taken from the Dhauli valley. 

3.2.2 Results 

The results of average PT calculations are presented in Figure 3.2, plotted against the 

horizontal distance from the Munsiari thrust (base of the MCTZ), and in Figure 3.3, 

plotted against the principal solidii for crustal rocks and aluminosilicate stability fields. 

There is a maximum uncertainty of ±l km on horizontal distances but relative positions 

are correct. Samples are grouped into lithotectonic units as shown on Figure 3.1. All PT 

estimates satisfy the "fit" i. e. the errors represent 95% confidence levels. There are four 

principle observations from the traverse data: (i) there is an increase in P and T towards 

and over the MCT with the maximum recorded above the MCT; (ii) there is a constant 
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T up section from the MCT to the fault at Malari; (iii) there is a decrease in P up section 

from the maximum above the MCT to the fault at Malari; (iv) there is often a large 

variation in recorded PT between samples at the same locality. 

The first observation is that the calculated profile is consistent with the observed 

"inverted" metamorphic field gradient: the occurrence of sillimanite at the top of the 

slab is the result of high temperatures and low pressures. Secondly the temperatures are 

consistently higher, by almost 150°C, than those obtained by Hodges and Silverberg 

(1988) using pelitic thermobarometers along the same sections. As discussed previously 

this is likely to be a result of the different mineral-activity models used in different 

calibrated equilibria aswell as different analytical techniques. Indeed Hodges and 

Silverberg (1988) use analyses obtained from garnet rims, these are likely to have been 

affected by retrogression and hence will record a lower temperature than the inner rims 

used here. However, the important feature is that the relative thermobarometry is 

similar: both record an almost isothermal profile with a decrease in pressure of 

-600MPa (6 kbar) from just above the MCT to the Malari fault. PT estimates by 

Metcalfe (1993) in the Bhagirathi also show a similar, although less well-defined, 

pattern with a peak in P and T just above the MCT and a near isothermal profile of 

--600°C and an isobaric profile of -7.5 kbar in the HHCS. Thus although absolute 

temperatures and pressures differ the relative profiles obtained by different authors and 

different methods are reassuringly similar. 

In addition the thermal profile obtained across the MCT and in the HHCS is similar to 

that obtained by Hubbard (1989) along the Dudh Kosi and Hinku-Hongu transects in the 

Everest section of Nepal (see Figure 3.4 below). The pressures, however, differ as the 

peak in Nepal lies at the base of the MCTZ and drops consistently up sequence. The 

almost isothermal profiles in the HHCS found in Garhwal and Nepal are also similar to 

transects in the Sutlej Valley to the west (Vannay and Grasemann, 1998), the Manaslu 
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section, Nepal (Hodges et al., 1988) and the Langtang section, Nepal (Macfarlane, 

1995). These profiles have had a variety of explanations which are discussed below. In 

interpreting and comparing these results it is important to bear in mind that, in the 

authors opinion, there are two distinct "inverted" metamorphic field gradients - the first 

in the HHCS up to the STDS and the second within the MCTZ and into the basal- 

HHCS. 

14 

12 

ca 0 Y 
j i0 

7 
N 
N 

O_ 8 

6 

4 

55 

50 

45 

40 0 
CD 

35 
3 

30 

25 

20 

15 

450 550 650 750 850 
Temperature (°C) 

Figure 3.3 PT estimates from Figure 3.2 plotted in PT space. Line (1) represents the wet-melting solidus of Le Breton 

and Thompson (1988). Line (2) represents muscovite-melting solidus of Petö (1976). Line (3) represents the high- 

temperature dehydration-melting solidus for a kyanite-Zone metapelite from the HHCS of Langtang, Nepal (Patino 

Douce and Harris, 1998). Other symbols as for Figure 3.2. 

Figure 3.3 shows the data plotted in PT space with the wet-melting solidus of Le Breton 

and Thompson (1988), the muscovite-melting solidus of Petö (1976) and the high- 

temperature dehydration-melting solidus of Patino Douce and Harris (1998). Samples 

from the near the MCTZ show the greatest variation in temperature, lying on both the 

lower and higher T sides of the wet-melting solidus. The data from the basal-HHCS lie 

predominantly at higher temperatures than the wet-melting solidus but beneath the 

dehydration-melting solidus. 
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The last two groupings, the middle- and upper-HHCS, also lie above the wet-melting 

solidus of Le Breton and Thompson (1988), at similar temperatures to the basal-HHCS 

samples but below the experimental curve for dehydration-melting of a metapelite from 

the HHCS of Langtang, Nepal (Patino Douce and Harris, 1998). 
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Figure 3.4 Data and diagrams from Hubbard (1989). Thermobarometric results from the Dudhh Kosi and Hinku- 

Hongu transects plotted versus structural distance above the kyanite isograd. Error bars indicate two standard 

deviation precision. (a) Temperature data with fifth order polynomial fit to data from the MCT zone and lower 

Tibetan Slab (HHCS). (b) Pressure data with straight line fit to data from the MCT zone and lower Tibetan slab 

(slope -28MPa/km). 

Figure 3.3 further emphasises the consistency of these PT estimates with the "inverted" 

metamorphic field gradients: all the samples with sillimanite (fibrolite) lie within the 

sillimanite stability field and as such are simply the result of high-temperature 

equilibration at low pressures. Thus there is no thermal inversion but merely an 
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isothermal field gradient accompanied by lower pressures at higher levels. This, 

nevertheless, still poses some difficulties since temperature estimates for a crustal slice 

should record both decreasing pressure and temperature towards structurally higher 

levels. 

3.2.3 Effect of water activity 
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containing aH2o sensitive reactions (e. g. 

Vance and ONions, 1992) the aH20 in 
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However, the potential effect water 

Figure 3.6 Change in the 'fit" parameter and temperature from activity has on the PT estimates can be 

Thermocalc with changing aH2c The minimum in fit occurs at evaluated by using an arbitrary range 
X(H20)=0.4 yielding a temperature of -600'C. 

of values aH2o. In Figure 3.5 the same 

mineral assemblages as for Figure 3.3 have been recalculated with an aH20 of 0.4. This 

results in a marked decrease in the temperature estimates of -100°C bringing many of 
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the samples out of the wet-melting field. The temperature decrease also results in a 

decrease in the pressure estimates (- 1.3 kbar) due to the correlation between the two. 

However, the relative changes in PT across the section are not affected. 

An alternative method can be employed to constrain water activity and involves using 

Thermocalc in much the same way as suspect data are highlighted (Vance and ONions, 

1992). This is done by minimising the "fit" by changing either; (i) water activity in 

fluid-undersaturated rocks or (ii) changing the proportion of H2O in a fluid saturated 

rock. The "fit" is a statistical measure of the intersection of the independent reactions 

calculated by Thermocalc. It is essentially a chi-squared type statistic that quantifies the 

degree to which the independent reactions that Thermocalc uses to obtain aP and T 

overlap at a single point. Specifically, it ratios the deviations of each equilibrium line in 

P-T space to the error on that line and takes a weighted average. In this sense it is 

similar to the MSWD used in geochronology. A large "fit" indicates that the reactions 

cross at widely dispersed points and a low "fit" that they all intersect in a small range of 

PT. The specific value of the "fit" that represents the cut-off for 95% significance varies 

with the number of equilibria involved but is generally 1.4 to 1.7. By varying the water 

activity or fluid proportions and monitoring the "fit", the activity which minimises the 

"fit" can be selected. 

An example is sample 017a from the upper-HHCS in the Alaknanda valley. The mineral 

phases present are garnet, biotite, muscovite, quartz, plagioclase and sillimanite. By 

varying the aH20 during calculations of average PT, the "fit" varies as do the PT 

estimates (Figure 3.6). A minimum in "fit" occurs at aH20 = 0.4 indicating that the 

calculated equilibria at that aH20 gives the closest intersection. The lower aH20 results in a 

large change in the T estimate from an aH20 of unity; for an aH20 of 1 the PT is 702 ± 

40°C and 6±1.5 kbar while for an aH20 of 0.4 the PT is 588 ±3 1°C and 5.1 ± 1.3 kbar. 
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Figure 3.7 As for Figure 3.3, PT estimates are recalculated by varying aH10 so as to minimise the statistical error. 

The results of such a process applied to all the samples in Figure 3.3 are shown in 

Figure 3.7. The samples with minimised PT at low aH20 are those most effected whereas 

those with aH20 of 1 are unchanged from Figure 3.3 This results in a closer grouping of 

the MCTZ zone samples towards lower temperatures - between 475-650°C. Three 

samples from the basal-HHCS minimise fit at low aH2O and are thus displaced to lower 

temperatures and pressures. However, the majority of samples in the basal-HHCS and 

the upper-HHCS are unchanged. 

Figure 3.8 shows the recalculated data against horizontal distance (as for Figure 3.2). In 

the traverse the changes to the MCTZ samples and the basal-HHCS result in less scatter 

in the MCTZ and, taking the upper temperature limits, a more pronounced variation 

from the MCTZ into the basal-HHCS. However, minimising the "fit" in this way also 

produces three outliers in the basal-HHCS - accentuating the variability when compared 

to Figure 3.2. The pressure profile is, however, largely unchanged. 
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Figure 3.8 As for Figure 3.2 except that the PT estima tes are recalculated by varying aH2o so as to minimise the 

statistical error. 

3.3 PT paths from pseudosections 

3.3.1 Introduction 

While average PT estimates give important information on the peak or near peak 

metamorphic conditions across the orogen, in order to constrain the interaction between 

structures, metamorphism and magmatism we need to understand the thermal evolution 

of the orogen. 

However, it is only in relatively few metamorphic rocks that the pressure-temperature 

history during garnet growth can be obtained by inclusion thermobarometry (e. g. St. 

Onge, 1987) or by comparison of the inclusion assemblage in the garnet with 
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petrogenetic grids (Vance and Holland, 1993). In the vast majority of cases, the 

preservation of inclusions is so incomplete and the variance of the inclusion assemblage 

so high that this is not possible. The approach developed by Vance and Mahar (1998) 

and used here exploits the fact that, in a given, specified, bulk composition, both the 

mineral assemblage and the compositions of individual minerals are completely 

determined for given pressure-temperature conditions. In that case, by comparing 

modelled garnet compositions across PT space to the real garnet compositions measured 

in the sample, the pressure and temperature evolution during garnet growth can, in 

principle, be obtained. Vance and Mahar (1998) have used the approach to successfully 

model, and to obtain the pressure and temperature of formation of, garnet cores. 

However, in practice, garnet growth itself alters the effective bulk composition of the 

rock so that, in general, the garnet composition outside of the core is generally not 

successfully modelled (for further discussion see Vance and Mahar, 1998). To obtain 

such pseudosections requires a thermodynamic dataset for the minerals involved, such 

as provided by Berman (1988) and Holland and Powell (1990; 1998). The latter has 

been successfully used by Mahar et al. (1997) to study the effect of Mn on the stability 

of garnet in metapelitic assemblages and by Vance and Mahar (1998) to constrain the 

PT paths for garnets from the Zanskar Himalaya. 

The following section of this chapter employs this method on three samples from 

different lithotectonic units in the Garhwal Himalaya; the MCTZ (4a3), basal-HHCS 

(G9) and Harsil formation (G135). 

3.3.2 Whole rock and major-element chemistry 

The whole rock major-element compositions for the studied rocks are summarised and 

compared to an "average" pelite (Symmes and Ferry, 1991) in Table 3.1. These were 

obtained from XRF analyses made at the Open University on 0.7g of sample (see 

Appendix Q. All the samples are richer in Si and Al than the average pelite of Symmes 
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and Ferry (1991). It is worth noting the very high Mg concentration in G135 compared 

to both the average pelite and the other samples. The important data for the 

pseudosection calculations, however, is summarised in A, X(Fe) and X(Mn) at the base 

of the Table 3.1. These values take into account the more complicated 9 component 

system used here and, therefore, have been calculated differently from conventional 

AFM diagrams. A' can be thought of as the amount of Al left after its incorporation into 

micas, plagioclase and ferromagnesian minerals and as such a large positive value 

would be reflected by the greater stability of Al-rich minerals such as staurolite and the 

Al-silicates. High values of X(Mn) promote garnet stability and lead to its growth at 

lower pressures and temperatures. 

3.3.3 Mineral chemistry 

Selected mineral data used for rim PT analyses for the three samples are summarised in 

Table 3.3 and are discussed below. 

Table 3.1 Major-element compositions of Garhwal Himalaya rocks. 

Sample G135 G9 4A3 Average Pelitel 
SiO2 61.60 68.80 64.63 59.77 
A1203 19.33 17.21 18.33 16.57 
FeO 5.97 4.54 6.10 5.88 
MgO 5.83 0.87 1.39 2.62 
MnO 0.09 0.13 0.08 0.07 
K20 1.19 3.62 3.91 3.53 
Na20 1.38 1.90 0.83 1.73 
CaO 0.17 0.60 0.58 2.17 

A'2 0.356 0.125 0.208 -0.120 
X(Fe) 0.362 0.744 0.709 0.550 
X(Mn) 0.005 0.021 0.010 0.007 

1 Average pellte composition from Symmes and Ferry (1991) 

2 Calculated from mole percent oxides as follows: A' = (A1203-3K20- 

CaO-Na20)/(A1203.3K20-CaO-Na20+FeO+MgO), X(Fe) _ 
FeO/(FeO+MgO), X(Mn) = MnO/(MnO+FeO+MgO) (Mahar et al., 
1997). 

Sample G135 is from the 

Harsil formation in the 

Bhagirathi valley at Gaumukh 

and contains the assemblage 

staurolite, kyanite, biotite, 

cordierite, quartz, chlorite, 

apatite, rutile, opaques, . 

sillimanite and muscovite. 

The fabric is defined by 

biotite and chlorite. Quartz 

and plagioclase form 

inclusion trails in kyanite and staurolite parallel to the main foliation. Cordierite appears 

to be in equilibrium with biotite and chlorite and overgrows large euhedral kyanite and 
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corroded staurolite. The cordierite is well-preserved and shows only slight retrogression. 

Muscovite is a minor component and occurs as small laths associated with cordierite. 

Sillimanite forms very small needle aggregates which have only been identified from 

their crystal habit. No garnet has been found. Plagioclase is Na rich. Ti oxides are 

present as abundant rutile inclusions in cordierite, staurolite and kyanite. 

Petrological observations indicate that a probable stable equilibrium assemblage of 

staurolite, kyanite, biotite, quartz, plagioclase ± chlorite was overprinted by cordierite 

with the possible intermediate growth of sillimanite. 

G9 is a mica schist from near the top of the basal-HHCS in the kyanite zone of the 

Dhauli valley. It contains a high variance assemblage of garnet, muscovite, biotite, 

plagioclase and quartz. Garnets are 54 mm and have a bell-shaped Mn profile (Figure 

3.9), an increasing Fe content from core to rim and a step in Ca and Mg near the rim 

(Almso-57, Pyio-2o, Grs19_6 and Sps25.1o). The change in the Ca and Mg cation ratios is 

marked by a ring of quartz and feldspar inclusions. The increase in Mn at the rim is 

attributed to resorption of 

Q3D 
ýOM 

Xa 

cu 
a15 

c Q10 

X Q05 

aoo 

garnet. 
12 

Muscovite forms most of the 
1.0 

rn 
(18 

+ rock and wraps the garnet 

a6 ü porphyroblasts. Minor biotite 

Q4 
X occurs and is in greatest 

02 

(10 concentration in the quartz 

segregations. Feldspars show 

Figure 3.9 Major-element composition of garnet in sample G9 measured no zoning patterns. 

by electron-microprobe. Recalculated as mole fractions. Also shown is Sample 4A3 is a mica schist 
the Fe1Fe+Mg ratio. Note the asymmetric Ca profile, smooth bell-shaped 

from the MCTZ in the 
Mn profile and retrogressive rims. 

Alaknanda valley to the south 
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of Joshimath. Garnets are euhedral, 54 mm and often appear fractured. They contain 

minor quartz, tourmaline, graphite and opaque inclusions. These form rotated inclusion 

trails indicating synkinematic growth. The garnet displays a bell-shaped Mn profile with 

increasing Fe and Mg content towards the rim (Figure 3.10). Ca decreases towards the 

rim with a slight increase halfway from the core to rim. Feldspar has not been optically 

identified although a single analysis of K-feldspar was obtained on the electron 

microprobe. 

Minor staurolite occurs as small porphyroblasts <_ 500 microns which overgrow the 

main fabric. The staurolite contains high concentrations of Zn (up to 4wt%; Table 3.3). 

Muscovite forms asymmetric fish and the muscovite layers contain isoclinal folds 

producing banding between quartz-rich and muscovite-rich layers. 

3.3.4 Methodology 

Pseudosection calculations were made using Thermocalc (Powell et al., 1998) and the 

internally consistent database of Holland and Powell (1998) for the model system Mn, 

Ca, Na, K, Fe2', Mg, Al, Si, 

and H2O, which represents the 

ýj 0.2 
x 
C 2 
x 0.1 

LL 
x 

0.0 

12, major components in minerals 

0.8 of petrological interest. 

U- However, this system excludes 
0.4 v 

X Ti, Fe 3+ and Zn which may be 

0.0 
of importance to some 

equilibria. For example Mn 
Figure 3.10 Major-element composition of garnet in sample 4A3 

concentrations may be high in 
measured by electron-microprobe and recalculated as mole fraction. 

Also shown is the Fe/Fe+Mg ratio. Note the well developed bell-shaped early-formed Ti oxides so that 

Mn profile indicating prograde zoning without significant intra- 
excluding Ti may effect the 

crystalline diffusion.. 
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modelling of early garnet in which Mn concentrations are also high (e. g. Vance and 

Mahar, 1998). Similarly Zn may play an important role in stabilising staurolite 

(Grambling, 1981; Tuisku et a1., 1987; Droop and Harte, 1995) although Zn does not 

partition significantly into any coexisting minerals (Grambling, 1981; Dymoke and 

Sandiford, 1992) and so its only effect is to increase size of the stability field for 

staurolite. Fe 3+ is likely to exist as a component in many of the phases (e. g. garnet, 

staurolite, biotite) but no minerals are observed in which it is a major component (e. g. 

epidote). It is thus unlikely to play a significant role in the pseudosections derived 

below. 

All calculations are made assuming the presence of an H2O fluid phase. This 

assumption is potentially violated at high temperature or in rocks which have undergone 

several metamorphic events leading to dehydration. However, for the assemblages 

modelled here there is little evidence that such high temperatures were reached. 

Furthermore, the breakdown of biotite to form garnet produces significant amounts of 

H2O, enough to maintain water-saturated conditions up to 700°C (Vance and Mahar, 

1998). 

Perhaps the most important potential source of error is the assumption that the measured 

bulk rock chemistry represents the effective bulk composition (EBC) from which the 

minerals grew. This is undermined if. (i) the system is open to the modelled components 

such that elements are either supplied or removed during or after metamorphism; (ii) the 

sample used in determination of the bulk composition is not representative of the EBC 

(this would be true for a banded rock in which small scale bulk composition variations 

result in varying mineral stabilities) and; (iii) if mineral growth results in the 

preferential removal of elements from the EBC (e. g. garnet cores removing Mn from the 

EBC). 

It is generally assumed that major elements are not mobile over significant distances in 
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metamorphic rocks. The volatiles and silica may be mobile (e. g. Ague, 1991) but they 

will not significantly affect the modelling of pseudosections since Si02 and H2O are 

modelled as being in excess. Porphyroblast growth is more problematic and, in the case 

of the samples studied here, it is clear that porphyroblasts do sequester elements such as 

Mn and Al. While this can potentially be taken account of, the present version of 

Thermocalc is not capable of determining this effect and it is therefore dealt with 

qualitatively. 

Apart from the geological errors mentioned above, Thermocalc propagates errors from 

the thermodynamic data and endmember activities. These result in typical errors on 

univariant lines of ±10°C and invariant points of ±10-20°C, the larger errors being 

typical of the cordierite-bearing assemblages. Thermocalc also calculates errors on the 

modal proportion of minerals in the stability fields which, in the case of the divariant 

fields, are often larger than the modal proportions themselves. Although the 

interpretation of such errors is as yet uncertain, such fields are often so small as to be 

insignificant in the interpretation of the rock in many cases. Despite the importance of 

understanding the size of likely errors, the main feature of interest in these diagrams is 

the relative position of the fields - which are unaffected by the principal sources of error 

in these calculations. 

3.3.5 Phase relationships 

In all cases quartz and H2O were in excess and chloritoid was omitted. In samples G9 

and 4A3, muscovite was also in excess and cordierite was omitted. 

The phase relationships for a rock of the composition of G135, plotted in Figure 3.11, 

are somewhat complicated and include two divariant fields - one lying on the 

sillimanite-kyanite transition (inset (a) Figure 3.11) and the other in the sillimanite field 

(inset (b) Figure 3.11). The pseudosection predicts that chlorite remains stable up to 

high temperatures (>660°C) which is supported by the observation that chlorite is fabric 
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forming. The persistence of chlorite to high temperatures is essentially the result of 

chlorite's preference for Mg and the high Mg content of the rock. Additionally, 

muscovite and biotite only coexist in a very narrow field. Kyanite is stable over a large 

range of P and T and garnet is restricted to high temperatures relative to other 

pseudosections for pelitic rocks (Mahar et al., 1997; Vance and Mahar, 1998). 
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Figure 3.12 (a) Modelled PT pseudosections for sample G9, with inset detail of divariant field (b) Modelled PT 

pseudosection for sample 4A3, with inset detail of divariant field 
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The phase diagram for G9, shown in Figure 3.12a, predicts that staurolite is stable over 

a small range of P and T and that kyanite is not stable. This explains the absence of 

kyanite in this rock despite falling in the kyanite zone of the HHCS. Overall, the 

modelling results in a very simple phase diagram in the PT areas of interest with only a 

small staurolite stable field below 4 kbar. Garnet becomes stable at -450°C at 2 kbar - 

i. e. lower P and T than in other grids calculated for pelitic samples (Mahar et al., 1997; 

Vance and Mahar, 1998) - which is a function of the higher Mn content of the rock. 

Plagioclase is predicted to disappear from the rock at pressures above 11 kbar at 450°C 

and is stable to higher pressures at higher temperatures. 

The phase diagram for 4A3, presented in Figure 3.12b, predicts a larger staurolite 

stability field than for G9 and kyanite is not stable below 630°C. Interestingly 

plagioclase disappears from the rock at pressures above 6.5-8 kbar, in agreement with 

the observed lack of plagioclase in the sample. It is important however, to remark that 

the predicted staurolite stability field may be enlarged in the real rock due to the 

stabilising effect of Zn on staurolite. 

3.3.6 Quantitative results 

The lack of garnet in sample G135 weakens the constraints on the PT field of this 

sample since garnet often preserves the PT history in its zoning and is an integral phase 

for virtually all pelitic thermometers and barometers. Fortunately, however, the PT field 

in which the original assemblage of staurolite and kyanite coexist, prior to the growth of 

cordierite, is extremely small (615-635 °C and 6.2-6.8 kbar; upper left inset in Figure 

3.11). While this does not allow us to constrain the prograde path the overgrowth of 

cordierite allows us to place constraints on the minimum decompression suffered by this 

rock. The present stable assemblage of chlorite, biotite, plagioclase and cordierite is 

only stable at a minimum of 1.5 kbar and -20°C lower than the stability field for 

coexisting staurolite and kyanite, indicating the minimum decompression if the 
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assemblages grew as a part of a continuous process. 

One possible problem with this result is that fractionation of material into kyanite and 

staurolite may have altered the EBC from which the cordierite grew, thus changing the 

pseudosection calculation. The extent to which the absolute position of the phase 

equilibria are affected by such changes to the EBC can be qualitatively investigated by 

changing the bulk composition and recalculating the equilibria: relict kyanite and 

staurolite are likely to reduce the Al and Fe content of the EBC (the bulk of Mg is stored 

in chlorite and biotite). In fact changing the Al content by up to 10% makes no 

difference to the position of the chlorite, biotite, plagioclase and cordierite field and 

decreasing the Fe content moves it up temperature and up pressure by only a small 

amount. It is thus likely that the minimum values estimated for decompression and 

cooling are robust. 

Garnet compositional contours 

An alternative method for obtaining quantitative results from the pseudosections, when 

the mineral variance is high, is by comparing the analysed composition of minerals with 

gn, chi, pi 

i grt, chi, bt 
PI 

3 an 

the predicted composition from the 

pseudosection calculations (for garnet 

composition see Figure 3.14). In the case of 

rocks bearing zoned garnet the PT path should 

be constrained by the compositional isopleths. 

450 470 490 510 530 550 570 590 Figure 3.13 shows the compositional contours 
Figure 3.13 Calculated compositional contours, with 

for garnet calculated by Thermocalc and 
uncertainties, corresponding to the real composition 

of garnet core in G9. Fe contour shown in red, Ca corresponding to the core composition of G9 

contour in blue and Mn in green. (summarised in Table 3.3). The three contours 

intersect at high angles resulting in a very precise estimate for the PT conditions of core 

growth: 521 t9 °C and 6.0 ± 0.4 kbar. The same approach can be applied for points 
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outside of the core (analyses detailed in Appendix E) in order to obtain the PT evolution 

of the garnet, the results of which are shown in Figure 3.14. The PT path for garnet in 

G9 can be obtained as far as about half of the distance to the rim - where Mn -7 mole 

percent - resulting in a shallow PT path up to --570°C and 8.5 kbar. Beyond this point 

the Fe and Ca contours diverge markedly and while they overlap within error it is 

difficult to obtain a sensible estimate on the calculated pressure and temperature. This is 

probably due to increased divergence of the bulk rock composition from the effective 

reservoir from which the garnet grew, as discussed by Vance and Mahar (1998). This 

unfortunate result occurs because the garnet sequesters elements during growth, thus 

modifying the effective bulk composition. 

It is worth noting that the PT estimate for initial growth lies off the predicted garnet-in 

reaction at a modal proportion of 0.02. This may be an artefact of the method due to real 

processes. For example, it may be the result of slow kinetics at low temperatures and the 

requirement to overstep the activation energy for garnet nucleation. Alternatively 

diffusional modification of the garnet core at high temperatures, may lead to a present 

composition that is slightly different from that at core growth.. 

In the same way garnet core PT conditions for 4A3 can be extracted by comparing the 

measured composition (Table 3.3 and Figure 3.10) with the calculated compositional 

contours (Figure 3.15). This gives an exceptional intersection at 528 ± 10 °C and 5.5 t 

0.4 kbar although this modelling is unsatisfactory outside of the garnet core. 

Finally the orientation of the modal proportion contours for garnet in G9 Figure 3.15 

indicate that decompression of this sample would result in consumption of garnet 

(unless associated with a temperature increase). Consumption of garnet shows up in the 

zonation pattern as an increase in X(Mn) near the rim. This is a result of the effect of the 

extreme compatibility of Mn in garnet so that Mn released by garnet breakdown 

diffuses back into the remaining crystal. Thus the Mn-rich rim in G9 (Figure 3.9) 

Timing of prograde metamorphism... C. I. Prince 97 



Chapter 3 Thermobarometrýl 

suggests that sample G9 underwent decompression sufficiently slowly for some garnet 

resorption to occur. 

Additional constraints from conventional rim thennobarometry 

The peak P and T can be constrained using conventional thermobarometry on the 

present assemblage, calculated using Thermocalc in "avPT" mode as for assemblages 

from the transect along the Dhauli and Alaknanda. 

Using the mineral data from Table 3.3, endmember 
Table 3.2 Summary of mineral 

endmember activity data and activities have been calculated by Ax98 (Table 3.2). For 

output from Thermocalc avPT G9, the mineral assemblage used for PT calculations is 

calculations. 
consistent with the pseudosection field in which it falls 

Sample 4A3 G9 G135 (Figure 3.14). For 4A3 the observed equilibrium py 0.002 0.002 _ 
gr 0.002 0.000 - 
alm 0.440 0.490 - assemblage includes staurolite which is not consistent 
spss - 0.000 - 
an - 0.160 0.09 with the calculated final PT conditions and 
ab - 0.880 0.94 

phl 0.069 0.028 0.11 pseudosection (Figure 3.15). This may be due to the 
ann 0.037 0.081 0.02 

east 0.051 0.027 0.08 effect of Zn on staurolite stability. Zn, however, has no 
mu 0.680 0.670 - 
pa 0.980 0.960 - effect on the PT calculation which only uses the relative 
cel 0.019 0.022 - 
mst 0.002 - - Fe and Mg composition of the staurolite. fst 0.410 - - 
crd - - 0.62 

It is also possible to calculate the PT for sample G135 fcrd - - 0.06 

mncrd - - 0.00 
clin - - 0.08 despite the high variance and disequilibrium in the 
daph - - 0.01 
ames - - 0.07 sample. By combining all the minerals potentially in 
q 1 1 1 
H2O 1 1 1 equilibrium (i. e. excluding only kyanite and staurolite) 
T (°c) 616 616 513 
s. d. 77 29 47 an estimate of 513 ± 47 °C and 1.2 ± 1.2 kbar is 
P (kbar) 10 9.4 1.2 

s. d. 2.8 1.3 1.2 obtained. While petrography suggests late growth of 
cor -0.231 0.730 0.995 
Fit 1.27 0.61 0.81 

muscovite the mineral endmember information supplied 
I mineral endmember 

by Thermocalc does not highlight any of the muscovite 
abbreviati ons in Appendix B 
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endmembers as suspect as would be expected for a disequilibrium assemblage. 

Nevertheless it is worth treating this estimate with caution. 

These PT estimates can be combined with the core PT estimates obtained from 

pseudosection calculations to constrain the PT path of the sample and are plotted for G9 

and 4A3 on Figure 3.15 and Figure 3.14 respectively. These garnets in both samples 

grew under very similar conditions, involving heating and burial from 530°C-620°C and 

6-10 kbar, even though they lie some -9 km (250 MPa) structurally apart. 

3.4 Discussion 

The following section will discuss the implications for reconstructing the thermo- 

tectonic history of the Himalayan metamorphic belt in Garhwal and compare it with that 

recorded by previous authors and elsewhere along the chain. 

3.4.1 Prograde metamorphism 

Unfortunately G135 does not provide prograde path information but "peak" 

paleopressures recorded by G135 of 6.5 ± 0.5 kbar imply that there was at least 22 km 

of cover which, based on field observations, is likely to correspond to the overburden of 

Tethys Himalaya sediments with which the Harsil Formation has been tentatively 

correlated (Metcalfe, 1990; Metcalfe, 1993). This compares with estimates of --10 km 

for the thickness of restored Tethys Himalaya sediments (Searle, 1986) and implies that 

some thickening of the Tethys Himalaya must have occurred prior to the formation of 

these assemblages. This must be the result of reverse movement on faults structurally 

above and to the north of the present level of G135. 

Pseudosection modelling of sample G9 indicates that garnet growth occurred during 

heating and burial, with a shallower PT path than for garnets in Zanskar (Vance and 

Mahar, 1998). The increase in pressure indicates that the sample was being buried by 

active thrusting at structurally higher levels and the fact that the PT path is shallow 
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suggests that the sample responded rapidly to the thermal effect of burial. This would 

imply that the sample was relatively close to the active thrust - samples at greater 

structural distance from the thrust will respond first to the pressure increase and only 

later to heating from thermal re-equilibration. However, in isolation the sample cannot 

be used to constrain the position of such thrusts and more PT paths are needed to see if 

there is a systematic variation with structural position. 

The PT path obtained from garnet zonation in sample 4A3 also indicates burial and 

heating during growth of the garnet. Rim estimates indicate that such burial attained 

depths of -25 km and temperatures of -620°C. The similarity of the rim estimates and 

PT paths for G9 and 4A3 indicates the importance of the MCT as a structural 

discontinuity juxtaposing samples from different sedimentary units (Ahmad et al., In 

press) and from different metamorphic units. 

The many kinematic indicators in the MCTZ and petrology of the samples suggests that 

much of the metamorphism within the unit occurred during a single syn-kinematic 

metamorphic event (see Chapter 2), attributed to the MCT. Attempting to constrain the 

movement of this fault is more difficult but if the burial of 4A3 was uniquely the result 

of thrust movement on a plane dipping at 30° this would imply a horizontal 

displacement of -40 km - significantly short of other estimates for MCT movement 

(see Chapter 1). 

Together these three samples indicate that the metamorphic assemblages in different 

levels of the Garhwal Himalaya all developed as a result of burial and thickening of the 

crust. The Harsil formation must have been buried by faults to its north, as was the 

basal-HHCS in the Alaknanda. The MCTZ also grew during burial and metamorphism 

in response to thrust movement on the MCT. 

3.4.2 "Peak" metamorphism 

Assemblages in the MCT and HHCS attained the peak temperatures and pressures 
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presented in Figure 3.2 and Figure 3.3. Before going on to discuss these data a brief 

discussion of the potential errors and the limits they place on interpretation are 

required. 

The interpretation of PT profiles, such as that presented in the first section of this 

chapter, is usually based on the assumption that they record peak metamorphic 

pressures and temperatures. There are, however, several problems with the methodology 

used here in the measurement of P and T. Firstly water activity, which has a profound 

effect on P-T estimates, is difficult to constrain in these pelitic assemblages. Changes in 

aH20 from 1 to 0.4 result in changes of -100°C and 1.3 kbar - on the order of the 

differences between different garnet-biotite exchange calibrations. However, the relative 

PT estimates do not change significantly. The minimisation of the statistical error on PT 

estimates results in significant changes in PT estimates but for only a limited number of 

samples and, as for selecting an arbitrary aH20, does not significantly change the relative 

PT estimates (Figure 3.8). As long as the water activity is not independently constrained 

the PT estimates will remain flawed, but interpretations based on the relative PT 

estimates are still useful. 

A second problem is that the thermometers and barometers may be recording 

diachronous attainment of P and T and may record conditions during the retrograde path 

rather than the "peak". While Thermocalc takes into account all possible equilibria, the 

average PT is still strongly dependent upon data used to produce the the gamet-biotite 

Fe-Mg exchange reaction (e. g. Ferry and Spear, 1978) and the Ca net-transfer reaction 

between garnet and plagioclase (GAQP Newton and Haselton, 1981; GMPB Hodges 

and Crowley, 1985). It has been shown that biotite and garnet will continue to exchange 

Fe and Mg after the peak of metamorphism, during the retrograde path, and that this 

will result in an underestimation of the peak temperature (Spear, 1991; Florence and 

Spear, 1993; Spear et al., 1995). How this effects the measured temperatures is a 
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function of the cooling rate and much attention has been paid to this aspect of 

intercrystalline diffusion for geospeedometry (Lasaga, 1983; Spear and Parrish, 1996). 

Recent studies using oxygen isotope thermometry in the Sutlej valley to the west show 

an inverted thermal profile in agreement with P-T estimates based on petrogenetic grids 

(Vannay, 1999). In the Sutlej section the traditional cation-exchange equilibria produce 

an isothermal profile across the HHCS, as is seen in Garhwal. The disparity between the 

isothermal profile obtained using cation-exchange equilibria and oxygen-isotope 

thermometry is attributed to the closure temperature of the garnet-biotite thermometer 

(Vannay and Grasemann, 1998), a problem which may also apply to Garhwal. 

An additional consideration is that the PT estimates may be combining inappropriate 

mineral assemblages. From petrographic evidence in the Garhwal Himalaya we know 

that there have been two metamorphic events in the upper levels of the HHCS: one 

producing the principal assemblage (M1) overprinted by a second event (M2). This is 

most clearly preserved in the form of cordierite overgrowths, a common feature in the 

Himalaya (Brunel and Kienast, 1986; Hodges et al., 1992; Inger and Harris, 1992; 

Hodges et al., 1993; Davidson et al., 1997; Neogi et al., 1998; Vannay and Grasemann, 

1998) and may be the cause of the development of fibrolitic sillimanite in the upper 

levels of the HHCS. These two events may be part of a continuous process or represent 

two temporally distinct tectonic events but either way the PT estimates for the upper 

levels of the HHCS presented here may combine early assemblages - comprising garnet, 

staurolite and kyanite in which the kyanite and staurolite have been corroded (see 

Chapter 2) - with later sillimanite, biotite and muscovite. 

However, trying to quantitatively constrain this is effect is difficult as the mineral 

assemblages are likely to represent neither the primary assemblage nor the later 

overprint. In rare cases, however, approximate constraints can be placed on the two 

different periods of mineral growth, as for G135. Assuming the two assemblages 
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represent part of a continuous process the pseudosection modelling indicates 

decompression of between 1.5 and 4.3 kbar accompanied by a temperature decrease of 

>20 and <110°C. 

Thus the assemblages at the top of the HHCS potentially contain minerals from two 

different tectonic settings: (i) a poorly constrained MI. possibly reaching kyanite-zone 

and, (ii) a high-temperature decompression event resulting in the development of 

fibrolitic sillimanite and cordierite. It is most likely that the PT estimates for the upper- 

HHCS presented here correspond most closely to the later M2 overprint. 

In summary while the author feels that the methodology employed here is the most 

reliable and precise method for constraining PT conditions, only relative constraints can 

be used with any real certainty. Furthermore many of the questions raised here - 

diachronous closure of barometers and thermometers, poorly constrained water activity 

and uncertain assemblage selection - require more detailed work beyond the scope of 

this thesis. 

3.4.3 Discussion of models for thermal development of Garhwal 

The isothermal profile obtained here is similar to others obtained in the Himalaya 

(Hodges and Silverberg, 1988; Hubbard, 1989; Mohan et al., 1989; Inger and Harris, 

1992; Macfarlane, 1995; Neogi et al., 1998; Vannay and Grasemann, 1998; Vannay, 

1999). These thermal field gradients cannot represent a normal steady-state geothermal 

gradient in a single crustal slice as this should produce decreasing P and T upsection, 

albeit with a slight alteration to the profile resulting from thermal re-equilibration during 

exhumation. Hence models for the development of the profile in the Garhwal HHCS 

will be discussed in relation to models proposed for the Himalaya as a whole. 

Hodges et al. (1988) explain the near-isothermal profile in the HHCS across the 

Himalaya with a model which implicitly considers the HHCS to have acted as a 

coherent body and that the profile represents a geotherm - albeit not a "normal" 
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geotherm. They suggested that isothermal temperatures were maintained throughout the 

HHCS by thermal buffering as a consequence of in-situ anatexis, whereby the migration 

of melts advects heat from the lower sections of the crust to higher thus maintaining 

constant temperatures throughout the section of interest. In Garhwal and in other parts 

of the Himalaya with similar PT profiles, migmatites are restricted to the upper part of 

the HHCS and could not, therefore, buffer temperatures. Alternatively Hodges and 

Silverberg (1988) suggested, for the Garhwal Himalaya, that leucogranites were sourced 

from deeper unexposed levels and advected heat to the upper-HHCS. If this were the 

case we might expect the extent of sillimanite growth and its spatial distribution to be 

linked to the leucogranites. In Garhwal this does not happen as the most abundant 

fibrolite growth is found in the Dhuali valley where the smallest leucogranite intrusions 

occur. Furthermore, the small volume of the melts and their relatively low temperatures 

(<750°C) limit their ability to advect heat. Thermal buffering or advection of heat by 

leucogranites seems, therefore, to be an unlikely cause for isothermal profiles. 

Alternatively, the HHCS may record a diachronous thermal history either as separate 

events or recording different stages of the thermal history at different levels. For 

example, the sillimanite-grade metamorphism and the high temperatures at the top of 

the slab could be caused by a separate high-temperature metamorphic event 

overprinting the earlier "normal" geothermal gradient. Hodges and Silverberg (1988) 

suggested such a model for Garhwal based on the same section as presented here. Using 

Gibbs thermobarometry to obtain PT paths from garnets, they suggested that the HHCS 

underwent burial and an increase in temperature which was recorded only in the upper- 

HHCS. Thrust movement on the Malari fault explained the pressure increase but could 

not account for the required temperature increase and they suggested that the additional 

heat could have come from the leucogranites sourced lower in the section, as mentioned 

above. Petrological observations in the Garhwal Himalaya do suggest a second 
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metamorphic event but that it occurred during decompression. Additionally, the P-T 

paths calculated by Hodges and Silverberg (1988) were based on the Gibbs modelling 

of inappropriate garnet samples which lack compositional zoning, probably due to high- 

temperature intra-crystalline diffusion. 

Yet another explanation for the isothermal profile is the focussing of heat below low 

thermal conductivity layers such that local high heat production results in a perturbed 

steady-state geotherm (Jaupart and Provost, 1985). The boundary between crystalline 

rocks with a high thermal conductivity and sedimentary rocks with a lower thermal 

conductivity results in greater heat transport parallel to layering in the crystalline rocks 

and a thermal high at the top of the crystalline layers . The steady state (shown in Figure 

3.16) corresponds to an undisturbed layering but if the boundary is the result of faulting 

then the transient geotherm needs to be considered. Whether this results in a thermal 

high will critically depend upon: (a) the orientation and sense of movement on the fault, 

principally whether it brings hot rocks or cold rocks onto the crystalline basement and; 

(b) the rate of movement, which is important for the rate of equilibration between 

footwall and hangingwall. At intermediate rates of movement a normal fault will result 

in cooling of the footwall rocks and prevent the development of a thermal blanketing 

effect. So this model requires that the fault be reverse. 

This model is potentially attractive as thermal contrasts may be high across the STDS in 

the Dhuali valley with the crystalline HHCS below the fault and TSS above the fault 

although very few quantitative data exist on thermal conductivity contrasts. The 

resultant thermal conductivity contrast may well have contributed to elevated 

temperatures at the top of the slab relative to the normal geotherm. However, since the 

Malari fault is presently identified as a normal fault it is difficult to produce the thermal 

blanketing as described. Had the Malari fault been inactive or a thrust fault prior to 

extension, then the elevated temperatures could be developed. Thus the timing 
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Figure 3.16 Steady-state model for two layers of low thermal temperature gradients. In these models 

conductivity shown in brown. The lines correspond to three 

the exposed section does not represent a isotherms: 300'C, 6509C and 1000 °C The temperature 

increases dramatically towards the boundaries of the layers. contiguous sequence of crustal rocks. 

From Jaupart and Provost (1985). Rather, they represent spatially distinct 

rocks emplaced tectonically at their present relative positions. These models come in a 

variety of forms from discrete thrusts within the HHCS (e. g. Swapp and Hollister, 1991; 

Reddy et al., 1993), distributed shear through the entire HHCS (e. g. Jain and 

Manickavasagam, 1993; Grujic et al., 1996) to crustal scale folds (Searle and Rex, 

1989) and vary from post-metamorphic to syn-metamorphic deformation. To assess 

such models requires detailed petrography and structural analysis. However, a few 

constraints can be proposed for Garhwal and the Himalaya as a whole. 

The deformation within the HHCS across the whole orogen is predominantly ductile, 

limiting deformation to temperatures >~300°C. The relationship between deformation 

and the growth of the main metamorphic minerals, however, is more complicated. In 

Garhwal this relationship varies depending on the position in the HHCS or Harsil 

formation: at the base of the HHCS the main assemblage is pre-deformation whereas in 

the Harsil formation it is syn-deformation. However, throughout the HHCS the 

deformation is a top-to-the-south directed shear while at the top of the section there is 

an overprint of top-to-the-north movement. Furthermore, nowhere in Garhwal does the 

last metamorphic phase outlast deformation suggesting that post-peak metamorphic 
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deformation must have an important role in the present day exposure of the rocks. It is 

likely, therefore, that the HHCS and MCTZ of the Garhwal Himalaya have undergone 

extensive deformation both during and following metamorphism. 

3.4.4 Inverted metamorphism in the MCTZ and basal-HHCS 

Inverted metamorphism within the MCT has received much attention since the elegant 

hot-iron model of Le Fort (1975). In this model the inverted metamorphic profile across 

the MCTZ represents the frozen geotherm resulting from the thrust emplacement of a 

thick, hot, HHCS re-equilibrating with the underthrust LH. While such a model appears 

superficially attractive it clearly cannot satisfy the pressure gradient observed here 

(Figure 3.2). Several other problems also arise with this model. Firstly, not all PT 

profiles from the MCTZ support such a model. Secondly, even if they did, the 

preservation of an inverted transient geotherm is difficult given thermal relaxation and 

realistic exhumation rates (Molnar and England, 1990). Furthermore, recent 2-D 

modelling suggests that, with a simple thrust geometry, as envisaged by Le Fort (1975), 

and sensible boundary conditions and parameters, it is impossible to develop an inverted 

isotherm in the first place (Grasemann, 1993). 

Some authors suggest that the inverted metamorphic field gradient was related to 

frictional heating along the MCT (England et al., 1992) and specifically related this to 

the formation of leucogranites. While this is also an attractive model it does not satisfy 

the field observations that the highest temperatures occur above the fault. Also the high 

shear stresses required on the fault (50-100 MPa) would be difficult to sustain at high 

temperatures due to the weakening of the rock, particularly when melting is induced. 

Alternatively, as for the HHCS, the inversion of isograds could be the result of post- 

metamorphic deformation of a normal metamorphic sequence (e. g. Jain and 

Manickavasagam, 1993; Hubbard, 1996). This could occur either as distributed shear 

throughout the MCTZ or along discrete thrusts. This is supported by the variability in 
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pressure recorded by samples in the vicinity of the MCTZ. Such a model is also 

supported by the petrological evidence which shows that in many areas, including 

Garhwal, deformation outlasted metamorphism - e. g. rotated inclusion trails and 

assymetric augen. Furthermore, in Garhwal, deformation within the MCTZ is not 

limited to the ductile region as many brittle faults have displaced originally continuous 

sequences. 

Combining deformation with thermal re-equilibration, Royden (1993) produced an 

analytical model, in which material in the footwall of a fault is accreted to a 30 km thick 

hangingwall during uplift and erosion. This showed that a steady-state geotherm would 

be produced with the highest temperatures preserved above the fault in a profile similar 

to that seen in Figure 3.2 and obtained by Hubbard (1989). Moreover, a locally inverted 

a) 

0 Zone of elevated temperature 
b) 

3 
Grt 

3, Ky 

sequence would occur across and 

below the fault. One drawback to 

this model is that to obtain a steady 

state requires significant time spans 

for thrusting along the MCT, 

timespans which were not available 

during the orogeny. However, 

Figure 3.17 (a) Geometry for model of Grasemann (1993). Dark Royden (1993) suggests that 

layers represent low thermal conductivity layers as might be transient geotherms of a similar 

representative of the Tethys Himalaya and Lesser Himalaya, top 
form would be developed. 

and bottom respectively. The base of the crust lies at 35 /on. This 

geometry results in an elevated thermal gradient in the initial 
In a numerical solution with a 

starting conditions (b) Sketch of possible initial state of thrusting similar geometry but without 

along the MCT. The isograds are cut off by the thrust. With 
accretion or erosion Grasemann 

increased deformation along the high-temperature zone the 

isograds would be folded over. (1993) also produced a similar 

profile to that observed in Figure 
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3.2. In this 2-D model the HHCS is assumed to be a solid slab thrust over the LH along 

a discrete fault (MCT). To obtain any significant temperature inversion the HHCS is 

required to have an elevated thermal profile prior to thrusting and the base of the HHCS 

must be insulated by low thermal conductivity rocks such as sediments (Figure 3.17). In 

cross-section the thermal high does not lie on the MCT but some distance above the 

fault (Figure 3.17). Given a more realistic model, with some internal deformation of the 

HHCS, it is likely that deformation would be concentrated along high-temperature 

layers increasing the velocity of material relative to surrounding lower temperature 

areas and accentuating the thermal high above the fault. 

However, it is unlikely that movement on the MCT was not accompanied by some 

erosion or that syn-metamorphic deformation did not accrete material to the 

hangingwall. Perhaps a more realistic model would be a combination of Royden (1993) 

and Grasemann (1993). Qualitatively combining the two models is not difficult as the 

two models give very similar results: a thermal high in the hangingwall and geologically 

appropriate temperatures. Such a model could satisfactorily explain the inverted thermal 

profile in the MCTZ and the basal HHCS. Post-metamorphic deformation could account 

for the pressure profile as well as the noise' in the dataset. Unfortunately, as for the 

HHCS, assessing the extent of this deformation is beyond the scope of this thesis but it 

is clear that a combination of these models satisfies the field observations and PT 

results. 
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4.1 Introduction 

In Chapter 3 pseudosection modelling was used to elucidate the thermal evolution of 

samples in Garhwal and rim PT estimates were made to determine the "peak" PT 

conditions attained by these rocks. However, as outlined in Chapter 1 and Chapter 3 the 

critical factor is to link such information through time. Chronological information has 

recently been measured in the Zanskar area of NW India (Vance and Harris, 1999) 

using Sm-Nd garnet dating. The advantages of this approach are that it provides 

constraints on a mineral that is both robust against isotopic resetting (Ganguly et al., 

1998b) and provides information on pressure, temperature and deformation as well as 

time. However, the approach also has several drawbacks. Firstly, the Nd contents of 

garnet are low (< 1 ppm) so that the isotopic analyses are technically difficult. 

Secondly, and more importantly, the interpretation of ages is made ambiguous by the 

possibility of incorporating small inclusions of REE-rich minerals such as monazite 

(Chapter 6 Zhou and Hensen, 1995). In this Chapter new Sm-Nd data for garnets from 

the Garhwal Himalaya are presented in order to extend the dataset already obtained for 

Zanskar (Vance and Harris, 1999). In addition, however, we attempt to exploit the 

presence of monazite inclusions in garnet to obtain precise time information more 

readily using in situ SIMS U-Th-Pb analysis (cf. Harrison et al., 1997b; Zhu et at., 

1997; Foster, In Prep. ) and to relate the latter to the additional petrological data 

contained in the garnet itself. These two chronometric approaches are combined with 

detailed analysis of P-T pseudosections (see Chapter 3 and Vance and Mahar, 1998) to 

obtain a uniquely constrained prograde thermal history for part of the Himalayan 

orogenic belt. 
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4.2 Geological setting 

The samples studied here come from the HHCS in both the Bhagirathi and Alaknanda 

valleys (Figure 4.1). Details of the setting are given in Chapter 2 and it is only 
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Figure 4.1 Schematic geology of the Garhwal Himalaya (modified from Virdi (1986); Metcalfe, (1993); Scaillet et 

at., (1995)). Sm-Nd garnet data localities marked with filled black diamonds. U-Th-Pb monazite data localities 

marked with grey diamonds. The exposure along the western river valley, the Bhagirathi, is separated into the 

Harsil formation and the HHCS. 

summarised here. The HHCS can be separated into several litho-tectonic units which 

differ from one valley to the next. As previously mentioned in Chapter 2 the HHCS in 

the Bhagirathi valley comprises a kyanite-grade gneissic unit which is capped by the 

Harsil formation; a series of amphibolite-grade pelitic schists. In the Alaknanda and 

Dhauli valleys the HHCS can be conveniently separated into three units; the basal, mid 

and upper HHCS consisting predominantly of gneisses, quarzites and schists 

respectively (Figure 4.1). The correlation of these lithological units between valleys is 

difficult, given the inaccessible nature of the terrain between the two areas. However, it 

is tentatively suggested here that the Harsil formation, rather than belonging to the TSS, 

correlates with the mid- to upper-HHCS of the Alaknanda and Dhuali valleys. This is 

based on the similar sedimentary character and metamorphic grade of the lithologically 
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defined units. 

4.2.1 Sample description and petrology 

The six rocks studied here come from within the HHCS and the Harsil formation as 

shown on Figure 4.1. Three samples - G96, G31(1) and G90 - are from high structural 

levels within the upper-HHCS and Harsil formation while the other three - G9,4B (1) 

and G57 - come from lower structural levels nearer the Main Central Thrust. 

Sample G96 garnet comes from the boundary between a biotite-schist and a quartz vein 

within the Harsil formation, Bhagirathi valley. This geometry results in approximately 

half the garnet having a sieve texture, with predominantly quartz inclusions, and the 

other half being gem quality. Electron-microprobe traverses of garnet in sample G96 

parallel and perpendicular to the lithological layering indicate very flat Fe, Mg and Ca 

and only very slight Mn zonation, indicating near-complete homogenisation of the 

major elements at elevated temperatures (A1m48, Py7, Grs31 and Sps14; See Chapter 6 for 

profiles) The optical purity of the sample resulted in the separation of rather large 

fragments of garnet for the Grt 1 Sm-Nd separate. Because this led to difficulties during 

digestion, the remaining garnet was crushed further before a duplicate aliquot was 

separated. For reasons detailed later, it is believed that the Grt 1 aliquot was biased 

towards the earlier grown garnet. 

Sample G31(1) is a deformed decimetre sized leucogranite in the upper-HHCS of the 

Alaknanda valley. The garnets are typically <5 mm across and show smooth zoning in 

the major elements (A1m66_71, PY9_13, Grso-4 and Sps13.24; Figure 4.2a). Inclusions of 

tourmaline quartz and small needles of rutile have been identified and the garnet 

exhibits optical oscillatory zoning. Sillimanite needles form aggregates which cross-cut 

garnet in the sample and the fabric in the surrounding rock. Comparison of the major- 

element composition, determined by electron microprobe, of an aliquot of the garnet 

used for Sm-Nd isotopic analysis and that of the garnet traverse, established that the 
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garnet used for isotopic analysis was predominately derived from within the rim of the 

garnet (Figure 4.2a). 

A study of the leucogranite composition indicates that it formed during fluid-present 

melting of the crust as compared to the fluid-absent anatexis of the larger leucogranites 

along the length of the chain (Chapter 5 Harris et al., 1993). 
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Figure 4.2 Composition of selected garnets measured by electron-microprobe and recalculated as mole fractions 

Also shown is the Fe/Fe+Mg ratio. (a) G31(1) and (b) G90 from the upper-HHCS and Harsil formation respectively. 

Analyses of fragments taken from the aliquot used for isotopic dating are shown next to the major-element profile for 

G31(1). 

Sample G90 contains the low-variance assemblage garnet, staurolite, biotite, gedrite, 

plagioclase, quartz and kyanite with accessories of rutile, monazite and tourmaline and 

unoriented retrogressive chlorite. Garnet crystals are typically <5 mm, euhedral to 

subhedral, with inclusions of rutile, quartz, opaques and monazite. The garnet preserves 
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prograde zoning (AIMO. 66-0.69 PYo. 22-0.31 Spsso. o8-o. 01 Grso. 04-0.02) with a decreasing 

Fe/(Fe+Mg) ratio from core to rim (Figure 4.2b). A narrow retrogressive rim is 

developed with a large increase in Fe, decrease in Mg and slight increase in Mn. 

Staurolite forms euhedral to subhedral crystal <1 mm which show varying degrees of 

retrogression and lie unoriented in the matrix. Gedrite forms aggregates of small needles 

to larger laths, <lmm long, which lie in the fabric defined by biotite. Kyanite forms rare 

large crystals of up to 3mm and is generally corroded by biotite. Plagioclase is An0 08 0.1 

Sample G9 is a muscovite schist from the basal-HHCS in the Alaknanda valley in the 

kyanite zone. The garnet in the sample has a bell-shaped Mn profile, an increasing Fe 

content from core to rim and a step in Ca and Mg near the rim (Alm80 57, PYYio-20, Grs19-6 

and Sps25.10; Figure 4.3a). A small Mn increase occurs at the rim suggesting garnet 

resorption during retrograde re-equilibration. Sm-Nd isotopic analyses were carried out 

on a second garnet from the same hand specimen. Comparison of the major-element 

composition of an aliquot of the garnet used for isotopic analysis and a garnet traverse, 

shows that the garnet used for isotopic analysis was dominated by the rim of the garnet 

(Figure 4.3a). 

4B 1 is a gneiss containing garnet, biotite, plagioclase, quartz and muscovite from the 

basal-HHCS just above the MCT in the Alaknanda valley. The garnet forms anhedral 

crystals, is extremely clean and shows a flattened major-element profile with small 

variations over some segments (A1m65_52, Prp9_2, Grs18_12 and Sps27_12). An aliquot of 

garnet was separated from the whole rock by heavy liquids and hand picking. 

Sample G57 contains the higher variance assemblage garnet, biotite, plagioclase, 

muscovite and quartz with accessories of rutile, monazite and apatite with small 

amounts of retrogressive chlorite. Garnet forms euhedral to subhedral crystals up to 

4 mm and preserves prograde zoning (Figure 4.3b) with a decreasing Fe/Fe+Mg ratio 

and smooth zoning in the major elements (AlmO. 67-0.69 PYo. 21-o. 25 SPso. 07-0.03 Grso. 04-0.05). 
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Additionally a small retrograde rim occurs with an increase in Mn content and decrease 

in Fe/Fe+Mg. Biotite forms the main foliation and along with quartz defines an old 

ribbon texture containing recrystallised quartz. Muscovite forms large platy laths which 

generally lie in the foliation although some lie at a high angle to it. Plagioclase is Ano, 13_ 

0.16 and shows little zoning. 
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Figure 4.3 Composition of garnet measured by electron-microprobe and recalculated as mole fractions. Also shown 

is the Fe/Fe+Mg ratio. (a) G9 and (b) G57. Analyses of fragments taken from the aliquot used for isotopic dating are 

shown next to the major-element profile for G9. 

4.3 Methodology 

This chapter uses three separate methodologies in order to build up a complete picture 

of the early thermal history of the Garhwal Himalaya. 

Pressure-temperature conditions for the thermal peak were obtained using the now well- 
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documented average PT procedure of Thermocalc (Powell and Holland, 1994; Holland 

and Powell, 1998). Details specific to each sample are given with the description of the 

results. The methodology used to extract pressure-temperature histories using the 

compositional zonation in garnet along with model pseudosections contoured for garnet 

composition, is described in detail in Chapter 3. 

For Sm-Nd analysis, impure garnet separates were obtained by either crushing single 

crystals or by bulk separation techniques (see sample description for specific details). 

The samples were then purified by hand-picking under a binocular microscope to obtain 

an optically pure separate of 10-50 mg. Samples were washed and transferred into PFA 

screw-cap beakers and spiked with a mixed 149Sm/1SONd tracer. Chemical dissolution, 

separation and mass spectrometric techniques are similar to those described in Cohen et 

al. (1988). Isotopic ratios were measured in static mode on a MAT 262 thermal 

ionisation mass spectrometer at ETH Zurich. Blank levels were 5±3 pg for Nd and 

always negligible. Further details are given in Appendix C. 

4.4 Results 

4.4.1 Pressure-temperature constraints 

While pressure-temperature estimates for near-peak conditions have been made for all 

of the samples, the prograde major-element zonation in G9 has been specifically 

exploited using a pseudosection to extract the pressure-temperature history during 

garnet growth (cf. Vance and Mahar, 1998). Mineral analyses and endmember activities 

for all PT estimates are summarised in Appendix E. 

A PT pseudosection for G9 has already been described in Chapter 3 and only a brief 

summary of the important aspects will be given here. The predicted mineral assemblage 

changes are rather simple with chlorite being stable with garnet and plagioclase at low 

temperatures, biotite joining the assemblage at higher temperatures and chlorite leaving 
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the stable assemblage at temperatures around 580°C at moderate to high pressures. All 

three of the independent compositional contours for the garnet core overlap with each 

other at a pressure and temperature of about 6 kbar and 520°C respectively (see Chapter 

3). Unusually, in this case the pseudosection also models the garnet compositions 

outside the core quite adequately (Figure 3.14a) so that the composition and the P-T 

path can be successfully tracked until about half of the distance to the rim - or at the 

point where Mn -7 mole percent - resulting in a rather flat PT path up to -570°C and 

8.5 kbar. The rim composition (avoiding the Mn-rich rim associated with resorption) 

and that of the matrix assemblage records a pressure and temperature for rim growth of 

about 620°C and 9.5 kbar. 

Additionally the outer 200µm or so of the garnet displays an increase in Mn. The grid 

suggests that in the biotite-plagioclase-gamet field, at temperatures equivalent to rim 

growth in the garnet, this can only be produced by a pressure decrease and must be 

accompanied by garnet resorption (Figure 3.14a). The increase in Mn, then, must result 

from diffusion of Mn released from resorption of the rim back into the remaining 

garnet. As noted previously (Vance and Mahar, 1998) this feature records 

decompression subsequent to the end of garnet growth though a quantitative estimate of 

the amount of decompression is precluded by the problems with modelling the garnet 

rim composition mentioned above. While the details of pseudosections for different 

bulk compositions are quite different the general topologies are similar. It is 

noteworthy, therefore, that similar small increases in Mn are seen in the profiles for 

samples G90 and G57. These two samples also record sharp increases in Fe in this 

region which is also consistent (Figure 4.2b and Figure 4.3b) with decompression at 

high temperatures. 

Garnet in sample G9, therefore, grew during an increase in temperature of about 80- 

100°C with only modest increase in pressure of between 2 and 5 kbar. In addition, the 
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evolving garnet compositions record a linear increase in temperature with pressure. This 

evolution, in this sample from lower structural depths within the HHCS, is very 

different from those followed by garnets in the Zanskar Himalaya from higher structural 

levels (Vance and Mahar, 1998). The latter show PT paths that might be considered 

typical of the early period of a tectonometamorphic cycle (cf. England and Thompson, 

1984) with fast burial early on accompanied by only limited temperature increase, 

followed by isobaric heating. The PT path for sample G9, on the other hand, records 

heating with only a small amount of burial and, as such, might be considered to 

represent thermal re-equilibration after the main phase of burial has ceased. In addition, 

all three metasedimentary samples with garnets that show zonation in the major 

elements, record an indeterminate amount of decompression after garnet growth had 

ceased. 

Major-element zoning in garnet from G57 is small but, nevertheless, indicates a normal 

prograde growth history. However, attempts at modelling the PT evolution of the 

sample using pseudosections as for G9 resulted in poor core PT estimates. This is likely 

to be a result of limited high-temperature diffusional homogenisation of the original 

zoning pattern as rim PT estimates (calculated as for G9) indicate a PT of 767 ± 36°C 

and 10.6 ± 1.5 kbar, sufficient for significant intracrystalline diffusion. 

P-T estimates for sample G96, which is almost completely homogenised, indicate rim 

equilibration temperatures and pressures of 631 ± 38°C and 9.5 ± 1.2 kbar. Given the 

diffusion implied by homogenisation, the temperature is probably only a minimum 

estimate (Spear, 1991). 

Intriguingly biotite in sample 4B(1), in which garnet also has only limited major- 

element zoning, records systematic variations in Fe/(Fe+Mg) ratios away from the 

zones containing garnet, implying incomplete equilibration on the thin-section scale. 

This may arise from a lack of a fluid-bearing phase in the rock and PT estimates using 
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Thermocalc show a strong variation with aH2o. The rim PT estimate as well as the ax2o 

were obtained by searching in T- and P-aH2O space for the best statistical fit among a 

number of dehydration equilibria calculated by Thermocalc (See Chapter 3). This 

approach resulted in a PT of 703 ± 39°C and 12 ± 1.3 kbar at an aH20 of 0.6 for final 

equilibration of the garnet rim with the matrix assemblage (as compared to 772 ± 43°C 

and 12.9 ± 1.4 kbar at an aH20 of 1). As for G96, however, given the diffusion implied 

by homogenisation, the temperature is probably only a minimum estimate and prograde 

information is impossible to extract from this garnet. 
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Figure 4.4 Sm-Nd and Rb-Sr isochron diagrams for garnet samples discussed in the text. Data presented in Table 2 

and Table 3. Garnet - red diamonds; whole rock - white circle; biotite - brown square; muscovite - yellow triangle 

(a) G96 Sm-Nd isochrons (b) G96 Rb-Sr isochrons (c) G31(1) (d) G9 (e) 4B(1). 
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4.4.2 Sm-Nd isotopic results 

The errors given in Tables 1-3 and in the ensuing discussion of all the isotopic data are 

2 sigma. Age determination was made using a York regression (York, 1966). 

Table 4.1 Summary of Sm-Nd TIMS ID and isotope ratio analyses. 

G96 Nd (ppm) Sm (ppm) Sm/Nd 147Sm1144Nd 1 143Nd144Nd 2 

Grt 1 0.066 0.489 7.403 4.4758 0.512936 (60) 
Grt 2 0.158 0.504 3.193 1.9302 0.512225 (37) 
Bt 5.424 1.053 0.194 0.1173 0.511879 (12) 
G31(1) 

Grt 1 0.237 1.252 5.285 3.1949 0.512657 (25) 
Grt 2 0.055 0.219 3.945 2.3847 0.512401 (66) 
WR 1.5237 0.3390 0.223 0.1345 0.511855 (13) 
WR 2 1.5980 0.3541 0.222 0.1339 0.511880 (10) 

G9 
Grt 1 0.086 0.168 1.961 1.1853 0.512303 (24) 

Grt 2 0.207 1.203 5.821 3.5195 0.512798 (108) 
WR 35.446 7.533 0.213 0.1285 0.512269 (8) 
Bt 7.63 3.09 0.405 0.2452 0.512224 (8) 
Ms 17.05 1.82 0.107 0.0645 0.512281 (8) 
4B1 

Grt 1 0.1507 0.7607 5.048 3.0514 0.512277 (58) 
Grt 2 0.6677 0.7934 1.188 0.7183 0.511861 (12) 
WR 24.888 4.9398 0.198 0.1203 0.511861 (8) 
Bt 6.9338 1.295 0.187 0.1129 0.511868 (8) 
1 All errors 0.5% except G31(1) Grt2 (1.5%) and CZG-23 Grtl (1.2%). 2 Replicate measurements (n=40) of the La 

Jolla Nd Standard gave 0.511853±0.000008 (2(7) over the period that these analyses were performed 

Table 4.2 Summary of Rb-Sr TIMS ID and isotope ratio analyses. 

G96 Sr (ppm) Rb (ppm) Rb/Sr 87Rb/86Sr 87Sr/86Sr 1 

Bt 3.577 177.267 49.561 144.603 0.793873 (44) 
Grtl 0.023 0.023 0.977 2.829 0.717375 (38) 
Grt2 0.035 0.100 2.890 8.381 0.731099 
' Replicate measurements of the NBS987 standard gave 0.710291±0.000028 (26) over the period that these analyses 
were performed 

Two isotope dilution analyses of G96 were carried out on gem-quality separates for 

which the data are summarised in Table 4.1 and Table 4.2. The analyses yielded some 
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of the highest Sm/Nd ratios ever obtained from a pelitic garnet (3-7.4) and extremely 

low concentrations. The surprising result is that the two separates gave distinct Sm-Nd 

ages of 37.1 ± 2.1 Ma and 29.2 ± 3.2 Ma for Grt 1 and Grt 2 respectively (Figure 4.4a). 

However, equally surprisingly, the Rb-Sr ages on the same aliquots give similarly 

distinct ages (Figure 4.4b). The fact that the Sm-Nd and Rb-Sr ages on the two separates 

are concordant is a strong indication that these are robust growth ages. It was noted 

above that the initial hand-picked aliquot (Grt 1) consisted of a few large fragments (10- 

15 pieces) while the sample was crushed further before a second separate (Grt 2) was 

obtained. In view of the concordant ages I infer that the first separate may have been 

biased towards the early grown portions of the garnet. It is also noteworthy that these 

concordant age variations have been preserved despite the partial homogenisation of the 

major elements. 

Two isotopic analyses of G31(1) were obtained on a hand-picked separate obtained 

from a single garnet (Grt 1, Grt 2, Table 4.1). A reproducible age, using the whole rock 

as the low Sm/Nd phase, of 39.9 ± 1.4 Ma was obtained (Figure 4.4c). 

Two analyses were made on separates from a single garnet in sample G9 (Grt 1, Grt 2, 

Table 4.1). The two garnet separates do not fall on an isochron with the whole rock 

(Figure 4.4d) suggesting some disequilibrium between one of the garnet analyses and 

the reservoir from which they grew. This is likely to be the result of inclusions 

incorporated into the analysis of Grt 1. A study of the effect of such inclusions and 

comparison of concentrations obtained from in-situ analysis of garnets in sample G9 by 

LA-ICP-MS (Chapter 6) shows that Grt 2 represents very clean garnet with a limited 

potential contribution from inclusions. The incorporation of micro-inclusions may also 

explain the deviation of the mineral separates from the whole rock value. The age 

obtained from Grt 2 and the whole rock is 23.9 ± 4.8 Ma. 

Two aliquots of garnet were analysed from sample 4B 1 which, as for G9, do not form 
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an isochron with the whole-rock analysis (Figure 4.4e) Identical concentrations obtained 

between LA-ICP-MS and ID analyses (Chapter 6) indicate that Grt 2 represents very 

clean garnet with no inclusion contributions, suggesting that the age of 21.7 ± 2.9 Ma is 

robust. 

4.4.3 U-Th-Pb monazite dating 
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Figure 4.6 Summary of age data for the Garhwal Himalaya plotted against distance from the MCT. A schematic 

cross-section of the tecton-stratigraphic units is taken from the Dhuali Valley. Samples from the Bhagirathi are 

plotted assuming that the Vaikrita thrust marks a consistent boundary between Lesser Himalaya/MCTZ and the 

HHCS. Th-Pb monazite inclusions in garnet = grey triangles, Th-Pb matrix monazite = green triangle, garnet data = 

red diamonds. Arrows show the range of ages for monazites included in garnet and the two analyses from G96. 

Three matrix monazites and fifteen monazite micro inclusions within two garnets were 

analysed within sample G57. The results are illustrated in a standard U-Pb concordia 

plot in Figure 4.5b, and presented along with Th-Pb data in Table 4.3. Monazite 

inclusions typically cluster around concordia at 40 Ma, with around 50% lying on 

concordia from 36.2 ± 1.5 Ma (G571c) to 41.1 ± 1.7 Ma (G571e). Th-Pb ages for these 

concordant points are 41.2 ± 1.2 Ma (G571g) to 35.8 ± 1.1 Ma (G572a) with the ages 

randomly distributed within the garnet. Matrix monazites are typically discordant due to 

mixing between 3 different components (40 Ma, -2100 Ma, and <25Ma). While the 

discordance of the matrix monazites could be the result of Pb diffusion at high 

temperatures (--750°C), rare-earth-element chemistry (Foster, In Prep. ) demonstrates 

that this three -way discordance arises because matrix monazites underwent a further 

growth phase some time after garnet had grown. The youngest Th-Pb age of 25.8 ± 0.7 

Ma (Matlc) indicates that this new growth must have occurred after -25 Ma. Analysis 

Matla appears to represent a mixture of all three components. However, the other four 
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matrix monazites, define a chord that suggests that this new growth occurred at 22.5 ± 

1.6 Ma (Figure 4.5b). This age is clearly in accordance with the Sm-Nd data from 

similar structural levels - G9 and 4B(1) - and with other 22 Ma ages recorded from 

MCT zone rocks from elsewhere in the Himalaya (e. g. Hubbard and Harrison, 1989). 

Figure 4.6 combines the garnet Sm-Nd data with the Th-Pb ages for concordant 

monazites and a schematic cross-section of the Garhwal Himalaya. This clearly shows 

the younging to the south of the garnet ages and the overlap in ages of the monazites in 

G90 ang G57 with the growth of garnet in G96 and the crystallisation of garnet in 

G31(1). 

4.5 Discussion 

4.5.1 Accuracy of age data and interpretation 

There are several issues that relate to the accuracy and interpretation of the ages that 

must be addressed before proceeding to a tectonic interpretation. The samples for Sm- 

Nd analysis underwent an initial screening process using the SEM in order to avoid 

REE-rich inclusions such as monazite. The two techniques employed here of Sm-Nd 

garnet dating and U-Th-Pb dating of monazite inclusions are, therefore, mutually 

exclusive. Nevertheless, the great advantage of the current dataset is the availability of 

both these types of data on very similar samples. In this case, features such as the 

concordancy of the two data types allow greater confidence in the accuracy and 

significance of the ages. 

Several studies have shown that accessory phases may contribute to, and indeed 

dominate, "garnet" isotopic data -a feature which is explored in more detail in Chapter 

6, and a brief discussion is presented here. These inclusions, which are often so small (< 

10-20µm) that their physical separation is impossible, have two effects on the apparent 

ages of garnets. Firstly, REE-rich inclusions with low Sm/Nd ratios, such as monazite 
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and allanite, lower the Sm/Nd ratio of the impure garnet separate (e. g. Vance and 

O'Tions, 1992). Secondly, inclusions of different ages to the garnets can so dominate 

the REE budget of the garnet separate that the age obtained is in error (Chapter 6). 

There are a number of criteria for identifying and resolving the role of inclusions in 

effecting the garnet age. Firstly, the measured Sm/Nd ratios of the garnet separates are 

in themselves an indication of the purity of the garnet separate, especially if they can be 

compared with in-situ measurements of Sm/Nd ratios in the actual garnet lattice 

(Chapter 6). Secondly, duplicate analyses of garnet fractions that are variably affected 

by REE-rich inclusions (reflected in variable SnVNd ratios) but that yield reproducible 

ages, suggest that the inclusions have isotopically equilibrated with the garnet and that 

the resultant age really dates garnet (Chapter 6). Finally, concordance, both between 

analyses for different isotopic systems (eg. Sm-Nd and Rb-Sr for G96) and between 

garnet Sm-Nd analyses and monazite inclusions, would suggest that the ages are robust. 

In the case of G96 the rare concordance of the Rb-Sr and Sm-Nd isotopic systems 

indicates that inclusions are not responsible for the ages obtained. Indeed the gem 

quality of the sample resulted in some of the highest Sm/Nd ratios ever obtained for 

pelitic garnet. In the case of G31(1) the two analyses show a spread in 147Sm/144Nd and 

reproducible ages. The variation in 147Sm/'44Nd may be the result of trace-element 

zoning or from inclusions. The concordance of the two analyses indicates that, even if 

the variation results from inclusions, they were in equilibrium with the whole rock- 

garnet system. The older age from G96 is 37 ±2 Ma whereas the age of garnet in 

G31(1) is 39.9 ± 1.4 Ma. These are in impressive agreement with concordant monazite 

inclusions from sample G90, from similar structural levels, whose Th-Pb age is 40.7 ± 

1.3 Ma. In addition, the younger Sm-Nd age of 29 ±3 Ma from G96 is the same as the 

single concordant matrix monazite from G90 of 28 Ma.. 

In the case of G9 and 4B 1 there is some disequilibrium between duplicate garnet 
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separates and the whole rock. However, a comparison of concentrations obtained for the 

high Sm/Nd ratio analyses (Grt 2 in G9 and Grt 1 in 4B 1) with the in-situ analyses of 

REE concentrations obtained by LA-ICP-MS (Chapter 6) indicated that the bulk of Nd 

and Sm measured by ID in these analyses comes from the garnet lattice itself. The ages 

of these two separates are 24 ±5 Ma and 22 ±3 Ma for samples G9 and 4B 1, 

respectively. These ages are distinctly younger than the monazite inclusion ages from 

sample G57 (41-36 Ma), from similar structural levels. However, the discordia defined 

by the four matrix monazites in this sample yields an age of 22.5 ± 1.6 Ma, identical to 

the garnet Sm-Nd ages. 

In summary, the ages from all three isotopic systems employed here - U-Th-Pb, Sm-Nd 

and Rb-Sr - require conditions of high temperature mineral growth and resetting in the 

period 42-28 Ma in the upper levels of the HHCS and from 41-22 Ma at lower levels. 

The issue now is the interpretation of mineral ages. 

Recent experimental measurements of the diffusion rate of Sm and Nd in garnet 

(Ganguly et al., 1998a) have shown that the diffusion rate of these elements is very 

similar to those of Fe and Mg (Ganguly et al., 1998b). In this case the Sm-Nd ages for 

samples G9 and G31(l), which both preserve strong major-element zoning, must 

represent garnet growth. In both these cases electron microprobe analyses show that the 

garnet used for dating comes from near the rim of the garnet (Figure 4.3a and b). 

However, in samples which have undergone substantial diffusional homogenisation of 

their prograde major-element zoning the interpretation is more difficult - 4B 1 and G96. 

The effect of diffusional homogenisation for any given element in garnet will depend 

upon the diffusion rates and the chemical potential gradients within and outside the 

garnet. If the garnet remains a closed system, i. e. no chemical potential gradients exist 

between garnet and its surrounding, only infra-crystalline diffusion occurs and the older 

core ages will mix only with the younger rim ages. If complete homogenisation occurs 
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in this way the age obtained will represent the average of the growth age. If, on the 

other hand, the garnet has exchanged with the surrounding rock by inter-crystalline 

diffusion the age obtained will relate to the closure temperature of the garnet Sm-Nd 

system. 

The preservation of similar age variations across G96 for both the Rb-Sr and Sm-Nd 

system suggests that either these too are growth ages or that the diffusion rate of Sm, 

Nd, Rb and Sr are very similar in garnet. The available diffusion data do suggest that the 

diffusion rates of Sr and Nd in garnet are rather similar at 600-800°C (Coghlan, 1990; 

Ganguly et al., 1998a). Given, the observation that the major elements in G96 do not 

show any significant zonation, it is possible that the isotopic data from this sample date 

closure during cooling. However, the temperature recorded by the mineral compositions 

is 600-660°C. Calculation of the closure temperature for both Sm-Nd and Fe-Mg in 

garnet (Dodson, 1973) suggests that cooling rates need to be much slower than 1°C Ma 

1 for such a temperature to be recorded. While this is incompatible with the minimum 

average cooling rates for the upper-HHCS of -25T Ma 1 between 28 and 16 it may 

suggest that G96 underwent a period of slow cooling after growth and before more rapid 

cooling at a later stage. Alternatively, it implies that there is a decoupling of the Sm-Nd 

and Fe-Mg systems whereby Fe and Mg exchange with the surrounding rock, resulting 

in closure at -630°C, while Sm-Nd do not exchange preserving growth, or average 

growth, ages. However similar ages are obtained from monazites in sample G90 and 

garnet in sample G96 - samples which come from within 500m of each other. 

Concordant monazite inclusion ages from sample G90 and the core estimate of G96 

yield the same age as do concordant matrix monazite in G90 and the younger garnet age 

for G96. It, therefore, seems likely that the garnet ages are growth ages only with only 

limited Sm-Nd exchange with the matrix. There is also the further matter of sample 

selection for although G96 Grt 1 was biased towards the core there will have been some 

Timing of prograde metamorphism... C. I. Prince 130 



Chapter 4 Timing of prograde metamorphism 

contribution from rim portions while Grt 2 is likely to represent an additional averaging 

of the growth age, due to the more even sample selection. Thus garnet in sample G96 

grew at least 37 Ma ago and continued until at least 29 Ma. 

In the case of 4B 1 the temperature recorded by the major elements is over 700°C while 

the Sm-Nd age is 22 Ma. Again a similar calculation to that performed above for G96 

suggests that this age must lie somewhere between average growth age and a cooling 

age through >700°C. 

The closure temperature for the U-Th-Pb system in monazite is thought to be around 

700-750°C (Parrish, 1990), temperatures higher than any recorded by most of the rocks 

studied here though lower structural levels may have reached or exceeded this level as 

late as 22 Ma. In addition, however, Zhu et al. (1997) have concluded that monazites 

within garnet may not isotopically re-equilibrate at temperatures below 800°C because 

of the high postulated closure temperature for the U-Pb system in garnet (Mezger et al., 

1992; Burton et al., 1995). In addition, these inclusions will not be available for mineral 

reaction after growth of the garnet around them. Given that the temperature for the 

garnet isograd lies at 450-600°C, significantly below the closure temperature of U-Th- 

Pb in monazite, the ages of monazite inclusions in garnet must date monazite growth. 

This is further supported by both the random distribution of ages within the garnet and 

the much younger ages obtained for garnet at similar structural levels - G9 and 4B 1. 

The matrix monazites, however, are invariably discordant and point towards younger 

ages than the inclusions. Because these grains are not shielded by garnet, they will be 

available for new growth, recrystallisation and isotopic re-equilibration after garnet 

growth. To distinguish between these three possibilities chemical analyses of monazites 

were obtained on the electronmicroprobe (Foster, In Prep. ). These indicate that matrix 

monazites show significant chemical differences from those included within garnet 

(higher La/Y and lower ThO2/UO2 ratios ). This is interpreted to indicate that the the 

Timing of prograde metamorphism... C. I. Prince 131 



Chapter 4 Timing of aroarade metamorphism 

matrix monazites underwent a further growth period after the monazites included within 

garnet. 

Both the garnet Sm-Nd ages and the monazite ages from high structural levels within 

the HHCS of Garhwal indicate metamorphic mineral growth from 41 Ma terminating 

(at high temperatures) at 28 Ma. This overlaps with ages already obtained from middle 

structural levels in Zanskar to the west (33-27 Ma: Vance and Harris, 1999) but extends 

to older values. For lower structural levels nearer the MCT minerals record ages 

between 41 and 22 Ma which, while they overlap with those from Zanskar, extend to 

much younger values. 

4.5.2 Collisional heat sources in the Himalaya 

Previous studies of the thermal structure of orogenic belts based solely on pressure- 

temperature data have always suffered from the uncertainty that the apparent thermal 

gradients were not obtained synchronously (e. g. Hodges et al., 1988; England et al., 

1992). Indeed thermal modelling of metamorphic belts suggests that they were unlikely 

to have been (England and Thompson, 1984). In the present case, however, the 

chronological data on monazite inclusions and garnet, in combination with the pressure- 

temperature constraints, provide a unique snapshot of the thermal structure of an orogen 

in the early stages of collision and metamorphism. 

Continental collision between India and Asia occurred along the Indus Tsangpo Suture 

Zone, -100 km to the north of the HHCS, and is believed to have been initiated in the 

Zanskar region at -55 Ma and further to the east (e. g. Garwhal) at 50 Ma (Rowley, 

1996). While ages for high-temperature processes -20-25 Ma, as found here for the 

lower levels of the HHCS, are rather difficult to reconcile simply with collision at 50-55 

Ma (England et al., 1992), ages for mineral growth of around 40-30 Ma are completely 

consistent with a thermal response to collision at 50-55 Ma (England and Thompson, 

1984). 
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However, the garnets in Zanskar record burial at 40-35 Ma rather than 50-55 Ma (Vance 

and Mahar, 1998; Vance and Harris, 1999) which must have been in response to thrusts 

and nappes south of the main suture zone and active well after 50-55 Ma. This may also 

be the case for Garhwal but no constraint is as yet available on the pressure evolution in 

the period 40-35 Ma. However, in the Harsil formation in Garhwal minimum rim P-T 

estimates of 630 °C and 9.5 ± 1.2 kbar, from G96, indicate that near the end of garnet 

growth, at or after 29 Ma, the Harsil formation was buried to at least 30 krn (lithostatic 

gradient of 27 MPa km''). This burial must have been caused by a cover belonging to 

the Tethyan Sedimentary Sequence (TSS) which at present lies to the north. Significant 

thickening of the TSS must have occurred because the restored thickness of the TSS is 

-10 km (Searle, 1987), and this must have resulted from movement on thrusts lying 

structurally above and to the north of the present exposure. 

Additionally, garnet growth in the small leucogranitic body from which sample G31(1) 

was derived occurred at 40 Ma. This observation implies that temperatures within the 

upper levels of the HHCS in Garhwal were sufficient to produce small melts at 40 Ma. 

Chapter 5 demonstrates that temperatures of formation for these small melt bodies were 

-630°C and that these samples formed by vapour-present melting of the HHCS. 

However, structurally below the leucogranite sample G31(1) in sample G57, monazites 

were growing from 41 Ma to 36 Ma and were subsequently included in garnet. It is 

difficult to apply a PT constraint to the growth of monazite, but in this case due to the 

methodology the temperature of garnet growth in G57 constrains the upper limit for the 

temperature of monazite growth. Unfortunately, the garnet in sample G57 has a 

homogenised major-element profile so that precise modelling of the pressure- 

temperature evolution during garnet growth is not possible. However, preliminary 

modelling of the mineral assemblage suggests that garnet isograd lies at <550°C (Figure 

4.7). Alternatively, constraining temperatures for monazite growth in pelitic rocks, 
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estimates suggest that monazite growth occurs at -525°C (Smith and Barreiro, 1990). 

Thus, sample G57 can only have been at temperatures of 500-550°C in the period 41-36 

Ma, when the monazites grew. 

It appears, then, that rocks close to sample G31(1) were at temperatures of -630°C 

while temperatures of 500-550°C existed in sample G57 which is presently -22 km 

structurally beneath G31(1) - assuming no major lateral variations. Thus the 

temperatures recorded at 40 Ma across the presently exposed orogen suggest an inverted 

geothermal gradient. This has since been overprinted by later thermal equilibration to 

produce the near isothermal profile recorded by rocks in the Garhwal Himalaya HHCS 

and elsewhere (see Chapter 3). 

One possible explanation for the profile is that the exposed rocks have been tectonically 

emplaced at their present structural levels. Thus the upper-levels of the HHCS could 
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lies within the HHCS, this would imply that the thrust must also lie within the presently 

exposed HHCS of Garhwal. 

There are, however, alternative explanations. The thermal profile could result from 
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thrust emplacement close to 40 Ma and would represent a snapshot of a sawtooth 

geotherm produced as result of the rapid emplacement of hot crust over cooler crust 

(England and Thompson, 1984). One-dimensional thermal modelling suggests that 

following instantaneous overthrusting an inverted thermal structure can persist for 

periods of about 5 Ma (Molnar et al., 1983; England and Thompson, 1984). In this 

model G31(1) would lie in the hangingwall of the thrust, or very close to it, and G57 

within the footwall. Interest has tended to focus on such sawtooth geotherms as a 

possible mechanism to explain inverted metamorphism in the footwall to the MCT. 

However, if sawtooth geotherms are attainable in the crust this model can only work if 

the shortening that led to the inverted geotherm occurred after 45 Ma and, given the size 

of the inversion, much closer to 40 Ma. This model, then, would predict the shortening 

that led to the inverted gradient to have occurred within the HHCS after initial collision 

at around 40 Ma - as appears to have occurred in Zanskar further west. However, 2-D 

numerical modelling using geologically feasible parameters shows that such 

temperature inversion is not produced (Grasemann, 1993). 

One final possibility is that the small crustal melts, represented by G31(1), formed by 

anomalous heat sources in the crust, including; shear heating, advection of heat by 

intrusions or locally high concentrations of radiogenic heat-producing elements. There 

is no field evidence for the last two of these possibilities as mafic intrusions are very 

limited in volume and are probably related to the pre-Himalayan history of the HHCS 

and there is no lithological variation that could produce locally high-heat production. 

Shear heating, however, cannot be unequivocally ruled out because, although it is 

difficult to maintain high shear stresses in the presence of a melt, the localised nature of 

these melts and their small volume mean that only limited heating is required. Evidence 

for such shear heating is, unfortunately, likely to be overwritten due to later re- 

crystallisation during subsequent metamorphism and, although there are no clear 
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tectonic breaks in the HHCS in Garhwal, it is pervasively deformed by varying amounts 

of top-to-the-south shear. This model would also imply that thrusting occurred close to 

G31(1) at 40 Ma. 

All three possible explanations for temperatures of >630°C in the upper-HHCS whilst 

temperatures <550°C existed in the basal-HHCS imply that thrusting occurred close to 

G31(1) - within the HHCS - and that it occurred at or after 40 Ma. This means that 

rocks structurally above G31(1) underwent burial and significant metamorphism prior 

to 40 Ma and, as a corollary, that PT constraints obtained from them cannot be used in 

any obvious way to constrain thermal models relating to later tectonic events such as the 

widespread anatexis at 24-17 Ma. Furthermore, models which assume that the 

isothermal to inverted temperature profile across the HHCS in Garhwal, and potentially 

elsewhere in the Himalaya, records a snapshot of the crust are inappropriate (e. g. 

Hodges et al., 1988). Indeed, the isothermal profiles probably result from the 

combination of thermal conditions in the crust attained at both different times and 

positions during the orogen, which, without chronological information combined with 

temperature constraints, would have been invisible. 

4.5.3 Crustal melting and the pre-exhumation thermal structure 

One of the outstanding problems in Himalayan geology is the process resulting in the 

formation of the large leucogranite intrusions presently exposed at the top of the HHCS 

and formed at 24-17 Ma. Early one-dimensional modelling suggested that insufficient 

heat would remain in the crust at -23 Ma if instantaneous thickening occurred at 50 Ma 

(England et al., 1992) and many of the models for the formation of the leucogranites 

have therefore been linked to the necessity for additional heat sources. Furthermore, 

debate has concentrated on the causal relationship between movement on the principal 

structures - the MCT and STDS - and anatexis. For example, local heat sources may 

have been augmented by shear heating on the Main Central Thrust - active at - 22 Ma 
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(Hubbard and Harrison, 1989). Alternatively, melting may have occurred by 

decompression melting caused by rapid extensional movement on the STDS -a model 

which requires high temperatures prior to fault movement (e. g. >680°C at -5 kbar) and 

rapid decompression (Harris and Massey, 1994). 

There is a growing recognition that the migmatites often found at the top of the HHCS 

are not the source for the larger leucogranite melts (see Chapter 5 and Brouand et al., 

1990; Inger and Harris, 1993; Barbey et al., 1996). Indeed, in Garhwal, the leucogranite 

laccoliths can be seen to be fed from the HHCS below the Harsil formation (Searle et 

al., 1993; Scaillet et al., 1995; Searle et al., Subm. ). Furthermore, the evidence 

presented here suggests that at the time of anatexis (-23 Ma) only the basal-HHCS was 

still at temperatures approaching those required for anatexis. It seems likely, therefore, 

that the source for the High Himalayan Leucogranites is in the basal-HHCS of Garhwal 

for which the youngest ages and highest temperatures are obtained. 
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Figure 4.8 PT estimates for rocks of the basal-HHCS with appropriate melting solidi. Solid line (1) represents the 
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from Metcalfe (1993) (open diamonds). Grey box represents approximate melt production field for the HHL 
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Unfortunately, because no constraints from the homogenised garnet in 4B 1 or from the 

monazite in G57 are available on the thermobarometric evolution, these data tell us 

nothing about how these rocks achieved these temperatures - whether by local heating 

(eg. shear heating) at 22 Ma or simply by heating in response to burial. However, there 

are a number of observations that suggest that there is no requirement for additional 

shear heating on the MCT. Firstly, sample G9, -10 km above the MCT, was still 

undergoing heating at 24 Ma, implying that the basal HHCS was still continuing to heat 

in response to burial at this time. Secondly, this observation is consistent with the data 

from Zanskar, further west along the orogen, where a complete PT path has been 

extracted from garnet and shows that garnets there were still recording heating in 

response to burial at about 27 Ma. This, in addition to the theoretical difficulty of 

maintaining significant shear stresses in the presence of a melt, suggest that shear 

heating is neither necessary nor viable. 

The leucogranites in the Harsil formation are known to have been intruded in an 

extensional regime (Scaillet et al., 1995) suggesting that the STDS was active at the 

time of intrusion. It appears likely that in Garhwal, as for other parts of the orogen, the 

HHCS was exhumed during movement on the MCT and tectonic denudation by the 

STDS (Hodges et al., 1992). Vance et al., (1998a) showed that in Zanskar the thermal 

effect of tectonic denudation by movement on the STDS was delayed by some 3-5 Ma 

at distance from the normal fault, although the decompression effect was likely to be 

felt instantaneously. Thus rocks denuded by the STDS are likely to have undergone 

rapid decompression but the thermal response is likely to have been delayed. However, 

if movement on the MCT occurred synchronously with movement on the STDS this 

would tend to cool the basal-HHCS. These two competing effects cannot be constrained 

here but, numerical modelling suggests that the isotherms in the region of a thrust in a 

convergent orogen will be brought closer together - resulting in near-isothermal 
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decompression for rocks brought up along the thrust (Jamieson et al., 1998). 

Whether the basal-HHCS could have been the source for the High Himalayan 

Leucogranites can be qualitatively explored by comparing temperatures recorded by the 

basal-HHCS with the principal melt-forming reactions. The temperatures attained in the 

basal part of the HHCS in Garhwal are plotted on Figure 4.8 (mineral data presented in 

Chapter 3 and Appendix E. Two PT estimates for the HHCS of the Bhagirathi from 

Metcalfe, 1993). In response to tectonic denudation by the STDS, rocks which were at 

similar temperatures to those presented in Figure 4.8 could easily pass through the 

muscovite-dehydration reaction and into the melt field by decompression as envisaged 

by Harris and Massey (1994). 

4.6 Conclusions 

From the data discussed above, it is clear that the thermal models which suggest that 

orogen wide thermal re-equilibration would have finished and cooling began prior to 

anatexis at 20-25 Ma - thus requiring additional heat sources for melting - are 

inappropriate. The basic assumption of these models is that crustal thickening occurs 

very quickly at 50 Ma and then stops. This is clearly not the case in the Himalaya. Early 

collision is thought to have occurred at -55-50 Ma, with the formation of eclogites to 

the west and structurally to the north (de Sigoyer et al., 1999). In Zanskar and Garhwal 

the upper- to mid- HHCS responded to burial by 41 Ma - some 15 Ma after initial 

collision (Vance and Harris 1999). Additionally, the heating recorded by G9, at lower 

structural levels within the HHCS at around 24 Ma must imply burial shortly before this 

time. Finally, the locus of deformation was transferred to the MCT at 22 Ma (Hubbard 

and Harrison 1989) and later to the MBT -6 Ma (MacFarlane, 1993). All these 

observations are consistent with the idea of a foreland-propagating thrust system in the 

Himalaya (Searle, 1987). The net effect of this process is to lengthen the time period 

during which the crust remains hot as more and more heat is moved into a relatively 
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narrow orogenic belt. Such a process may ultimately be responsible for the longevity of 

high temperatures in the Himalaya and crustal melting at 20-25 Ma. 

Perhaps most importantly for the study of orogenesis elsewhere is that, in the Himalaya 

in the period from collision at -55-50 Ma to the present, there has been a continual 

tectonic reorganisation of heat-producing material within the orogen on timescales of 

--10-15 Ma. Thus techniques which cannot constrain thermobarometric variations on 

these timescales are unlikely to illuminate even the first-order tectonic controls in 

orogens. Indeed, without PTt constraints even in very young mountain belts tectonic 

features - such as the intra-HHCS thrusting presented here - may be overlooked. 
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Chapter 5- Vapour-present melting in the 
Himalaya: a common feature of orogenesis? 

5.1 Introduction 

Granite production from crustal protoliths can occur either under vapour-present 

melting or during mica-dehydration reactions (e. g. Le Breton and Thompson, 1988). 

However, the high solubility of water in granite magmas means that the melt volumes 

formed by vapour-present melting will be limited by the availability of a large volumes 

of a vapour phase. Additionally, the positive dP/dT slope of the vapour-present melt 

reaction means that melts formed in this way will crystallise before rising significantly 

in the crust. For these reasons vapour-present melting is not considered important in the 

generation of large volumes of granites that have segregated from their source regions 

(Clemens and Vielzeuf, 1987). 

However, the production of water during prograde metamorphism means that a free 

fluid phase may be available in the early stages of orogeny and it might be expected that 

they will result in limited partial melting of crustal rocks. In this chapter geochemical 

and chronometric data are reported from a small group of crustally-derived melts that 

indicate vapour-presenting melting in the Himalayan orogen did occur and that it 

significantly predated the well documented High Himalayan Leucogranites formed 

under fluid-absent conditions. 

5.2 The Vaikrita Group of Garhwal Himalaya 

The geological setting of the rocks dealt with in this chapter are detailed in Chapter 2. 

However, a few relevant details are repeated here. The Vaikrita Group of the Garhwal 

Himalaya display many of the principal characteristics of the HHCS exposed elsewhere 

in the orogen (Hodges and Silverberg, 1988; Metcalfe, 1993). The Vaikrita Group is 

bounded to the south by the Vaikrita thrust which has been correlated with the MCT of 
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Nepal (Valdiya, 1980; Ahmad et al., In press). Below the Vaikrita thrust lies Main 

Central Thrust Zone which is bounded by the Munsiari thrust to the south (Metcalfe, 

1993). As for other sections of the HHCS, the Vaikrita Group is bound to the north by 

the STDS which varies from a brittle fault in the east to a more ductile fault system in 

the Bhagirathi valley in the west (Scaillet et al., 1995; Searle et al., Subm. ). 

The HHCS in the Alaknanda valley can conveniently be separated into three units: the 

basal-, mid- and upper-HHCS (Figure 5.1, after Virdi (1986)). The basal-HHCS consist 

of kyanite-grade gneisses which grade into the mid-HHCS, dominated by quartzites. 

The upper-HHCS comprises schists, calc-silicates, gneisses, quartzites and, towards the 

upper most sections, increasing volumes of leucogranite melts culminating in large 

intrusions in the Arwa valley. To the north of the Arwa valley the low-grade 

metasediments have been identified as the Tethyan Sedimentary Series (Heim and 

Gansser, 1939). 

PTt histories for metapelitic assemblages of the Garhwal Himalaya have been explored 

using Sm-Nd garnet chronometry and in-situ U-Th-Pb monazite dating (Chapter 4). The 

results show that garnet growth was initiated by -37 Ma and continued up to at least 

-29 Ma during burial and heating, similar to PTt paths derived from garnets in Zanskar 

(Vance and Mahar, 1998; Vance and Harris, 1999). Furthermore, these studies indicate 

that at the time of anatexis (-22 Ma) the highest temperatures were attained in the basal- 

HHCS. 

The leucogranite samples presented here form two groups that can be distinguished in 

the field. Decimetre-sized, deformed leucogranites intrude the metasedimentary 

sequence and samples are restricted to the base of the upper-HHCS in the Alaknanda 

valley (Figure 5.1). They are comprised of quartz, K-feldspar, plagioclase, tourmaline 

and garnet and are often folded with the axial planes parallel to the main foliation in the 

metasediments. Sillimanite needles form aggregates in veins which cross-cut both 
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garnet and tourmaline in the leucogranites and are aligned with the fabric in the 

surrounding rock. Sillimanite shows variable retrogression by unoriented muscovite. 

The second group of granites, principally from the Alaknanda (Figure 5.1), lie further 

up section and are generally undeformed and form metre-wide dykes either parallel to, 

or cross cutting the foliation in the metasediments. They are comprised of quartz, K- 

feldspar, plagioclase, muscovite, biotite, tourmaline and garnet in varying quantities and 

represent the well characterised early-Miocene melting event which produced the larger 

intrusions in the Garhwal region such as the Gangotri laccoliths and the other High 

Himalayan Leucogranites across the orogen (e. g. Scaillet et al., 1990; Harrison et al., 

1999) 

This chapter contrasts the chronology and geochemistry of these two granite types and 

specifically discusses the origin of the early leucogranites which have gone unnoticed in 

the voluminous literature on Himalayan granites. 

5.3 Analytical Techniques 

Whole-rock major- and trace-element analyses were obtained on an ARL Fisons 

wavelength dispersive XRF spectrometer at the Open University. Major-elements were 

determined on glass discs prepared by fusing powdered sample with Spectroflux 105. 

Trace elements were determined from pressed powder pellets. One-sigma analytical 

precision for trace-element data (Rb, Sr, Y, Zr, Nb, Ba, Pb) is 2% relative for 

concentrations >100 ppm and better than 10% relative for concentrations <100 ppm. 

Whole-rock REE, Th and U concentrations were measured by instrumental neutron 

activation analysis (INAA) of powdered samples at the Open University. One sigma 

analytical precision on INAA data is 5% relative for concentrations <0.5 ppm and better 

than 3% relative for concentrations >0.5 ppm. 

For chronometric studies a single, whole, garnet crystal was separated from the sample, 

crushed and an optically pure aliquot obtained by hand picking in propanol under an 
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optical microscope. Chemical dissolution, separation and mass spectrometric techniques 

are similar to those described in Cohen et al. (1988) except for the departures detailed in 

Appendix C. 

5.4 Geochemistry of Deformed leucogranites 

The deformed leucogranites of the Vaikrita Group sampled here contrast strongly, not 

only in field characteristics, but also in their geochemistry with the undeformed 

leucogranites. The latter group may be correlated with the Early Miocene (24-17 Ma) 

High Himalayan leucogranites that are amongst the most intensely studied granites in 

the world (see review in Harrison et al., 1998). These intrusions occur across the 

Himalayan orogen, emplaced as sheets and sills into high-grade and weakly 

metamorphosed metasediments (Le Fort et al., 1987). The youngest, and most 

representative phase of these intrusions is a strongly peraluminous muscovite, 

tourmaline leucogranite with garnet phenocrysts sometimes present. The major-element 

abundances and modal mineralogy of Himalayan leucogranites indicate minimum-melt 

compositions formed at pressures of 500-1000 MPa (5-10 kbar) (Inger and Harris, 

1993). Their isotope geochemistry (Sr, Nd and Pb) is strongly indicative of a 

metasedimentary source (Gariepy et al., 1985; Deniel et al., 1987), confirmed more 

recently by experimental melting studies of kyanite-grade metasedimentary rocks from 

the Langtang section of the High Himalaya (Patino Douce and Harris, 1998). 

The deformed granites have remained poorly studied but, the 87Sr/86Sr and CNd for 

G31(1) of 0.764 and -15 respectively (calculated at 40 Ma) lie within the range of 

values for the HHCS (see Ahmad et al., In press), indicative of a crustal origin and 

consistent with a source in HHCS. Additionally the deformed leucogranites fall within 

the 87Sr/86Sr and ENd range of the more voluminous Miocene leucogranites (ENd -13 to - 

15,87Sr/86Sr 0.777-0.747; Scaillet, (1990); Stem et al., (1989), and, thus, are 
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Chapter 5 Vapour-present melting 

indistinguishable from them isotopically. 

The major-element compositions of the deformed granites (Table 5.1) are somewhat 

variable, ranging from granitic to trondhjemitic (G26). Interestingly trondhjemitic 

compositions have been obtained from melting micaceous protoliths, but only in the 

presence of a free-fluid phase (Patino Douce and Harris, 1998). Compared with the 

Miocene leucogranites the compositions of the deformed granites are generally more 

ferric (with higher concentrations of Fe, Mn, Mg) and have higher Ca/(Na+K) ratios, 

indicative of a larger melt fraction. The high silica abundances in sample G66 (>77%) is 

indicative of either fluid activity (pegmatites are commonly enriched in silica above the 

expected minimum-melt abundances) or of entrained quartz from the protolith. 
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Figure 5.2 (a) Spidergram for the trace-element composition of deformed leucogranites normalised against average 

composition for undeformed leucogranites taken from samples presented in Table 5.1. (b) Chondrite normalised REE 

plot for measured values of both deformed and undeformed leucogranites and metapelites. Migmatite from Zanskar 

(Ayres, 1997) 
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Trace-element abundances also provide strong contrasts with the later leucogranites. 

Depletions in HFS elements like Zr, Y and LREE in the deformed leucogranites can be 

attributed to lower melt temperatures resulting in lower solubilities of accessory phases 

in the melt such as monazite, apatite and xenotime (Ayres and Harris, 1997). The 

deformed leucogranites are characterised by rather flat chondrite-normalised REE 

profiles except for the marked positive Eu anomaly (Figure 5.2b). In this respect they 

contrast strongly with the large negative Eu anomaly of the younger leucogranites. The 

lower Rb/Sr ratios of the deformed granites are indicative of higher melt fractions, 

assuming both granites are derived from similar sources. The increase in Ba 

concentrations in the deformed leucogranites relative to the young leucogranites 

indicates that the restite contained little, if any, potassic phases like alkali feldspar or 

biotite. Alternatively the very high Ba concentrations in one deformed leucogranite 

(G31) may indicate Ba mobility by fluids: a feature associated with crustal melting 

which has been documented by other Himalayan studies (Weinberg and Searle, 1999). 

5.5 Discussion: Origin of the deformed leucogranites 

At the lowest temperatures at which melting is possible (<650 °C), fluid phase-present 

melting results in high melt fractions (25-40% depending on the modal composition of 

the protolith). With increasing temperatures, fluid-absent muscovite melting, followed 

by fluid-absent biotite melting become possible, each reaction imposing characteristic 

Rb, Sr, Ba concentrations on the melt (Harris et al., 1995). A preliminary estimate for 

the solidus temperature can be obtained from the solubility of zircon and of monazite in 

the melt, obtained from Zr and LREE concentrations using the calibrations of Harrison 

and Watson (1983), and Montel (1993) respectively. For the deformed leucogranites, 

temperatures of 630-640°C are obtained from both thermometers, about 100°C lower 

than those of typical Himalayan leucogranites (Ayres and Harris, 1997). Bearing in 

mind these are probably maximum temperature estimates due to the possibility of 
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inheritance, such low temperatures preclude dehydration melting of biotite as a possible 

origin. 

In determining the petrogenesis of granitic rocks only the behaviour of those trace 

elements that are predominantly sited in major phases can be modelled from appropriate 

partition coefficients (Harris et al., 1995). Stoichiometric coefficients for balanced melt 

reactions under both fluid-present and fluid-absent conditions have been determined 

from: (i) microprobe analyses of muscovite, biotite, and feldspar compositions from a 

typical pelitic schist and; (ii) the major-element composition of an average deformed 

leucogranite (Table 5.2). 

Table 5.2 Modal compositions of granite, metapelites with modelled restite 

Undeformed Deformed Average Restite (fluid Resitite (fluid 
granite granite pelite present) absent) 

Quartz 33 43 49 69 56 

Alkali- 22 18 009 
Feldspar 

Plagioclase 33 25 10 19 
Muscovite 6 12 20 0 0 

Biotite 0 2 10 16 11 

Garnet 1 0 5 8 6 

Tourmaline 5 0 5 0 0 

Kyanite 0 0 1 7 9 

Ci/Co (Rb) 0.9-1.2 1.2-2.0 

C1/Co (Sr) 1.0-2.0 0.2-0.6 

In the presence of a fluid phase, a schist that contained no alkali feldspar would generate 

melts via the reaction 

Mu+0.60Q+0.47P1+0.13V=1.95L+0.15Sill (1) 

assuming a pre-crystallisation H2O content of 10% in the melt (Holtz and Johannes, 

1991). Coefficients are given in mass units. A melt fraction of -0.39 will result (limited 

by the exhaustion of muscovite, which virtually coincides with that of plagioclase for a 
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typical pelite assemblage). However the precise proportions of muscovite and 

plagioclase that react under conditions of fluid flushing depend on temperature and 

pressure (Patino Douce and Harris, 1998). Moreover, although the Mg component of 

reactant muscovite is sufficient to generate the concentration of Mg in the melt such that 

no significant biotite contribution is required, it is probable that a small proportion of 

biotite would break down as is observed under some experimental conditions (Holtz and 

Johannes, 1991). 

Under fluid phase-absent conditions the stoichiometric coefficients of the balanced 

equations depend on the melt fraction obtained. If modelled from the melt fractions 

obtained experimentally by Patino Douce and Harris, (1998) a melt fraction of 0.12 

results from a modal abundance of 20% muscovite in the source and a pre- 

crystallisation H2O content of 6% in the melt (Holtz and Johannes, 1991). This results 

in the reaction 

Mu + 0.23Q + 0.1OPI = 0.6L + 0.33Ksp + 0.38Sill. (2) 

As for fluid phase-present melting, biotite is not essential to balance the Fe, Mg 

concentration in the Himalayan granite, although minor quantities of biotite have been 

identified as a product in experimental melting of Himalayan pelites (Patino Douce and 

Harris, 1998). Reactions 1 and 2 provide reactions that are generally consistent with 

both mass balance and experimental constraints. 

These two reactions will have strongly contrasting effects on the Rb, Sr and Ba 

concentrations in the melt. Under equilibrium conditions it is possible to derive the 

modal composition of the restite by mass-balance calculations, and to apply the 

appropriate partition coefficients to predict the trace-element partitioning between melt 

and source. For this study the partition coefficients of Blundy and Wood (1991) and 

Nash and Crecraft (1985) have been used for melts of leucogranite composition and 
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have assumed melting occurred by continuous removal and collection of the melt 

(Harris et al., 1993). 
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Figure 5.3 Rb, Sr diagram showing the range of values corresponding to undeformed granites (grey diamonds), 

deformed granites (filled circles) andpelites from the HHCS (open diamonds). Vectors for the variation from average 

pellte (Av. Pel. - open circle) to average deformed granite (Av. Def. Gr. - open circle) and average undeformed 

granite (Av. Undef. Gr.. - open circle) are shown as black arrows. Modelled vectors corresponding to vapour present 

and vapour-absent melting as discussed in the text are shown as dashed arrows. 

The calculated restite compositions and trace element distribution between melt and 

source (C1/Co) are given in Table 5.2. The variation in Ci/Co is due to the possible range 

of protolith compositions, principally the range of muscovite and plagioclase 

abundances in different pelites. Despite the range of Rb and Sr in the analysed pelites 

(Figure 5.3) it is clear that the deformed granites have slight depletion of Rb and strong 

enrichment in Sr relative to their source; C1/Co=1 and Cl/C0>1 for Rb and Sr 

respectively are characteristic of fluid phase-present melting where high melt fractions 

depletes the restite in feldspar (see model vectors in Figure 5.3). In contrast fluid-absent 

melting results in Cl/C. >1 for Rb and Ci/Co«1 for Sr due to the high modal proportions 

of feldspar in the restite. The trace-element data, therefore, suggest an origin of fluid 

phase-absent melting for the younger leucogranites as has been proposed for the large 

Himalayan leucogranite bodies in previous studies (Harris et al., 1995) and fluid phase- 
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present melting for the deformed leucogranites. Strong Ba depletion in the melt relative 

to source is predicted by both models, unless biotite is absent from the restite, but in that 

case strong Rb enrichment would also result in the melt. The highly variable Ba 

concentrations in both source and melt might suggest that Ba was particularly mobile 

during anatexis. 

d 

1. E+03 

1. E+02 

1. E+01 

0 1. E+00 

c 1. E-01 
0 U 

1. E-02 

1. E-03 

O-"-" p ý... 
" Q, 

. D-. 
"D 

'" , 
. ý" 

t 
ý'ý 

-tu 
0ý In 

iUaZ (n W cm Fe 02Wý, ý� J 

Figure 5.4 Chondrite normalised REE plot for modelled REE element patterns compared to the measured deformed 

leucogranite composition (open circles). Modelled results are; open diamonds assuming equilibrium melting of 

major phases, solid squares from assuming dissolution of accessory phases, solid triangles from assuming 

disequilibrium melting of accessoryphases. 

REE behaviour in granitic systems may be treated in two contrasting ways. If it is 

assumed that REE in the melt are determined by equilibrium partitioning between melt 

and restite (Hanson, 1978), as in the above treatment of Rb and Sr, large LREE 

abundances and a negative Eu anomaly are predicted (Figure 5.4); the high 

LREE/HREE ratio results entirely from assuming equilibrium of HREE between garnet 

and melt. As has been observed in previous studies such an approach is unlikely to be 

successful both because the REE are controlled primarily by accessory phase 

dissolution and also because temperatures are too low for equilibrium partitioning to be 

achieved, particularly for garnet-bearing assemblages (Harris et al., 1995). 

An alternative approach is to model the dissolution of key accessory phases using the 

appropriate solubility equation for each phase (Ayres and Harris, 1997). By inferring the 
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zircon, monazite and apatite contributions from the abundances of Zr, Th and P 

respectively in the granite, and assuming accessory phase compositions for these phases 

given in Table 2 of Ayres and Harris (1997), the resulting REE profile may be 

compared with the observed REE profile of the granites (Figure 5.4). Although the 

LREE fit closely with the observed values (these are contributed almost entirely from 

monazite dissolution) there is poor correlation of the HREE, and the predicted negative 

Eu anomaly, which reflects the negative anomaly of the source rock, is at variance with 

the observed positive anomaly. Whilst the HREE can be ascribed to variable 

HREE/LREE in the accessory phases in the Garhwal protoliths, the positive Eu anomaly 

is more difficult to account for. 

When a melt forms under disequilibrium conditions the trace element budget in the 

reactant phases is transferred directly to the melt. For the vapour phase-present reaction 

(equation 1) the contributing phases are muscovite and plagioclase. The resulting REE 

profile from disequilibrium melting (Figure 5.4) has a strong positive Eu anomaly 

derived from the reacting plagioclase. However for the remaining REE their 

concentrations are much lower than are observed in the granite. 

The high Rb/Sr ratios for the undeformed granites of (-6) is consistent with fluid-phase 

absent melting from a source with -20% muscovite and 10% plagioclase (Harris et al., 

1993), as has been used to model the melting reaction (Table 2). However the decrease 

in Rb/Sr from metapelite to deformed granite (from an average of 2.0 to -0.7) is not 

easily explained by equilibrium melting, but may result from disequilibrium melting 

where the Sr in the source is sited overwhelmingly in plagioclase which is consumed by 

the melt reaction; in contrast the Rb in the source is only partially sited in muscovite 

(the bulk lying in biotite, unaffected by the reaction). A Rb/Sr in the melt of -0.6 is 

predicted by disequilibrium melting of muscovite, plagioclase and quartz (Harris et al., 

1993). Some chemical disequilibrium under the low solidus temperatures suggested 
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here is highly probable; for T<650°C, Sr would be expected to take >1 Ma to equilibrate 

across a1 mm plagioclase crystal according to the diffusion parameters of Giletti and 

Casserly (1994). Under conditions of fluid influx temperature oversteps may occur such 

that melt formation and extraction are both rapid processes, occurring within a few 

thousand years (Rubie and Brearley, 1990; Harris et al., In press). It is proposed that 

both accessory phase dissolution and disequilibrium melting of muscovite and 

plagioclase occurred concurrently resulting in the observed REE profile. Such a process 

will be favoured by (i) low melt temperatures leading to sluggish diffusion of Eu 

between melt and restite and (ii) conditions of fluid influx to source rocks above 

minimum melt temperatures (Rubie and Brearley, 1990). 

5.6 Time constraints on deformed leucogranites 

Garnet in sample G31(1) was separated in order to carry out a chronometric study of the 

deformed leucogranites. ' Garnets in G31(1) are typically : 55 mm across and show 

smooth zoning in the major elements with high Mn concentrations (Alm66-71, Py9.13, 

Grso and Sps13.24; Figure 
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Figure 5.5 Major-element composition of garnet in sample G31(1) 
Mn concentration, optical 

measured by electron-microprobe recalculated as mole fractions. 

Also shown is the Fe/Fe+Mg ratio. Linear rim-rim traverse. oscillatory zoning and rutile 

exsolution confirm its igneous 
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origin. 

A fraction of the aliquot used for the chronometric study was mounted for electron 

microprobe analysis and a comparison of the major-element composition to the garnet 

traverse established that the garnet used for isotopic analysis was predominantly from 

within the rim of the garnet (Figure 5.5). 

Two isotopic analyses of garnet from G31(1) and two whole-rock analyses were 

obtained and are presented in Table 5.3. The two whole-rock analyses yield slightly 

different ages when taken with the two garnet analyses (39.9±1.4 Ma, MSWD=1.6 and 

38.6±1.4 Ma, MSWD=2.1 for whole rock 1 and 2 respectively). Both ages are within 

error of each other and the isochron yielding the lowest MSWD is shown in Figure 5.6. 

The preservation of smooth zoning in the garnet supports the interpretation that this age 

is the growth age of the rim of the garnet and given the duplication and relatively high 

147Sm/144 Nd ratios, this inference is considered to be robust. 

Table 5.3 Summary of Sm-Nd TIMS ID and isotope ratio analyses. 

G31(1) Nd (ppm) Sm (ppm) Sm/Nd 147Sm/"Nd 1 143Nd/'44Nd l 

Grt 1 0.237 1.252 5.285 3.1949 0.512657 (25) 

Grt 2 0.055 0.219 3.945 2.3847 0.512401 (66) 

WR 1 1.5237 0.3390 0.222 0.1345 0.511855 (13) 

WR 2 1.5980 0.3541 0.222 0.1339 0.511880 (10) 

1 All errors 0.5% except G31(1) Grt2 (1.5%) and CZG-23 Grtl (1.2%). = Replicate measurements (n=40) of the La 

Jolla Nd Standard gave 0.51185340.000008 (2c) over the period that these analyses were performed. 

5.7 Discussion 

The geochemical data and modelling presented above indicate that the small deformed 

leucogranites found in the upper-HHCS of Garhwal formed during vapour-present 

melting of the crust. The positive Eu anomaly and REE thermometry suggests that the 
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melting occurred under disequilibrium conditions at temperatures of <650°C. This 

conclusion, taken together with chronometry on garnet from sample G31(1), indicate 

that temperatures above the vapour-present solidus were attained within the HHCS by 

-40 Ma. Although these melts are apparently limited in extent their identification has 

important implications for the prograde evolution of the orogen. 

The melts that formed the deformed 
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generated along a solidus with 

negative slope (Figure 5.7) and thus 
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before crystallising. Since, the Sr and 
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Figure 5.6 Isochron for both garnet analyses and whole Nd isotopes are consistent with 

rock 1. extraction from within the HHCS, it is 

probable that the source region for these melts lies close to their emplacement position 

and, hence, within the upper-HHCS. 

The most likely source for these early leucogranites is, therefore, the anatectic 

migmatites exposed in the upper levels of the HHCS. There are several lines of 

evidence that support this conclusion and that also imply a different source for the 

younger and more voluminous Miocene leucogranites. Firstly, in a study of the 

migmatites from the HHCS of Nepal, Barbey et al. (1996) and Brouand et al. (1990) 

identified low-Zr tonalitic leucosomes with positive Eu anomalies and low Rb/Sr ratios 

that are ascribed to either metamorphic differentiation or disequilibrium melting. These 

leucosomes have strong geochemical similarities with the deformed leucogranites in this 

study. Secondly monazite dating of migmatites from the Annapurna and Marsyandi 

sections yield ages of -35 Ma (Godin et al., 1999) and a >34 Ma component (Coleman, 
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1998) respectively. This may be interpreted as the age of an early melting event 

resulting from vapour-present anatexis during the development of the orogenic wedge. 

The in-situ migmatites and small melts such as those in this study were subsequently 

intruded by the main Miocene anatectic event derived from deeper crustal levels. 

Thirdly Sr-isotopic evidence from the Langtang section of the HHCS of central Nepal 

indicates a strong contrast between the migmatites and underlying kyanite schists, with 

the Miocene leucogranites correlating not with the migmatites they intrude but with the 

deeper lithologies in the HHCS (Inger and Harris, 1993; Harris and Massey, 1994). 

Finally in the Gangotri valley, Garhwal, dykes feed the Miocene leucogranite laccoliths 

that intrude the Harsil formation from the HHCS below (Searle et al., 1993; Scaillet et 

al., 1995) suggesting that the source for these younger granites lies within the lower 

sections of the HHCS. 

The proportion of H2O required in the protolith is about 11-17% for fluid-saturated 

melts to form at pressures of 5-10 kbars (Johannes and Holtz, 1990). During prograde 

metamorphism, fluids resulting from subsolidus dehydration reactions may migrate to 

low-strain zones allowing localised melting at structurally controlled sites. Fluid ingress 

could be facilitated by channalised advection along active shear zones (Butler et al., 

1997) and could be sourced from heating of a cold underthrust slab during crustal 

thickening (Le Fort, 1975). 

Once melting is initiated the magma is unlikely to remain fluid saturated during 

prograde conditions due to the high solubility of H2O in siliceous melts. The melt 

fraction will then be undersaturated in H2O , buffered by the available H2O in the 

system whilst aH20 falls below unity. If temperatures increase above the muscovite 

dehydration reaction also is buffered at -0.8 (Harris et al., 1995) and the modal 

proportion of mica in the protoliths will thereafter determine the melt fraction (Patino 

Douce and Johnston, 1991). 
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Crystallisation of the early-formed melt during prograde metamorphism will only be 

possible if the melt escapes from its source, rising to shallower crustal levels or if the 

protolith is exhumed. At present it is not clear whether this portion of the Himalaya was 

being exhumed but in Zanskar the HHCS were undergoing burial at -40 Ma (Vance and 

Harris, 1999). For fluid-saturated melts that fail to escape from their source (e. g. 

migmatite leucosomes) crystallisation is only possible when the rock cools below the 
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the important point to note here is that 

partially molten migmatites could 

persist over timescales >10 Ma (from 

40-25 Ma). This has several far- 

reaching implications: (i) accessory 

phases within the leucosomes will 
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and Fleur de Lys Supergroup (Jamieson, 1990). Solid line (1) 

represents the wet-melting solidus of Le Breton and Thompson, account for some of the variability in 

(1988). Dashed blue line (2) represents muscovite-melting monazite and zircon ages in the 

solidus of Petö (1976). Dashed line (3) represents the high- 
HHCS from -35 Ma (Godin et al., 

temperature dehydration-melting solidus for a kyanite-zone 

metapelite from the HHCS of Langtang. Nepal (Patino Douce 
1999) to -20 Ma (Noble and Searle, 

and Harris, 1998). 1995; Coleman, 1998); (ii) the 

preservation of melts for periods 

>10 Ma at high temperatures will overprint many of the chemical signatures associated 

with their early formation masking their origin; (iii) the persistence of such melts will 

have a dramatic effect on the rheology of the crustal material during ongoing tectonics. 

Specifically they may reduce the shear stress in high-strain zones and initiate 
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exhumation through wedge tectonics (Dahlen, 1984; Platt 1993) 

These considerations are not restricted to the Himalaya and the identification of 

prograde fluid-saturated melts has broader implications for orogenic studies. The 

prograde PT paths of assemblages from a wide range of orogenic belts cross the vapour- 

present melting solidus (Figure 5.7), implying that anatexis would occur in rocks of 

pelitic or greywacke composition provided a free fluid phase were available. 

Thus the apparent absence of prograde melting in many orogenic belts may result not 

only from the very restricted distribution of an aqueous fluid, but also from the fact that 

unless these melts escape from their protoliths they will persist as magma in the crustal 

pile and record young crystallisation ages similar to those of magmas formed by 

dehydration melting during, or shortly following, peak metamorphism. However, the 

data presented here indicates that melts formed along the prograde path by vapour- 

present melting will have a distinct geochemical signature that is likely to be shared 

with the migmatites of their source regions. Now that this has been recognised in the 

Himalaya it may prove easier to identify similar early melting events in other orogens. 
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Chapter 6- Comparison of laser ablation ICP-MS 
and isotope dilution REE analyses - 
implications for Sm-Nd garnet geochronology 

6.1 Introduction 

Garnet is a participant in many thermobarometrically well-defined mineral equilibria 

and has, therefore, long been used by metamorphic petrologists to determine pressure 

and temperature conditions during metamorphism (e. g. Spear 1993 and references 

therein). More recently, because garnet fractionates parent/daughter ratios for several 

isotopic decay systems dating of garnets has proved possible for the age determination 

of metamorphic and igneous events (Christensen et al., 1989; Mezger et al., 1989; 

Vance and O'Nions, 1990; Burton and O'Nions, 1991; Thöni and Jagoutz, 1992; Vance 

and ONions, 1992; Getty et al., 1993; von Quadt and Gebauer, 1993; Hensen and Zhou, 

1995; Thöni and Miller, 1996; Yamamoto and Nakamura, 1996; Duchene et al., 1997; 

Mork et al., 1997; Stowell and Goldberg, 1997; Vance and Harris, 1999). However, 

garnet contains very small absolute amounts of the trace elements involved (ppm-ppb 

levels) and it has generally been recognised that geochronology with garnet is 

particularly susceptible to contamination by small amounts of Nd-, Sr- and Pb-rich 

accessory minerals such as zircon, monazite and allanite (Vance and O'Nions, 1992; 

DeWolf et al., 1996; Vance et al., 1998b). The extent to which inclusions contribute to 

the U-Pb, Sm-Nd, Rb-Sr and Lu-Hf budget within an analysis thus has important 

implications for the interpretation of age data obtained from garnets. 

Gamets commonly contain small inclusions of accessory minerals (down to a size of 5 

microns or less: e. g. Figure 6.1), which often prove impossible to identify visually and 

hence to separate mechanically from garnet for conventional isotope ratio and isotope 

dilution (ID) analysis. Various methods have been developed to identify inclusions in, 

or eliminate them from, a garnet ID analysis. DeWolf et al. (1996) have used induced 
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fission-track mapping to demonstrate that U contents of some almandine-pyrope garnets 

are very low (<0.5ppb) and that small inclusions dominate the U-Pb budget of the 

studied garnets. Vance et al. (1998b), in a step-leaching study, reached the same 

conclusion for almandine-rich garnets 

from the Himalaya. On the other hand, 

DeWolf et al. (1996) showed that an 

andradite-grossular garnet had lattice 

U concentrations similar to those 

measured by ID analysis. In addition, 

other step-leaching studies (Frei et al., 
Figure 6.1 SEM photo. Inclusions of monazite (elongate) 

1995; Frei et al., 1997; Schaller et al., 
and zircon (square) in sample G9 up to 8 microns in length. 

1997) have concluded that garnet 

lattices do contain significant amounts of radiogenic Pb, though no abundance data are 

available from these studies. 

The step-leaching approach is likely to chemically fractionate different elements so that 

parent/daughter ratios are not extractable. For Pb this is not a problem because Pb has 

three radiogenic isotopes which are not expected to be fractionated during the chemical 

leaching process. Two of these, 207Pb and 206Pb, define the age of a sample without the 

need for parent-daughter ratio determination (Frei et al., 1995; Frei et al., 1997; Schaller 

et al., 1997). Unfortunately for the Sm-Nd system precise REE abundances are essential 

so that a step leaching approach would be less useful. In general, concentrations of Sm 

and Nd are expected to be very low in garnet while the Sm/Nd ratio is expected to be 

high. In contrast, inclusions of phases such as monazite and allanite have very high REE 

concentrations but low Sm/Nd ratios. Therefore, one approach to determining the 

contribution of inclusions to garnet isotopic studies is to compare concentrations and 

Sm/Nd ratios obtained by conventional isotope-dilution and isotope-ratio analysis with 
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those obtained from in-situ analyses that demonstrably sample the garnet lattice. The 

techniques available include secondary ion mass spectrometry (SIMS) and laser ablation 

inductively-coupled mass spectrometry (LA-ICP-MS). Previous studies using the ion 

microprobe (Hickmott et al., 1987; Hickmott and Spear, 1992; Sisson and Bacon, 1992; 

Sevigny, 1993; Schwandt et al., 1996) and LA-ICP-MS (Fedorowich et al., 1995; Bea, 

1996; Bea et al., 1997) have confirmed the low concentrations of Sm and Nd for pelitic 

garnets up to upper-amphibolite grade. 

Previous in-situ studies of REE have been performed for petrogenetic purposes. In order 

to asses the effect of inclusions on chronological data an approach is required that 

combines conventional isotopic analysis with in-situ measurements of Sm and Nd 

concentrations. In chapter presents the results of the first such study for the Sm-Nd 

isotopic system. LA-ICP-MS has been used to obtain in-situ REE concentration profiles 

across three garnets from the High Himalayan Crystallines (HHC) of the Garhwal 

Himalaya and one garnet from the Bohemian Massif, along with data on separates of the 

Bohemian Massif garnets. Isotopic data for the Garhwal samples have been presented 

in Chapter 4. The combined datasets allow an assessment of the potential effect of Sm- 

Nd rich inclusions on conventional garnet Sm-Nd data. 

6.2 Experimental techniques 

6.2.1 Laser ablation ICP-MS 

Experiments were carried out with an excimer laser system at ETH Zurich (193 nm, 

ArF, ETH Zürich Günther et al., 1997) linked to an ELAN 6000 ICP-MS (Perkin Elmer, 

Norwalk, USA). The output energy was set to 160 mJ allowing a pulse energy of 2.4 mJ 

for an 80 gm pit and a repetition rate of 10 Hz. The carrier gas flow flushing the 

ablation cell was 1.2 Umin helium mixed with 0.84 Umin argon behind the ablation cell 

(Günther and Heinrich, in prep. ). 
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The principal advantage of LA-ICP-MS for this study is its high spatial resolution and 

consequent facility for avoiding small inclusions or, conversely, to analyse small fluid 

inclusions. Garnet samples were mounted as for normal electron microprobe analysis so 

that surface inclusions larger than 10µm across could be identified, using an optical 

microscope and video camera prior to analysis and hence avoided. The pit size was 

generally 20-60µm across so that garnet without inclusions could be analysed. Laser 

pits have a finite depth and hence inclusions may be encountered beneath the surface 

during ablation. This problem can be eliminated by monitoring the signal in time slices 

so that any extreme departures from the background concentrations in the garnet can be 

easily identified. 
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Figure 6.2 Time resolved LA-ICP-MS analysis of garnet G9 on a spot 
The rapid change and the 

where an inclusion was encountered during ablation. The Si signal, relative proportions of the 

representing ablation of the garnet, is initially associated with low REE 
LREE suggests the ablation 

concentrations which rapidly increase upon ablation of an inclusion. 

Ablation of the glass mount is marked by an increase in the Na signal. 
of a LREE-enriched 

inclusion such as allanite. 

Near the end of the ablation sequence, at 56 seconds, the Na signal increases marking 

the ablation of the glass mount used. This is a particularly extreme example but 

illustrates the response of the system to inclusions, indeed, the laser system has been 

designed to allow the analyses of small fluid inclusions of 5-10 µm and extremely small 
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ablation-related transient signals can be observed due to the small transport time 

between ablation and analysis (0.3 seconds). 

The total measurement time for each analysis spot was 90 seconds, split into 30 seconds 

gas blank acquisition and 60 seconds data acquisition for the sample resulting in a 

penetration rate of - 0.5 µms'1. NIST 612 glass was used as an external calibration 

standard and Si02 was used for internal normalisation. The concentrations obtained 

were considered meaningful when they were twice the limit of dectection (LOD); 

example's of which are presented in Appendix G for an 80 µm and 10 µm pit analysing 

the REEs, U, Ti , V, Cr, Rb, Sr, Y, Zr and Ba as well as Si, Fe, Mg, Ca and Mn. The 

data reduction procedure of Longerich et al. (1996) was used. The results were screened 

for inclusion effects (e. g. Figure 6.2) to produce REE concentration analyses in profiles 

across the garnets. 

6.2.2 Isotope dilution 

Impure garnet separates were obtained by either crushing single crystals or by bulk 

separation techniques (see sample description below for specific details). The samples 

were then purified by hand-picking under a binocular microscope to obtain an optically 

pure separate of 10-50 mg. Samples were washed and transferred into PFA screw-cap 

beakers and spiked with a mixed 149Sm/1s0Sm tracer. Further details of the techniques 

are given in Cohen et al. (1988) and Appendix C. 

6.3 Sample description 

Samples G96, G31 (1) and G9 are representative of the metamorphic core of the 

Himalayan orogen in the Garhwal region of India. 

The bulk of the garnet in G96, only partly visible at the base of Figure 6.3a, has a sieve 

texture with inclusions of quartz, feldspar, biotite and zircons. An electron microprobe 

traverse of the gem quality portion of a single garnet shows that Fe, Mg and Ca have flat 
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Figure 6.3 Photomicrographs ofgarnets used in LA-ICP-MS analyses. Electron microprobe traverse along lines shown. 

(a) G96. (b) G31(1) (c) G9 (d) CZG-23 
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mm in length (Figure 6.3c). It has a typical bell-shaped Mn profile, an increasing Fe 

content from core to rim and a step in Ca and Mg near the rim (Alm80 57, Py1o-20, Grs19-6 

and Sps25_lo: Figure 6.6a). Rim equilibration temperatures were calculated using 

Thermocalc at 616 ± 29 °C and 9.4 ± 1.3 kbar. Isotopic analyses were carried out on a 

second garnet from the same hand specimen. Comparison of the major-element 

composition of an aliquot of the garnet used for isotopic analysis and a garnet traverse, 

shows that the garnet used for isotopic analysis was dominated by the rim of the garnet. 

Table 6.1 Summary of Sm-Nd TIMS ID and isotope ratio analyses. 

CZG23 Nd (ppm) Sm (ppm) Sm/Nd 147Sm/'44Nd ' 143Nd/'44Nd 2 

Grt 1 5.997 9.560 1.594 0.9640 0.514010 (42) 

Grt2 7.399 13.388 1.809 1.0943 0.514252 (26) 

Grt core 6.159 9.309 1.512 0.9141 0.513864 (8) 

Grt3 7.281 8.519 1.170 0.7075 0.513498 (14) 

WR Bt-rich 20.870 5.764 0.276 0.1669 0.512131 (26) 

WR leuco. 13.904 3.378 0.243 0.1469 0.512168 (20) 

'All errors 0.5% except G31(1) Grt2 (1.5%) and CZG-23 Grtl (1.2%). 2 Replicate measurements (n=40) of the La 

Jolla Nd Standard gave 0.5118531-0.000008 (2o,, ) over the period that these analyses were performed. 

Sample CZG23 comes from a banded granulite gneiss in the Moldanubian Zone of the 

southern Bohemian Massif. The garnet is spherical, 1.1 mm in diameter (Figure 6.3d) 

and has a composition of A1m62-49, Py28-24, Grs25_6 and Sps2-1 (Figure 6.7a). It is present 

in both the feldspar- and biotite-rich portions of the rock. There is strong retrograde 

zoning in the outer 200µm of the grain. Thermodynamic modelling using 

pseudosections and the bulk composition of the rock (Vance and Mahar, 1998; Kosler 

and Vance, in prep. ) suggest a peak P-T ca 1100 °C and 20 kbar followed by a rapid 

isothermal decompression down to <5 kbar. These extreme conditions are in agreement 

with other P-T estimates (Carswell and O'Brien, 1993) from this terrain. The 

decompression resulted in garnet resorption and, probably, formation of the retrograde 
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zoning in the rim. The small size of the garnets precluded single-grain Sm-Nd dating 

and a bulk mineral separate has been used instead. In addition, in order to resolve the 

prograde and retrograde history of the garnet, the grains were air-abraded and the cores 

analysed separately. 

6.4 Results 

6.4.1 G96 

Two isotope dilution analyses of G96 were carried out on gem-quality separates for 

which the data have been presented in Chapter 4. The interpretation of these ages is also 

discussed in Chapter 4. However, it is worth repeating for the present field of interest 

that the low concentrations, high Sm/Nd ratios and the concordant Sm-Nd and Rb-Sr 

ages suggest that the analyses represent pure garnet unaffected by inclusions. 

Table 6.2 LA-ICP-MS analyses of G96 separate 
A LA-ICP-MS traverse was made over the gem 

quality section of an equivalent garnet to that 
Nd (ppm) Sm (ppm) Sm/Nd 

0.05 0.39 7.8 used in the isotopic analyses (Figure 6.3a) as 

0.08 0.54 6.8 well as an aliquot of the separate used for 
0.07 0.51 7.3 

isotopic analyses. The garnet separate results are 
0.07 0.52 7.4 

0.08 0.50 6.3 summarised in Table 6.2. The concentrations 

0.08 0.52 6.5 obtained from the separate agree well with the 

ID analysis Grt 1 (Chapter 4) confirming both the concentrations and the high Sm/Nd 

ratio obtained. ID analysis Grt 2 has a Sm concentration that also agrees well with the 

separate but the Nd concentration is almost twice the highest concentration obtained by 

laser ablation with a consequent lower Sm/Nd ratio. 

In the traverse concentrations of Nd and Sm are low (25-79 ppb Nd and 268-493 ppb 

Sm) and the Sm/Nd ratio varies from 5.1 to 14.9 (Figure 6.4c). The HREE show zoning 

with a maximum enrichment from core to rim of 2-4.8 for Yb. This enrichment is less 
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significant than that previously found for other amphibolite-facies pelitic garnets but 

similar to that obtained for a sillimanite zone garnet (6.8 times Yb enrichment Schwandt 

et al., 1996). 

6.4.2 G31(1) 

Two isotopic analyses of G31(1) were obtained on a hand-picked separate obtained 

from a single garnet (Grt 1, Grt 2, Chapter 4). Both gave low Sm and Nd concentrations 

(60-240ppb Nd, 0.2-1.3ppm Sm), high Sm/Nd ratios (4 - 5.3) and a reproducible age 

using the whole rock as the low Sm/Nd phase (39.9 ± 1.4 Ma). 

The concentrations of Nd and Sm obtained by a LA-ICP-MS traverse of a single garnet 

(Figure 6.5c) are extremely low (from 16-79 ppb and 52-684 ppb respectively) and the 

Sm/Nd ratio varies from 1.97 to 10.66. The HREE, represented by Dy and Yb, show 

strong zonation from core to rim and the concentrations of all REE increase in the outer 

200 µm-as can be seen on the right hand side of (Figure 6.5b, c). An earlier, less precise, 

traverse sampling closer to the rim on the left hand side of Figure 6.5 revealed a similar 

increase in REE concentrations demonstrating that the change at the rim is symmetrical. 

ID analysis Grt 2 has low concentrations of Nd and Sm and a high Sm/Nd ratio - all 

well within the range obtained by LA-ICP-MS. On the other hand Grtl has Nd and Sm 

concentrations approximately 3 and 2 times the maximum obtained by in-situ analysis 

respectively. However, the Sm/Nd ratio obtained by ID is high (5.3) and within the 

range given by LA-ICP-MS. 

6.4.3 G9 

Two ID analyses were made on separates from a single garnet (Grt 1, Grt 2; Chapter 4). 

Grtl has extremely low concentrations (90 ppb Nd and 170 ppb Sm )and a low Sm/Nd 

ratio (1.96) while Grt2 has higher concentrations (200 ppb Nd and 1.2 ppm Sm) and a 

higher Sm/Nd ratio (5.8). On the isochron diagram the two garnet separates do not fall 
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on an isochron with the whole rock (Chapter 4) suggesting some disequilibrium 

between one of the garnets and the reservoir from which they grew. Such disequilibrium 

The LA-ICP-MS absolute concentrations are extremely low for the LREE. The HREE 

show extremely strong zonation as demonstrated by Yb on Figure 6.6b. Sm and Nd 

concentrations vary from 525-1760 ppb and 52 to 156 ppb and Sm shows the reverse 

trend from the HREE with low concentrations in the core (Figure 6.6c). 

ID analysis Grt2 falls within the Sm and Sm/Nd ratio range and within error of the Nd 

concentrations. On the other hand, the Nd and Sm concentrations for ID analysis Grtl 

fall within the range obtained by LA-ICP-MS but with a lower Sm/Nd ratio. 

6.4.4 CZG23 

Two ID analyses were made on bulk mineral separates (Grtl and Grt2) and one on air- 

abraded garnet cores (Grt core) from the biotite-rich layer of the granulite gneiss (Table 

6.1). In addition, a bulk garnet separate from the feldspar-rich portion of the rock was 

also analysed (Grt 3). The unusually high Sm and Nd concentrations in all the analysed 

garnet samples might be taken as indicative of contamination of the garnet separates 

with Nd-rich inclusions. However, and crucially in this case, they also have relatively 

high Sm/Nd and 143Nd/144Nd ratios (Table 6.1). Grt1, Grt2 and Grt core all have Sm and 

Nd concentrations in the range 9.3 -13.4 and 6.0 - 7.4 ppm, respectively. All three 

garnet fractions fall on the same Sm-Nd isochron with the whole-rock, giving an age of 

351 ±6 Ma (Figure 6.8). This age overlaps with that calculated for a Grt3 - whole-rock 

pair from the felsic portion of the rock (362 ±7 Ma) and with other garnet Sm-Nd ages 

from the same rock unit (J. Kosler and D. Vance, unpublished data). 

The concentration ranges overlap with those obtained from the LA-ICP-MS profile 

across a garnet from the mafic portion of the rock (3-11. lppm and 0.6-7.6ppm for Sm 

and Nd respectively). The traverse shows a strong and symmetrical zoning both for the 

LREE and HREE in the central part of the grain (Figure 6.7b, c). 
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could have a number of causes and will be dealt with in detail in the discussion. Despite 

strong zoning in absolute REE concentrations, the Sm/Nd ratio of ca. 1.5 is constant 

across the core. The change in the Sm/Nd ratio in the rim can be correlated with the 

major cation profiles which also show changes in concentrations towards the garnet rim 

on the same scale (Figure 6.7a, b). The most prominent feature of the major-element 

profile is the sharp increase in Mn near the rim. Since garnet itself is the only major 

metamorphic phase that incorporates significant amounts of Mn, this sharp increase is 

probably a result of garnet resorption during decompression and resultant diffusion of 

the Mn back into the garnet (c. f. Vance and Mahar, 1998). Given the preference of 

garnet for Sm over Nd, preferential uptake of Sm during this resorption is also the most 

likely explanation for the shift in the Sm/Nd ratio. 

A comparison of the range of Sm and Nd concentrations obtained from two LA-ICP- 

MS profiles (3.0 - 11.1 and 0.6 - 7.6 ppm, respectively, from rim to core) and those 

obtained by ID analysis suggests that, as a result of hand-picking separation, the bulk 

garnet samples (Grtl, Grt2) were biased towards the core. Specifically, the measured ID 

concentrations are similar to those obtained by LA-ICP-MS for the core. In fact, the 

bulk Sm and Nd concentrations calculated from volume-weighting of the LA-ICP-MS 

traverse across the garnet grain are 3.4 and 7.3 ppm, respectively whereas the ID 

concentrations are 6-7.4ppm and 9.6-13.3 ppm for garnet from the biotite-rich part of 

the rock (Grt 1 and Grt 2; Appendix G). In general, however, the LA-ICP-MS in-situ 

analyses are clearly consistent with the conclusion that the high Sm and Nd 

concentrations obtained from the isotope dilution analysis of garnet from CZG23 are 

representative of garnet and are not affected by REE-rich inclusions. 

6.5 Discussion 

The data presented here further demonstrate the ability of in-situ analysis to reveal 

substantial sub-grain heterogeneity in the trace-element concentrations of minerals 
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(Hickmott et al. 1987, Hickmott and Spear 1992, Sevigny 1993, Schwandt et al. 1996, 

Bea 1996). LA-ICP-MS is particularly useful for measuring very low concentrations of 

the REE. In addition, and of specific importance for this study, LA-ICP-MS allows the 

unequivocal measurement of the lattice concentrations of trace elements so that the 

effect of inclusions in bulk separates can be assessed. The two datasets obtained in this 

study allow us to make a comparison between conventional isotopic data from bulk 

separates and real lattice concentrations and permit some general conclusions on the 

robustness of garnet ages and the potential effect of inclusions. Before discussing the 

data in detail, however, possible sources of bias and error in our approach are assessed 

first. 

Table 6.3 Summary of Sm-Nd TIMS ID and isotope ratio analyses for CZG-23 

CZG23 Nd Sm Sm/Nd 147Sm/1«Nd 20 143 Nd/14°Nd' 2a 

Grtl 5.997 9.56 1.594 0.9640 0.0056 0.514010 0.000021 

Grt2 7.399 13.388 1.809 1.0940 0.0010 0.514252 0.000013 

Grt3 7.281 8.519 1.17 0.7075 0.0004 0.513498 0.000007 

Grt core 6.159 9.309 1.512 0.9141 0.0007 0.513864 0.000003 

WR Bt-rich 20.87 5.764 0.276 0.1669 0.0001 0.512131 0.000013 

WR Ieucocr. 13.904 3.378 0.243 0.1469 0.0007 0.512168 0.000010 

1 Replicate measurements (n=40) of the La Jolla Nd Standard gave 0.511853±0.000008 (2ß) over the period that 

these analyses were performed Data collected by Jan Kosler 

6.5.1 Potential sources of bias and error 

Clearly, direct comparisons of the concentrations obtained in ID and LA-ICP-MS 

require that the same material be analysed in both cases. Unfortunately, conventional 

isotopic analysis is a destructive processes. One potential approach would be to perform 

the LA-ICP-MS analysis first on material that is then used for isotopic analysis. This is 

precluded, however, by the difficulty of retrieving clean garnet from the mount used for 

laser ablation due to the excessive cleaning required to remove contamination produced 
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by the mount material. Consequently laser ablation analyses on aliquots of the material 

picked for ID analysis (G96) or on separates grain within the same hand-specimen were 

performed. Implicit in our approach is the assumption that there are no large variations 

between garnets in any one hand specimen. Several steps have been taken in order to 

ensure that the two data sets are comparable. For example, in the case of G31 and G9 

aliquots of the separate for bulk isotopic analysis have been micro probed as well as a 

profile across the grain used for LA-ICP-MS so that the region of garnet represented by 

the ID analysis can identified. In both cases, the major-element concentrations indicate 

that the picked aliquots are dominated by material from the rim of the garnet. In 

addition, for G96, LA-ICP-MS analyses both on an aliquot of the picked separate and in 

a profile across a separate grain have been performed. The aliquot has very similar Sm 

and Nd concentrations to the profile analysed which, in part, justifies our assumption 

that the variations between different garnets in one hand-specimen are small. 

However, G96 is not zoned in either 
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Figure 6.8 Sm-Nd and Rb-Sr isochron diagram for CZG- 

23. Diamond = garnet and solid square = whole rock See 

Table 6.1 for isotopic analyses. 

major elements or Sm and Nd. It is clear 

from this and other work (c. f. Hickmott 

et al., 1987; Hickrnott and Spear, 1992; 

Sevigny, 1993; Bea, 1996; Schwandt et 

al., 1996) that garnets are often zoned in 

REE, in common with the major 

elements. It is also clear, however, that 

major-element profiles vary little 

between garnets of the same size in one 

rock (eg. Ayres and Vance, 1997). If this 

is also the case for REE then our approach of performing LA-ICP-MS analyses on 

similarly sized garnets as for isotopic analysis would give comparable results. On the 
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other hand, given the fact that Sm and Nd in pelitic rocks are located predominantly in 

accessory phases (Ayres and Harris, 1997), the local reservoir from which an individual 

garnet grows is likely to be much more heterogeneous in the absolute amounts of REE 

available than is the case for major elements. 
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Figure 6.9 Sm/Nd vs. Nd for garnets from conventional isotopic ID analyses in the literature. The solid square 

represents an average zircon, grey diamond allanite and solid triangle monazite (error bars are one std deviation). 

Garnet data from Humphries and Cliff, (1982); Vance, (1986); Vance and O Nions, (1990); Burton and ONions, 

(1991); Burton and ONions, (1992); Mezger et al., (1992); Thöni and Jagoutz, (1992); Vance and ONions, (1992); 

Getty et al., (1993); von Quadt, (1993); von Quadt and Gebauer, (1993); Hensen and Zhou, (1995); Brueckner et al., 

(1996); Vance and Harris, (1999). Zircon, monazite and allanite data from Gromet and Silver (1983); Maas et al., 

(1992); Montel, (1993); Bea, (1996); Ayres, (1997); Pan, (1997); Finger et al., (1998). 

6.5.2 Comparison of Nd and Sm concentrations: zoning and inclusion effects 

The principal Nd-rich inclusions found in garnet are monazite and allanite. The 

potential effect of these phases on the Sm-Nd systematics of a bulk garnet separate 

would be to increase the measured concentrations but to reduce the Sm/Nd ratio. This 

effect has been observed previously (Vance and ONions, 1992) and is demonstrated by 

a compilation of published garnet data (Figure 6.9) which confirms the strong 

relationship between measured Nd concentrations and the Sm/Nd ratio for conventional 

analyses of garnet separates. Further, this relationship is completely consistent with 
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mixing between a pure garnet lattice component (represented by the ICP-MS analyses 

presented here) and monazite or allanite inclusions (open square and solid triangle at 

very high Nd concentrations). In detail, a few data including CZG-23 plot significantly 

off the trend with Sm/Nd ratios around 1.5-2 and high Nd concentrations. An increase in 

LREE concentration has been noted for high-pressure granulite rocks (Bea, 1996) which 

may, in part, explain the high Sm and Nd concentrations in sample CZG-23 which 

experienced pressures of -20kbar. 

In apparent contrast to the general trend, a correlation of decreasing Sm/Nd with 

increasing Nd between aliquots for G9, G31(1) and CZG23 is not apparent. For 

example, the aliquot of G31(1) with the higher Sm/Nd ratio also has the highest 

concentrations, while a similar observation is made for G9. The variations from one 

aliquot to another could still be the result of the incorporation of inclusions into the ID 

analyses. For example, incorporation of a xenotime inclusion could increase both the 

REE concentrations and the Sm/Nd ratio. However, xenotime has never been reported 

as an inclusion in garnet and has not been observed here despite a thorough search using 

the SEM. It seems more likely that, in these cases, the variations from one aliquot to 

another are a reflection of real variations in the lattice concentrations. The large 

variations across any single grain shown by the LA-ICP-MS suggest that slight 

sampling bias from one ID analysis to another may result in significant variations in Sm 

and Nd concentrations and Sm/Nd ratio. This makes interpretation of the isochrons and 

modelling of the inclusions in terms of concentrations more difficult. It should be noted, 

however, that the broad concentration ranges are consistent with those obtained by ID. 

Some specific samples are discussed below. 

Separate Grt 2 from sample G31(1) falls within the concentration and Sm/Nd ratio 

range obtained by LA-ICP-MS (Table 6.1, Figure 6.5c) Grt 1, on the other hand, has Sm 

and Nd concentrations that are 2-3 times higher than any obtained by in-situ analysis. 
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The Sm/Nd ratio for this aliquot is within the range of values represented in the profile 

but is also higher than that for Grt 1. These observations are clearly inconsistent with 

the relationship depicted in Figure 6.9 and suggest two possible explanations. The first 

of these is that a xenotime inclusion(s) has been incorporated into the Grt 1 aliquot thus 

elevating both the Sm and Nd concentrations as well as the Sm/Nd ratio. As noted 

above, however, xenotime inclusions have not been observed here or in any other 

garnet. The second possibility is that there are variations in the Sm-Nd composition of 

garnet in this rock that are not sampled by the LA-ICP-MS analyses. It has already been 

proposed, based on major-element composition, that the samples for ID analyses are 

dominated by the rim of the garnet. Examination of Figure 6.5c demonstrates that in this 

part of the profile Nd, Sm concentrations and the Sm/Nd ratios vary by a factor of 2-3. 

Clearly, these observations, accompanied by slight variations in the average provenance 

within the garnet of the picked separates, could easily explain the observed relationships 

without recourse to a xenotime inclusion. In any case, the similarity in the ages of the 

two separates indicates that the age of any hypothetical xenotime inclusion is identical 

to that of the garnet. 

Garnet from sample G9 displays similar systematics to that of G31(1). As with the 

latter, one of the G9 ID analyses (Grt 1) has a Nd concentration that is outside, but a Sm 

concentration and a Sm/Nd ratio that is within, the range measured by LA-ICP-MS. The 

other analysis, Grt 1, has concentrations that are consistent with, but an Sm/Nd ratio a 

factor of two below, the LA-ICP-MS analyses. These observations are, again, 

inconsistent with incorporation of a LREE-enriched inclusion. Xenotime is again 

discounted because of its apparent absence. In common with G31(1), the major-element 

composition of the garnet indicated that the ID aliquots for G9 are dominated by the rim 

of the garnet. Likewise, Figure 6.6c demonstrates that this is the region of the garnet 

with the greatest variation (by about a factor of 3) in the Nd, Sm concentrations and in 
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the Sm/Nd ratio. The preferred explanation for G31(1), that the relationships seen in the 

ID aliquots can be explained by incomplete sampling of the range of concentrations and 

ratios in garnet by LA-ICP-MS, may also apply here. 

The significant difference between G9 and G31(1) is that, for the former, the two garnet 

analyses do not yield the same Sm-Nd age with respect to the whole rock. In G9 the 

analysis with the low Sm/Nd ratio (Grt 1) lies well below the line defined by Grt 2 and 

the whole rock. Old inclusions of LREE-enriched accessories such as allanite or 
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monazite could explain this disequilibrium but for the fact that this separate also has 

lower Nd and Sm concentrations. Moreover, there is no known phase that could mix 

with a pure garnet, such as might be represented by Grt 2, to produce the Sm/Nd ratio of 

Grt 1. At present, the reason for this disequilibrium is unclear but I note that a biotite 

separate from this sample also shows significant isotopic disequilibrium. Such isotopic 

disequilibrium is likely to be caused by inhomegeonously distributed or variably 

equilibrated microinclusions. Step leaching experiments on mineral separates would 

distinguish between different isotopic reservoirs within the separates but were 

unfortunately out of the scope of this thesis. 

6.5.3 The effect of inclusions on age determination 

It appears from the above discussion that the conventional isotopic analyses presented 

here are largely free of the effect of inclusions. However, this may not be the case for 

many data in the literature (see Figure 6.9). Many of such analyses have Sm-Nd 

characteristics that are consistent with mixing between pure garnet, as typified by the 

in-situ analyses presented here and elsewhere, and LREE-enriched inclusions such as 

monazite or allanite. The inadvertent incorporation of these inclusions would have two 

major implications for chronometry with garnets. Firstly, in the case where included 

phases are the same age as the garnet, the only serious consequence is that the low 

Sm/Nd inclusion lowers the Sm/Nd ratio of the separate so that the age resolution is 

greatly reduced (eg. Bowtell et al., 1994) or, in extreme cases, completely eradicated 

(eg. Vance and ONions, 1992). A more serious consequence, however, results from the 

possibility that the inclusions are not the same age as the garnet - i. e. that they have 

been isotopically isolated from the whole rock for times longer than the age of the 

garnet and that there was significant isotopic disequilibrium between the inclusion and 

the rest of the rock at the time of garnet growth. The age obtained from such an impure 

garnet separate may not only be wrong but, if the downward shift in the Sm/Nd ratio is 
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not too great, it may be reasonably precise. 

The effects of an inclusion on a garnet Sm/Nd age may be illustrated by a simple model 

(Figure 6.10a). The effective bulk composition (EBC) from which the garnet grows is 

marked by a solid square. This is effectively the whole rock minus any inclusions that 

are in isotopic disequilibrium with the whole rock. A hypothetical pure garnet separate 

is represented by a solid diamond and the composition of the accessory phase that is 

isolated from the whole rock by a solid triangle. A measured garnet separate, 

representing a mixture between pure garnet and inclusion, is plotted as the open 

diamond. The line with slope (Sm) determines the derived age from these analyses 

which differs from the slope (St) that defines the true age of the garnet. Also shown on 

the figure is the mixing line of slope S,, " between the pure garnet and the inclusion. The 

shift in age between the true value (ti) and that measured (tm) will result from the 

difference in the slopes Sm and St as follows: 

ln(1+S: )_ ln(1+Sr) 
tm - ti _ 

1 
In 1+ Sr 

1 

The slopes of the lines are determined by the values of the 147Sm/144Nd (X) and 

143Nd/144Nd ratios (Y) of the effective bulk composition or whole rock (Xebc, Yebc) pure 

garnet (Xpg, Ypg), impure garnet (X; g, Y; g) and inclusion (X;, Y; ). The equation that 

governs the shift in age from true to measured is simplified if it is assumed the EBC has 

an 147Sm/144Nd and a 143Nd/144Nd ratio of zero. This simply moves the reference frame 

of the isochron plot. The inclusion Sm/Nd ratio is taken to be the same as the whole 

rock - in fact, allanite and monazite typically have 147Sm/1 Nd ratios lower than whole 

rocks but this has negligible effects on the modelling presented below. It is also 

convenient to define a parameter OX which is the shift in 147Sm/144Nd between pure and 
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impure garnet and a parameter AY, the shift in 143Nd/144Nd between the inclusion and 

the effective bulk composition. Then the shift between the true age and that obtained 

from the measured impure garnet, tm-tt is given by: 

tm - tt= 
l 

In 

(1+ YP8 ) 

XP8 J 

(XP8 

- AX)yPB+AY AY 
lt 

xpg 
(XPS 

- AX> 

Typical numerical values of Xpg can be obtained from the LA-ICP-MS data and can be 

as high as 10-12. For a pure garnet fraction about 30 Ma old with an Xpg of 10, Y 

('43Nd/144Nd) relative to the EBC would be about 0.002000. Figure 6.10b shows the 

percentage bias on the age as a function of OX (shift in 147Sm/144Nd of garnet) and for a 

range of AY (difference in 143Nd/14Nd between EBC and inclusion) for this scenario. 

The shift in the age from true to measured is most strongly dependant on OX, since it 

increases exponentially as X15 tends towards X;. AY (the shift between EBC and 

inclusions represented by the different lines) plays a less important role but, as would be 

expected, the error increases with AY for any given AX. Because the value of Xi has 

been taken to be the same as the whole rock, any non-zero value of AY corresponds to 

an inclusion isolated from the whole rock for an infinite time. In reality, for values of 

l47Sm/'44Nd of 0.07 in an allanite or a monazite and one of 0.12 in a whole rock (typical 

for pelitic rocks of interest), the range of AY considered here (0-0.0002) corresponds to 

inclusions isolated for 0-600 Ma before garnet growth. The situation when AY--O 

corresponds to the inclusions being in equilibrium with the EBC at the time of garnet 

growth and will result in the concordance of all garnet analyses with no introduced 

error. The situation when AY = 0.0002 corresponds to a 600Ma old inclusion within a 

Timing of prograde metamorphism... C. 1. Prince 184 



Chapter 6 Comparison of LA-ICP-MS and ID 

30 Ma old garnet. 

There are several general conclusions to be drawn from the above analysis. Firstly, and 

perhaps counter-intuitively, the apparent age of an impure garnet separate contaminated 

by very old LREE-enriched inclusions will itself be younger than the true age of the 

garnet. This is a simple consequence of the fact that the LREE-enriched reservoir will, 

given time, develop a Nd-isotope signature that is less radiogenic than the whole rock. 

Secondly, Figure 6.10b shows that for 147Sm/144Nd ratios of impure garnet separates that 

are more than 50% below that of the pure garnet, the apparent age will deviate 

significantly from the true value. On the other hand, for Sm/Nd ratios that are 50-100% 

of the true garnet value, the deviation of the apparent from the true age will be less than, 

or similar to, typical analytical uncertainties (0-10%). However the rather salutary fact 

is that, for the Nd-Sm concentrations in the Himalayan garnets studied here, only of the 

order of a part per million of the garnet separate need be monazite to effect a 50% 

reduction in the Sm/Nd ratio from that for the pure garnet. 

In general, the above arguments suggest that the safest approach to dating garnets is to 

pick duplicate separates. In this case contamination by Nd-rich inclusions should be 

indicated by significantly variable Sm/Nd ratios. Where garnet-whole rock ages are 

analytically reproducible, then either the inclusions must have been isolated from the 

whole rock at the same time as the garnet or the measured Sm/Nd ratios are all close 

enough to the real garnet value to be result in a negligible shift in the age (Figure 

6.1Ob). Either way, the duplicated date is a good measure of the age of the garnet. If, on 

the other hand, the ages are not reproducible then the most likely reason is that some of 

the analyses are so contaminated by inclusions that the measured age for low Sm/Nd 

garnet analyses is significantly younger than the true age. In this case, the age of the 

analysis with the highest Sm/Nd ratio is likely to be closest to the true value but not 

necessarily equal to it - in fact, it will be a minimum age. In this and other cases, LA- 
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ICP-MS concentration determinations such as those obtained here will be useful in 

determining exactly how robust such ages are. 

The above modelling can also be applied to minerals such as zircon which fractionate 

Sm from Nd, by considering a negative AY; the equivalent of the solid triangle 

(inclusion) on Figure 6.1Oa lying above the effective bulk composition. As shown on 

Figure 6.10 zircon would also increase the Nd and Sm concentrations but would 

increase the measured age from the true age. However, the low concentrations of Sm 

and Nd in zircon would require the incorporation of prohibitively large amounts of this 

mineral in a "garnet" separate. In addition, the dissolution procedure used here and 

elsewhere for garnet, i. e. vials at low pressure rather than hydrothermally in a bomb, 

would not be expected to dissolve any zircon inclusions. 

For samples discussed here it has been argued that the variations in Sm/Nd ratio 

recorded by the duplicate garnet separates is a result of real variation in the lattice 

concentrations. While no included phase is likely to cause the relationships observed the 

presence of such an inclusion cannot be discounted unequivocally and it is worth 

discussing the data in terms of the above analysis. 

On the isochron diagram of G31(1) the two garnet analyses are concordant (Figure 6.8e) 

suggesting that any inclusions incorporated into the analyses were in equilibrium with 

the whole rock-garnet system or that both analyses are sufficiently close to the true 

garnet for there to be no significant shift from the true age. This applies equally to 

CZG23 for which the several garnet analyses are concordant. This conclusion is 

supported by the general similarity in the Sm and Nd concentrations and Sm/Nd ratios 

obtained by LA-ICP-MS and ID analyses. 

G9 represents a distinctly less favourable case since the two garnet fractions are not 

concordant with the whole rock suggesting that the displacement of Grtl and possibly 

Grt2 may be the result of the incorporation of inclusions that were not in equilibrium 
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with the whole rock-garnet system. In the case of G9, this suggestion is corroborated by 

the fact that the Sm/Nd ratios measured by LA-ICP-MS range from 5 to 18 while those 

for the ID analyses are 2 and 6. One can use the calculations outlined above, and used in 

Figure 6.10, in a semi-quantitative fashion to assess the robustness of the G9 ages as 

follows. First estimates of AY, Xpg and Ypg are required. AY can be determined 

assuming a worst case scenario of an inclusion completely isolated from the EBC for 

-600Ma before being incorporated into the garnet (AY=0.0002). Xpg and Ypg can be 

calculated using the range of Sm/Nd ratios obtained by LA-ICP-MS and assuming an 

age of 30 Ma; a situation similar to Figure 6.10b. Taking the Grt 1 analysis with a 

147Sm/'44Nd ratio of 1.19, these calculations suggest that the age given by this fraction 

relative to the whole rock could be too low by 68-86% - the range resulting from the 

range in Xpg as derived from the LA-ICP-MS analyses. On the other hand for Grt 2, 

which has a 147Sm/'44Nd ratio of 5.8, the age could be too low by 1-20%. In other 

words, the real age of the G9 garnet could be as high as 31 Ma as opposed to 24 Ma. 

6.6 Conclusions 

LREE-enriched micro-inclusions may contribute to some conventional Sm-Nd isotopic 

analyses obtained by isotope dilution on garnet separates. One method for determining 

the extent to which such inclusions affect individual garnet analyses is to verify the 

concentrations of Sm, Nd and the Sm/Nd ratio obtained by comparison with in-situ 

analyses of the garnet lattice. To measure the extremely low concentrations of Sm and 

Nd in the garnet lattice, high sensitivity LA-ICP-MS was used. These measurements 

demonstrate that conventional techniques can result in garnet analyses which are largely 

free from the effects of such inclusions and result in meaningful and reliable age 

information. 

A simple model which explores the significance of these inclusions for garnet 
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chronometry demonstrates that the incorporation of tiny amounts of LREE-enriched 

minerals can dramatically alter the isotopic information obtained from garnets. 

Furthermore, if LREE-enriched inclusions incorporated into garnets have been isolated 

from the effective bulk composition during garnet growth they will result in a younger 

measured age than the true age. Such modelling is not limited to the Sm-Nd system and 

can clearly be adapted for other isotopic systems (Rb-Sr, U-Pb, Lu-Hf) which have been 

used with garnets and which are also likely to be affected by the incorporation of 

accessory phases enriched in the elements of interest. Nevertheless the extent to which 

these inclusions affect the garnet isotopic data can best be constrained by duplicating 

garnet analyses, (demonstrating that any inclusions if present were in isotopic 

equilibrium with the garnet-effective bulk composition) and/or by verifying that the 

elemental concentrations of measured garnets corresponds to the lattice concentrations 

measured in-situ. 

Finally the accessory phases which may affect garnet chronometry (monazite, zircon, 

allanite) are themselves often used for high precision dating (e. g. Parrish, 1990). Age 

data from these accessory minerals is then related to pressure and temperature 

information from the major rock forming minerals such as garnet. However, given the 

reported incidence of isotopic disequilibrium between gannet and such accessory phases 

(this study Zhou and Hensen, 1995; Vance et al., 1998b) it cannot be assumed that the 

age of the accessory phase is related to age of crystallisation of the major phases. 
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7.1 Introduction 

There is currently a growing interest in the use of trace-element zoning in garnets as a 

record of petrogenetic processes (Hickmott et al., 1987; Hickmott and Shimizu, 1990; 

Hickmott and Spear, 1992; Brueckner et al., 1996; Schwandt et al., 1996; Spear and 

Kohn, 1996). Indeed the ubiquity of garnet in a wide range of bulk compositions and its 

use in well-calibrated geothermometers and barometers make its chemistry of special 

interest. In particular, because of the slow diffusion rates of the major-elements at 

amphibolite-facies conditions (see Ganguly et al., 1998a), the compositional signature 

of early metamorphism is preserved in garnet cores. Thus major-element zoning in 

garnets can provide constraints on changing pressure and temperature conditions from 

metamorphic terrains (Tracy et al., 1976; Spear and Selverstone, 1983; Vance and 

Mahar, 1998). 

The Electron Microprobe (EMP) is regularly used to study the major-element zoning of 

garnets and has been used to measure a narrow range of trace-elements (Spear and 

Kohn, 1996), but for many other trace-elements of interest the detection limits are 

significantly greater than typical concentrations in garnet. With the development of the 

Secondary Ion Microprobe (SIMS) and Laser Ablation Inductively Coupled Plasma 

Mass Spectrometry (LA-ICP-MS) detection limits for many trace-elements have been 

reduced. 

In this chapter the LA-ICP-MS data for the full trace-element dataset obtained during 

the Sm-Nd study outlined in Chapter 6 is used to examine the controls on trace-element 

partitioning into garnet. Firstly, however, the controls on rare earth (REE) and other 

trace element zoning in garnets are discussed. This is followed by a brief description of 

the analytical techniques of LA-ICP-MS. Then the data from three garnets measured by 

Timing of prograde metamorphism... C. 1. Prince 189 



Chapter 7 Trace-element zoning In garnet 

LA-ICP-MS are presented with a discussion. 

7.2 Controls on trace-element zonation 

In both igneous and metamorphic rocks the controls on trace element zonation are likely 

to be numerous. While it is impossible to determine unique solutions to the zonation 

patterns observed, different processes will be characterised by particular styles of 

zonation. Below, the major controls on trace element zonation in both igneous and 

metamorphic rocks are discussed including: garnet crystal chemistry, mineral equilibria 

and non-equilibrium processes. 

Garnet crystal-chemical controls 

In a melt the partition of trace-elements into the crystal lattice of a growing mineral can 

be expressed as a partition coefficient (Kd_melt). For elements which partition strongly 

into garnet, termed compatible, Kd is greater than 1. For elements which are 

incompatible in mineral structures, Kd is less than 1. Measured garnet partition 

coefficients for a silicate melt show that the heavy REE (HREE) are highly compatible 

in garnet and Kd decreases smoothly to the light REE (LREE) which are highly 

incompatible (Sisson and Bacon, 1992). An important feature of the incompatibility of 

the LREE in garnet is that, as a general rule, they will be incorporated into the growing 

garnet in proportion to their concentration in the surrounding rock or melt (McKay, 

1989). Conversely, given the high Kd for some of the HREE, the growth of garnet may 

itself affect the concentrations of some REE in the rock or melt. 

It has been demonstrated that the value of Kd for some trace-elements in silicate 

minerals can be successfully explained by the lattice strain model of Blundy and Wood 

(1994). This model describes trace-element partitioning of an element in terms the 

element's ionic radius, the size of the lattice site into which the trace-element partitions, 

the elastic modulus of the site and the theoretical ideal partition coefficient for that site. 
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As the major-element composition of the crystal changes the site size and elastic moduli 

will vary as a result of the differences in ionic radii and charge balance. Since major- 

element composition is itself a function of pressure, temperature and bulk rock major- 

element composition, so will the partitioning behaviour of trace-elements into garnet. In 

this way a correlation between major-element and trace-element composition would be 

expected. For example, in the garnet-silicate melt system, Westrenen et al. (Subm. ) 

show, for pyrope-grossular (Py-Grs) garnets, that from Py84 to Py9 Kdu increases from 

0.004 to 0.2 -showing that the incorporation of Ca into the garnet increases the partition 

of the LREE. In the case of metamorphic garnets the Ca content is also a function of 

pressure and it might be expected that LREE concentration may vary with the pressure 

at which garnet grew (e. g. Bea et al., 1997). 

If the crystal chemistry of the garnet dominates the incorporation of trace elements this 

would result in a correlation between major and trace-element zoning; for example 

zonation in which the Ca content of garnet increases might be expected to show 

corresponding increases in LREE content. Such crystal-chemical controls will not be 

limited to igneous systems and will also affect trace element partition in metamorphic 

rocks: it has been suggested that high Mn and Ca contents may increase the 

compatibility of the HREE and LREE respectively (Schwandt et al., 1993; Schwandt et 

al., 1996). Unfortunately, the effect of the different major elements has not been 

extensively explored and little is known of the extent to which each major element 

changes the partition coefficients. 

However, if crystal chemistry does play an important role the changing pressure and 

temperature during metamorphism and the near ubiquitous presence of major-element 

zonation in garnets at upper amphibolite grade (see review in Tracy, 1982) would be 

expected to contribute to trace-element zonation. 
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Mineral equilibria 

In a crystallising melt there will be many other minerals which incorporate trace- 

elements to varying extents. The Kd will then also be a function of the other minerals 

present. The partition coefficient between the garnet and all the other components of the 

system (minerals and melt), Kdb�lk, will be the sum of the Kdgt_,,,; f, emeit multiplied by 

their modal proportions. For example, the presence of negative Eu anomalies in garnets 

from granites (Harris et al., 1992; Sevigny, 1993) probably results from the growth of 

the garnet in the presence of crystallising feldspar, reducing the Kdgn_,   ,, evmeit for Eu. 

While changes to the modal proportions of rock-forming minerals and their 

compositions will affect the Kdb�&, changes in accessory minerals will be of particular 

importance because in felsic rocks the bulk of REE reside in accessory phases (Bea, 

1996) in which they form essential structural constituents. Such a process was suggested 

by Sevigny (1993) for a crystallising leucogranite in which monazite was the major 

control on LREE distributions in garnet phenocrysts. 

If accessory phases such as monazite, apatite, zircon, ilmenite and allanite are the major 

control on REE and trace-element distribution in garnets correlations between specific 

elements, depending upon the accessory phase crystallising at the time, would be 

expected. For example the presence of monazite in equilibrium with garnet should lead 

to correlations between LREE, Th and P. Similarly, the presence of apatite (MREE and 

P), zircon (HREE, Zr, U and Hf), ilmenite (MREE, Ti, Nb), allanite (LREE, Th) might 

lead to other correlations. 

Such reasoning can be extended to metamorphic rocks in which accessory phases also 

contain the bulk of trace and rare earth elements (Ayres et al., 1997). The important 

difference is that during metamorphism, under equilibrium conditions, the mineral 

composition and assemblage of the rock changes continually due to divariant net 

transfer reactions caused by varying mineral stability. The result would be that the 
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growing garnet would record significant concentration changes as different minerals 

become stable relative to others. Nevertheless, the same correlations between the 

elements should occur as above. Few authors have attempted to correlate trace-element 

zoning to accessory phases stability although Hickmott and Spear (1992) attempted to 

explain trace- and major-element zoning in a metamorphic rock in terms of changing 

major-mineral stability. 
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In closed system metamorphic 

and igneous rocks equilibrium is 

rarely attained (as demonstrated 

by mineral zoning) and non- 

equilibrium processes play an 

important role during garnet 
Figure 7.1 Modelled chondrite-normalised REE distributions 

between phases in metapelite assemblage calculated by mass 
growth. These can be placed 

balance. From Ayres (1997). between two endmembers: (i) 

limitations on elemental supply 

to the growing minerals due to intercrystalline diffusion controls (e. g. Albarede and 

Bottinga, 1972; Carlson, 1989) and; (ii) intracrystalline diffusion controls (resulting in 

more permanent changes in the effective bulk composition (EBC) or melt during 

growth). 

Intercrystalline diffusion controls 

In a situation where the garnet growth rate is such that elemental diffusion through the 

matrix or melt is not sufficient to maintain equilibrium, local concentration gradients 

develop in the rock, as illustrated in Figure 7.2. The strong partitioning into the garnet 

of the HREE (represented by red line in Figure 7.2a) results in a decrease in the HREE 
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concentration locally around the garnet and as growth continues the gradient becomes 

more pronounced (Figure 7.2b). As a result the HREE concentrations in the garnet 

decrease as the garnet grows (red zonation profile in Figure 7.2c). On the other hand, 

due to the incompatibility of the LREE in the garnet, the LREE concentration around 

garnet increases during growth (blue line in Figure 7.2a). Intercrystalline diffusion 

controls would result in a rapid decrease in HREE concentration with a concomitant, 

although less pronounced, increase in the LREE concentration. Furthermore, these 

effects may occur intermittently and repeatedly. 
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Figure 7.2 Effect of slow intergranular diffusion on garnet growth. Schematic concentration gradients around a 

garnet. (a) Growth of the garnet depletes the area in compatible elements (red) and enriches it in incompatible 

elements (blue). (b) subsequent growth accentuates this effect. (c) possible schematic trace element zonation 

preserved in garnet. This effect may act on small time scales producing only limited or multiple periods of growth as 

shown in (c). 

This may apply equally to metamorphic and igneous systems although the controls on 

diffusion in a metamorphic matrix and a liquid melt will be different. In metamorphic 

rocks the intercrystalline diffusion will be a complicated function of, amongst other 

things, temperature, water content and fluid connectivity as measured by the dihedral 

angle - which themselves are functions of metamorphic reactions, rock type and other 

factors. Despite such complicated systematics, if this process dominates trace-element 

zoning in garnet, the difference in zoning from one trace-element profile to the next 

should be a function of the relative partition coefficients and element intercrystalline 
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diffusion rates. 

Intracrystalline diffusion controls 

If on the other hand intercrystalline diffusion is not the rate-limiting process no 

concentration gradients will develop around the growing garnet (Figure 7.3a). However, 

the growth of minerals with low intracrystalline diffusion rates will result in permanent 

changes to the EBC or melt (blue line Figure 7.3a). A well known example of this in 

metamorphic rocks is the depletion of the EBC in Mn due to garnet sequestering the Mn 

during growth. This process can be successfully modelled by Rayleigh fractionation 

(Hollister, 1966) and explains the common occurrence of bell-shaped Mn profiles in 

garnets at amphibolite facies. This process also occurs in igneous systems whereby the 

growth of minerals depletes the remaining melt in certain elements. 
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Figure 7.3 Effect of slow intracrystalline diffusion and hence, 

fractionation. No concentration gradients develop in the rock times the proportion of the rock made 

(flat lines in (a)). (a) growth of garnet or any other mineral up of that mineral) and the extent to 
depletes the EBC in elements from that shown in red to blue. 

which the mineral remains closed to 
(b) schematic profile produced in growing garnet as a result of 

fractionation. Unlike intercrystalline diffusion controls the area the rest of the rock (a function of size 

around the garnet is permanently reduced in the elements of and intracrystalline diffusion rates). 
interest and cannot reach higher concentrations during later 

As previously noted the bulk of REE 
growth. However, the two processes are not mutually exclusive. 

reside in accessory phases in both 

felsic igneous and metamorphic systems and many of the accessory phases also have 

very low diffusion rates because the REE often form essential structural components to 

the minerals. Therefore, if this process dominates we would expect to see the same 

correlations between particular groups of elements as for changing mineral stability - 
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monazite (LREE, Th and P), apatite (MREE and P), zircon (HREE, Zr, U and Hf), 

ilmenite (MREE, Ti, Nb), allanite (LREE, Th). If these minerals are growing at the 

same time as garnet the net affect would always be to reduce concentrations in the 

growing garnet. 
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Figure 7.4 Effect of breakdown of inherited minerals (a) 

open to the system the net effect breakdown of accessory phase results in an increase in the 

concentration of elements incorporated in it. (b) possible would be to increase concentrations 

schematic profile produced by such an effect. A similar profile in the growing garnet (Figure 7.4). 

may be produced by the influx of elements in an open system. 
This may occur in metamorphic 

rocks due to the inheritance of metastable minerals (e. g. Parrish and Hodges, 1996). 

During the early stages of metamorphism their slow intracrystalline diffusion rates will 

result in no communication with the rest of the rock, however, during continued heating 

and burial they may break down suddenly enriching the EBC in the elements contained 

within them (Figure 7.4). 

Given the compatibility of the HREE in garnet and the slow intracrystalline diffusion 

rates, we might expect the growth of the garnet to affect their concentrations in the EBC 

as is the case for Mn. 

Open-system behavior 

If the rock acts as an open-system and the trace-elements of interest are mobile then this 

could also contribute to trace-element zoning in garnet. Such zonation would be similar 

to the effect shown in Figure 7.4 except that the elements involved would be correlated 

with a particular fluid composition or to elements mobile during metamorphism. 
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Intracrystalline diffusion 

Slow intracrysta line diffusion in garnet is a prerequisite for the preservation of zoning 

in any element and it is worth noting that all the non-equilibrium processes also require 

slow intracrystalline diffusion so that elements, once incorporated into the crystal lattice 

of garnet or other phases, are effectively removed from the EBC or melt. However, at 

high temperatures intracrystalline diffusion may result in changes to the original growth 

zoning, obscuring original information. 

Previous studies 

Non-equilibrium processes have been invoked previously to explain trace element 

zonation. For example, Hickmott et al. (1987) suggested zonation in garnets from 

Alpine assemblages exposed in the Tauern Window resulted from variations in the EBC 

(i) by open system behaviour or (ii) the breakdown of refractory minerals. Also 

Hickmott and Shimizu (1990) in a study of a garnet from a contact aureole in the 

Kwoiek Area, British Columbia suggested that Ti concentrations were buffered by 

accessory ilmenite which also contributed to changes in the EBC by its breakdown. In 

addition they suggested zoning in the HREE resulted from limited elemental supply to 

the garnet surface caused by rapid growth rates. A recent study by Schwandt et al. 

(1996) examined trace element zoning for garnets from the same lithology but varying 

metamorphic grade. They suggested that depletion of the EBC in REE by garnet or 

other minerals played a major role, resulting in high core concentrations and lower rim 

concentrations in garnet. This is qualitatively the same as the Rayleigh fractionation of 

Mn proposed by Hollister (1966). However this did not explain all the variations 

observed and they additionally suggested that elemental supply was limited by slow 

intergranular diffusion as well as crystal chemistry controls. 
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7.3 Aims of this study 

Clearly the above processes are not mutually exclusive but the signatures of each 

process may be recognisable. The aims of this study are to examine the trace element 

zonation of garnets from the Garhwal Himalaya in order to understand the major 

controls. LA-ICP-MS was used as a quick, accurate and precise method for identifying 

the distribution of REE and trace-elements in three garnet samples from the Garhwal 

Himalaya which have also been used in chronometric studies. These included: (i) a 

garnet from a deformed leucogranitic melt (G31(1)); (ii) a zoned garnet from a medium- 

grade metamorphic rock (G9) and; (iii) a metamorphic garnet that has undergone high- 

temperature diffusional homogenisation (G96). 

7.4 Experimental procedure 

7.4.1 Laser ablation ICP-MS 

Previous studies have shown the potential of LA-ICP-MS to obtain accurate and precise 

trace element analyses from garnet (Jenner et al., 1993; Fedorowich et al., 1995; Bea, 

1996; Bea et al., 1997). Experiments for this study were carried out with an excimer 

laser system at ETH Zürich, (193 nm, ArF, Günther et al., 1997) linked to an ELAN 

6000 ICP-MS (Perkin Elmer, Norwalk, USA). The output energy was set to 160 mJ 

allowing a pulse energy of 2.4 mJ for an 80 µm pit and a repetition rate of 10 Hz. The 

carrier gas flow flushing the ablation cell was 1.2 1/min helium mixed with 0.84 1/min 

argon behind the ablation cell (Günther and Heinrich, in prep. ). 

The principal advantage of LA-ICP-MS for this study is the spatial resolution available 

and the resultant ability to measure zonation on the scale of µm. The total measurement 

time for each analysis spot was 90 s, split into 30s gas blank acquisition and 60s data 

acquisition for the sample. Data collection runs were bracketed by analyses of NIST 612 

glass as an external calibration standard and Si02 measured by electron microprobe was 

Timing of prograde metamorphism... C. I. Prince 198 



Chapter 7 Trace-element zoning in garnet 

4 

`f }ý r 

` ... 

w ßi3" ti»m 
-. 

`atälhiý! ^i3r~i .ä.. 3ýi^ . 
-, _,....... 3; 'v+...., 

.L 
ýrt 

... _ . _. --,. 
125... 

_ .. 

Fir; ure .3 
Phoronucroggraphs showing, posirion of LA holes for (a) G31(1)a (b) G9a and (car GW)a. , final-(i rnrirr 

electron microprobe traverse approximately follows line of ablation hole. See Figure 6.3 Jor G31(1) and G9. A'un: hers 

refer to ablation analyses as summarised in Appendix G. In (b) green spots c orrespond to traverse of G9 perpendic ular to 

that presented in Fi ure '. 8. 

Tinting of prograde meuimorphism... C. I. Prince 199 



Chapter 7 Trace-element zoning in garnet 

Figure 7.6 Photomicrographs showing positions of LA holes for (a) G31(1)b (b) G9b and (c) G96b. For position of 

major-element electron microprobe traverse see Figure 6.3. Numbers refer to ablation analyses as summarised in 

Appendix G (see comments). 
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used as internal standard. The data reduction procedure of Longerich et al. (1996) was 

used. The results were screened for inclusion effects to produce REE concentration 

analyses in profiles across the garnets. 

All data presented here are above the limits of detection (LOD), calculated for each 

spot. Signal acquisition was optimised for Si02 and trace elements. Major-element data 

was collected in analogue mode but is not reliable and as such is not discussed further 

here. 

7.5 Results 

Two sets of measurements were made. In the first, REE and other trace-elements were 

measured. Traverse pits are shown in Figure 7.5 along with the position of the electron 

microprobe traverse. For the second set of measurements the limits of detection were 

improved to allow a better analysis of the LREE: traverse pits are shown in Figure 7.6. 

7.5.1 G31(1) 

Major-element profi le (EMP) 

Sample G31(1) is from a small decimetre-sized leucogranite intruded at the base of the 

upper-High Himalayan Crystalline Series (HHCS) (see Chapter 2 and 5). The 

leucogranite has been deformed and shows late cross-cutting sillimanite growth. The 

garnet analysed by EMP and LA-ICP-MS was 5.2 mm in diameter (Figure 7.5a and 

Figure 7.6a) and shows smooth zoning in the major-elements (A1m66-7I, Prp9-13, Grso-4 

and Sps13-24; Figure 7.7a). The increase in Ca at the edge of the garnet corresponds to a 

clear outer rim -200 gm from the edge of the grain as shown on Figure 7.7c. The garnet 

contains inclusions of quartz, tourmaline, needles of rutile less than 5µm long and 

exhibits visible oscillatory zoning. The visible zoning correlates with the density of 

rutile needles within the garnet and may be a function of Ti concentration or trace- 

elements associated with them. The igneous origin of the garnet is confirmed by the 
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oscillatory zoning, negative Eu anomaly (see below) and high spessartine content 

typical of igneous garnets (e. g. Harris et al., 1992) 

LA-ICP-MS trace-element profiles 

Two traverses were carried out on this sample; G31(1)a and G31(1)b across the same 

garnet (Figure 7.5a and Figure 7.6a). Data for the major elements (A1203, MgO, Si02, 

CaO and FeO) and the REE and other trace elements (Ti02, Na2O, V, Cr, Rb, Sr, Y, Zr, 

Ba and U) were collected for G31(1)a. For G31(1)b only the REE, major elements 

(A1203, Si02 and CaO) and Y, U, Na20 were collected in order to improve the 

sensitivity for the REE. All the data is presented in Appendix G. 

As expected Figure 7.7b shows that G31(1) has an HREE enrichment when compared to 

chondrite. Additionally Figure 7.7b and c show that there is a decreasing concentration 

from the core to just within the rim in the M-HREE. This general pattern is broken at 

the rim where there is a marked increase in the REE concentrations at the outer ablation 

pits (see Yb in Figure 7.7c). Additionally, the chondrite-normalised pattern for the outer 

rim is distinct from the chondrite-normalised pattern for the rest of the garnet: Dy-Yb 

display a concave pattern for all spots other than the outer-rim which has a convex 

pattern (Figure 7.7b). In more detail the profile across the garnet shows a slightly 

asymmetrical zonation pattern for REE without a close correlation between the MREE 

and HREE. 

The other trace-elements vary in broadly the same way as the HREE with decreasing 

concentrations from core to rim (Figure 7.7d). However, they do not exactly parallel the 

REE elements and both Ti and Zr show a spiky variation across the garnet probably 

resulting from rutile needle concentration changes. Unfortunately the size of the visible 

zoning, which correlates with rutile needle concentration changes, is smaller than was 

sampled here and the variations cannot be directly correlated with the banding. U also 

shows large variations and a strong enrichment in the core and reaches absolute 
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concentrations of 8 ppm although the presence of the tiny rutile needles means that a 

contribution from them cannot be ruled out. 
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Figure 7.7 Data for G31(1)a and b. All distances correspond to the traverse shown in Figure 7.5a and Figure 7.6a. 

(a) Major-element profile. The outer rim is marked by an increase in the Ca concentration and is inclusion free (b) 

Chondrite-normalised patterns for Core, Rim and Inner Rim analyses. Despite similar concentrations for the core 

and outer rim the patterns are significantly different. (c) Traverse data for Sm and Yb note the increase in REE 

concentrations as shown by Yb is symmetrical across the garnet and limited to the outer rim (d) Profile for Zr and U. 

(e) Profile for Ti02 
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7.5.2 G9 

Major-element profile (EMP) 

G9 is from a muscovite schist in the kyanite zone of the High Himalayan Crystalline. 

The garnet used for LA-ICP-MS and electron microprobe analysis from G9 is 

ellipsoidal and 4.1 mm in length (Figure 7.5b). Major-element zonation shows a bell- 

shaped Mn profile typical for this grade of garnet, an increasing Fe content from core to 

rim and a step in Ca and Mg near the rim (Alm80 57, Prp1o-20, Grs19-6 and Sps25-lo; Figure 

7.8a). Rim equilibration pressure and temperatures were calculated using Thermocalc at 

616±29°C and 9.5±1.3 kbar although this is likely to be a minimum due to the 

resorption of the outer parts of the garnet erasing previously recorded information. 
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Figure 7.8 G9. All distances correspond to the traverse shown in Figure 7.5b and Figure 7.6b. (a) Major-element 

profile. A smooth bell-shaped Mn profile with a slight increase in the rim, Ca is irregular and slightly asymmetrical 

but shows a strong decrease at the rim. (b) Chondrite-normalised REE plots. Note the smooth HREE enriched profile 
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LA-ICP-MS REE and trace-element profiles 

Two LA-ICP-MS traverses were carried out on a single garnet; G9a and G9b. Absolute 

concentrations of the REE and trace-elements were within error for G9a and G9b. 

Elements collected were the same as for G31(1)a and G31(1)b respectively and are 

summarised in Appendix G. 

All REE analyses show HREE-enriched chondrite-normalised profiles relative to the M- 

LREE, however, the M-HREE patterns for different parts of the garnet are distinctly 

different (Figure 7.8b). This correlates with the concentration profiles in which very 

high HREE concentrations in the core of the garnet drop to much lower concentrations 

outside the two central analyses (e. g. Yb in Figure 7.8c). The large drop in 

concentration is shown by Lu-Dy, although to a decreasing extent. Th and Gd have flat 

profiles across this section of the garnet but Nd, Sm and Eu show an inverse correlation 

with the HREE: a low concentration in the central two analyses increasing outwards 

from the core (e. g. Sm in Figure 7.8c). In summary the core is highly enriched in HREE 

and depleted in the LREE relative to the rest of the profile and the HREE decrease 

outside of the core is concomitant with an increase in the L-MREE. Outside of the 

central four analyses the patterns are more complicated with a pronounced asymmetry 

in the MREE as shown by Sm (Figure 7.8c). 

Of the other trace-elements V and Ti02 profiles show a broad pattern with a 

concentration decrease from the core outwards (Figure 7.8d). Zr and U have very 

similar profiles, distinctly different from all the other elements, with an initial increase 

in concentration outwards from the core and then a decrease towards the rim (Figure 

7.8d). 
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7.5.3 G96 
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Figure 7.9 G96a all distances correspond to the traverse shown in Figure 7. Sc. (a) Major-element profile showing 

slight Mn zonation but flattened Mg, Fe and Ca. (b) Chondrite-normalised REE plots. (c) Gd and Yb zonation profile 

note the preservation of a more pronounced Yb profile than Gd (d) flat V, Cr and Sr concentration profiles with a 

slight zonation in Ti02. 

Major-element profile (EMP) 

Traverses were obtained on two garnets from the same upper-amphibolite grade pelitic 

schist in the HHC of the Garhwal Himalaya; G96a and G96b. Both garnets grew over a 

lithological boundary between a quartz vein and a biotite rich schist. Generally two- 

thirds of the garnet has a sieve texture with inclusions of quartz, feldspar, biotite and 

some small inclusions of zircon. The remaining third is near gem quality with only a 

few minute zircon inclusions. G96a was cut parallel to the schistosity through the 

poikioblastic section of the garnet and G96b was cut perpendicular to the foliation 

through the gem quality section which grew in the biotite schist. The electron 
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microprobe traverses for both garnets (Figure 7.9a and Figure 7.1Oa) show flat Fe, Mg 

and Ca profiles and slight Mn zonation indicating near complete homogenisation of the 

major-elements (AIm48, Prp7, Grs31 and Sps14) at elevated temperature. P-T estimates 

using Thermocalc (Holland and Powell 1985, Holland and Powell 1990) indicate rim 

equilibration temperatures and pressures of 652 ± 44 °C and 10.8 ± 1.2 kbar. Because 

significant homogenisation has occurred the temperature is probably only a minimum 

estimate. 

LA-ICP-MS REE and trace-element profiles 

REE and trace-elements for G96a and G96b were collected as for G31(1)a and b 

respectively and are summarised in Appendix G. 

There is a HREE enrichment for all analysed points in both G96a and G96b (Figure 

7.9b and Figure 7.10b) but, the absolute concentrations are greater in G96b and the 

zoning patterns are also different. 

In G96a Gd-Lu show broadly symmetrical patterns with decreasing concentrations from 

core to rim and a more pronounced zonation for the heavier REE (Figure 7.9c). Ti (and 

Y, Zr) shows a similar gently decreasing concentration profiles to the REE elements 

(Figure 7.9d), whereas Cr and V show an almost flat profile with little variation across 

the garnet. 

G96b also has an HREE-enriched chondrite-normalised pattern with stronger zoning in 

the HREE profile than for G96a. Figure 7.1Oc shows a large decrease around the central 

analyses of the traverse. However a broad pattern appears in which the HREE (Yb-Er) 

are concentrated in the core and decrease towards the rim and the M-LREE (Dy-Sm), 

with the exception of the central three analyses, show a broadly inverse pattern (Figure 

7.1Ob). The variation between the two types of behaviour is smooth as shown by Ho 

which has a behaviour intermediate between the M-LREE and HREE (Figure 7.10d). 

While both garnets in this sample show HREE enriched profiles the zonation patterns 
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are significantly different. This may be due to the position of the two traverses through 

the garnets and differences between garnets in the same sample locality; G96a is a 

traverse parallel to the lithological layering and G96b is a different garnet and cut 

perpendicular to the layering. This probably results in garnets with traverses through 

distinctly different portions and very different spatial controls on their zoning profiles. 

The absolute concentration enrichment from core to rim for the HREE (e. g. Yb 

enrichment of 5.5 in G96a) is lower than other garnets presented here and lower than 

that found in other studies below the sillimanite zone (Hickmott et al., 1987; Schwandt 

et al., 1996) but similar to garnets from the sillimanite zone (Yb enrichment of 6.6 

Schwandt et al., 1996). This may result from the partial homogenisation of initial HREE 

profile by intracrystalline diffusion at high temperature. 
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7.6 Discussion 

7.6.1 Major controls on zonation; fractionation and accessory phase growth 

The major feature of the REE zonation patterns presented here is that of decreasing 

concentrations from core to rim for the M-HREE, which also applies to the LREE for 

G311). (Ayres (1997) showed that the bulk of the HREE in metamorphic rocks are 

contained in garnet, due to their high partition coefficients, the low diffusivity of REE in 

garnet and the large modal proportion of garnet (Figure 7.1). Thus it is likely that the 

growth of garnet will be the major control on the availability of HREE in the rock, and 

hence zonation patterns within the crystal. This has been proposed, and successfully 

modelled, for Mn in metamorphic rocks (Hollister, 1966) and results in the well-known 

bell-shaped Mn profiles typical of metamorphic garnets up to upper-amphibolite facies 

(Tracy, 1982). Modelling of the profile is a function of the partition coefficient of the 

element in question, the elemental concentration in the rock and the proportion of garnet 

grown. While the partition coefficient for Mn in garnet will vary with pressure and 

temperature this does not appear to have a noticeable effect and profiles can be 

successfully modelled using simple Rayleigh fractionation models, with Kdgrt: whole rock of 

between 60-100 (Ayres and Vance, 1997). It may be reasonable to assume that the 

HREE will act in much the same way as Mn as they are also granatophile elements with 

high partition coefficients in garnet (Sisson and Bacon, 1992). 

Garnet in sample G9 has a well developed "bell-shaped" Mn profile which can be 

successfully modelled by Rayleigh fractionation using the whole rock Mn 

concentration, a typical partition coefficient for Mn in pelitic rocks (Ayres and Vance, 

1997) and a final garnet modal proportion consistent with that seen in thin section 

(Figure 7.11 a). This can then be applied to the REE elements in sample G9 with Kd's 

calculated from the core concentration/bulk rock concentration for each REE and is 
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shown in Figure 7.11b. While the HREE profile is qualitatively similar to that shown by 

Yb in Figure 7.8c (i. e. a decreasing concentration) the extreme concentration decrease 

away from the core in the sample is not reproduced by such modelling. G31(1) and G96 

also show a general decreasing HREE profile and while such a model accounts for the 

first order features of the HREE patterns in these three samples it cannot, on its own, 

account for the zonation of the HREE. 

Figure 7.11 also shows the modelled profile for Sm which due to a Kd less than 1 

results in an increase in concentration from core to rim: this effect would be more 

pronounced for the lighter REE elements due to lower partition coefficients. Such a 

modelled profile does not satisfy the observed Sm profile except perhaps in the central 

section of the garnet where Sm concentrations increase outwards from core to rim 

before becoming much more variable than can be accounted for by such a simplistic 

model. Clearly other processes are affecting the REE zonation profiles obtained for 

these samples and a clue to what these may be can be seen in G31(1). 
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Figure 7.11 G9 (a) modelled Rayleigh fractionation profile for Mn (black diamonds) compared to the true profile 

(green triangles). There is an extremely close fit for the bulk of the profile except at the rim due to back diffusion of 

Mn into the garnet. Modal proportion used to fit the curve correlates approximately with that seen in thin section. (b) 

modelled REE profiles. Kd obtained from core/bulk rock concentration ratio and the same modal proportion as for 

(a). 

In G31(1) all the REE elements measured show decreasing concentrations in a rimward 

direction with the exception of the final rim analyses (Figure 7.7c). Such an effect 
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cannot be produced for the L-MREE simply by fractionation of the system by garnet 

because garnet will not significantly deplete the EBC in these elements due to their 

extremely low concentrations in garnet. However, as shown by Ayres and Harris (1997) 

and Bea (1996), the bulk of the L-MREE in felsic and metamorphic rocks lie in the 

accessory phases and, 

specifically, apatite and 

monazite. If these minerals also 

have slow intracrystalline 

diffusion rates for the REE they 

will fractionate the L-MREE 

during growth, resulting in a 

Figure 7.12 Photomicrograph of apatite crystals enclosed in feldspar 
decreasing concentration 

in sample G31(1). 

available for incorporation into 

the garnet. Garnet will act as a sensitive monitor to such fluctuations in L-MREE 

because incompatible elements will be incorporated into the lattice in direct proportion 

to their concentration in the EBC of the growing garnet (McKay, 1989). Thus 

qualitatively the decrease in the L-MREE can be attributed to the fractionation effect of 

the other minerals in the system. 

Additionally, at any single moment in the growth of the garnet the effect of other phases 

growing within the EBC of the garnet will result in variations in the Kd for those REE, 

e. g. the growth of another accessory phase incorporating Sm into its lattice will result in 

a lower Kd for the garnet. To pinpoint which accessory phases produce such 

fractionation effects and changes in Kd the elements they contain need to be correlated 

with changes in the profiles seen in the garnet (see Intercrystalline diffusion controls). 

In the case of G31(1) a clue to this can seen in the chondrite-normalised patterns (Figure 

7.7b). The patterns for all spots excluding the rim show a concave M-HREE pattern 
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between Tb and Yb, consistent with lower Kd's than would be normally expected from 

the generally smooth HREE-enriched patterns. The principle accessory phase to 

incorporate these elements is apatite (Figure 7.1). This may account for the change from 

concave to convex chondrite-normalised patterns at the rim of G31(1) (Figure 7.7b and 

c) because the termination of apatite crystallisation would result in an increase in the 

Kdgn: meIt. This hypothesis is further supported by the occurrence of apatite within 

feldspar crystals (Figure 7.12) suggesting that it was not forming during the final stages 

of crystallisation. 

Returning to G9, the rapid changes in concentration seen from the core outwards also 

correlate with changes in the chondrite-normalised patterns (Figure 7.8b and c) and may 

be related to the effect of accessory phases. The changes in the chondrite-normalised 

patterns indicate the effect of accessory phases incorporating the REE from Th-Lu. 

Changes in the partition coefficients between the garnet and its EBC are likely to be 

caused by other HREE enriched minerals such as zircon and apatite, thus the 

interpretation would be that during initial 
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150 growth of the garnet it was the only stable 

00 ä phase incorporating HREE into its structure and 
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in high concentrations. However, shortly after 
0 

garnet growth started the formation of a mineral 

Figure 7.13 Yb and Zr concentrations in G9 such as zircon reduced the partition 

showing the increase in Zr concentration coefficients. The subsequent growth of both 
correlating with the high Yb concentrations 

zircon and garnet resulted in the rapid followed by a decrease in Zr concentration and 

Yb. fractionation of the HREE and the observed 

profile. This hypothesis is supported by the 

intriguing Zr zonation profile in garnet in which, from core to rim, the concentration is 
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initially low, increases and then subsequently decreases correlating with the decrease in 

the HREE concentrations and changes in the REE chondrite-normalised pattern (Figure 

7.13). This is qualitatively similar to igneous rocks whereby the concentration in Zr 

within the melt reaches a maximum prior to the initiation of Zr crystallisation and 

subsequent decrease in the concentration of Zr in the melt. 

Clearly the first order features of the HREE, some of the LREE and some of the other 

trace-element zonation profiles in garnet can be accounted for by fractionation of the 

system by garnet and accessory phases with low intracrystalline diffusion rates. The 

phases responsible and their crystallisation history can potentially be constrained by 

their effect on the Kdgamet: whole rock as shown on chondrite-normalised patterns. However, 

more complicated features of the trace-element zonation in garnets (see G9 outside the 

central four analyses) which deviate from this simple model are more difficult to 

explain. Of the different additional controls some are discussed below. 

7.6.2 Intercrystalline diffusion controls 

An alternative process for producing decreasing concentrations of compatible elements 

is by limited elemental supply to the growing mineral either by slow intergranular 

diffusion or by interface kinetics (see Intercrystalline diffusion controls). Hickmott and 

Shimizu (1990) explored a simple model for intercrystalline diffusion control of 

element supply to a growing crystal. They showed that for any given rapid growth rate 

incompatible elements will increase in concentration in the crystal while compatible 

elements will decrease more rapidly than the incompatibles in much the same way as for 

fractionation (Figure 7.11). This is a possible alternative explanation for the variation in 

REE in the core of G9 (Figure 7.8c). Rapid growth associated with the core of the 

garnet would result, according to Hickmott and Shimizu (1990), in a rapid rimward 

decrease in the HREE component, as the HREE concentration around the garnet is 

depleted by strong partitioning into the garnet. On the other hand, the LREE 
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concentration in the growing garnet would increase as the concentration around the 

garnet increases due to the incompatibility of the LREE (Figure 7.2). This could 

qualitatively explain the rapid decrease in Yb with a concomitant, but slower, increase 

in Sm at the centre of G9 (Figure 7.8c). If this is the major control on the zoning of the 

REE it should also apply to other trace-elements as a function of their compatibility. 

Using the data of Sisson and Bacon (1992) Zr should be less compatible than V (Kd 

Zr=0.4; V=7) and, therefore, if slow diffusion relative to growth rate is the major 

control Zr should increase in concentration and V should decrease more rapidly. Figure 

7.14 shows that while there is an increase in Zr there is also a slight increase in V, 

followed by a subsequent decrease, more pronounced in Zr, rimwards. This simple 

analysis, however, depends on similar intercrystalline diffusion rates for the two 

elements, something which may vary with conditions. 
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Figure 7.14 G9 zonation in Zr and V. REE and other trace elements. Nevertheless, 

if intercrystalline diffusion plays a dominant 

factor in the distribution of elements in metamorphic rocks it may account for some of 

the more puzzling features of the garnets studied here including the diverging patterns 

of LREE and HREE at the rims of G9 which show opposite patterns at either margin of 

the garnet. For example if the main source of REE and trace elements is in accessory 

phases and the intergranular diffusion is slow, the intergranular fluid around them will 

either be depleted or enriched in their associated elements. Thus the chemical gradients 

within the intergranular fluid will be spatially controlled by accessory phases during and 

Timing of prograde metamorphism... C. 1. Prince 214 

024 
Distance (nm) 



Chapter 7 Trace-element zoning in garnet 

post growth. 

7.6.3 Garnet crystal-chemistry 

It has been suggested that the incorporation of Ca into the eightfold-coordinated site of 

garnet produces a more open structure that allows larger cations such as the LREE to 

enter into the garnet more easily (Schwandt et al., 1993). This has been confirmed by 

garnet/melt partition experiments carried out on pyrope-grossular garnets Westrenen et 

al. (Subm. ) in which the partition coefficients for the LREE increase with increasing Ca 

content. 

Unfortunately it is difficult to make comparisons between the garnets here given their 

different bulk compositions, histories and zonation patterns. However, major-element 

profiles can be compared to the REE profiles for individual garnets. For G31(1) a large 

increase in REE concentrations correlates with the Ca increase in the rim perhaps 

agreeing with this suggestion. However, the greatest increase in REE for G31(1) is for 

the elements Ho-Tm (Figure 7.7b and c) rather than the LREE. In the case of G9, which 

shows a large change in Ca content at the rim (Figure 7.8a), the REE do not show a 

consistent response and on one side of the garnet increase and on the other decrease. 

This suggests that Ca is not a major control on REE concentration although the 

usefulnees of the LREE data is limited by the extremely low concentrations of La, Ce, 

and Pr. 

Schwandt et al. (1996) suggested that the Mn content in the garnet may enhance the 

compatibility of the HREE, based on the correlation between high HREE 

concentrations, high HREE/LREE ratios and high Mn concentrations garnet cores. The 

present data also show the same features with decreasing Mn and REE concentrations 

from garnet cores to rims. However the strong correlation observed between Mn and the 

HREE is in fact related to fractionation of the HREE by the garnet in a similar way as 

has been suggested for Mn (Hollister, 1966) and discussed above. 
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Although garnet crystal chemistry demonstrably plays a role in the incorporation of 

REE in some cases (Westrenen et al., Subm. ) it is, at present, poorly understood. While 

it is possible that it contributes to zoning of REE and other trace-elements in the garnets 

studied here it demonstrably does not play the dominant role. 

7.6.4 Post growth inter- and intragranular diffusion 

All non-equilibrium processes and the preservation of trace element zoning require slow 

intragranular diffusion rates. The data presented here, however, allows some qualitative 

comments to be made. The almost homogenised garnet G96 shows slight Mn zoning 

(Figure 7.9a and Figure 7.10a) and also shows the preservation of HREE and LREE 

zoning. However, this zoning is significantly less extreme than for the other pelitic 

garnets: G9 and garnets below the sillimanite zone studied by Schwandt et al. (1996). 

Given the strong REE zonation of the garnets at lower metamorphic grades and the 

ubiquitous presence of major-element zoning of garnets up to sillimanite zone 

temperatures, it is likely that G96 was zoned, although it is impossible to know the form 

this took. 

If this premise is true the reduction of the major-element zonation profile is probably 

due to high-temperature intragranular diffusion and is likely to have affected the REE as 

well. The preservation of a reduced HREE, LREE, Mn and trace-element profile as well 

as isotopic differences between different portion of the garnet (see Chapter 4) suggest 

that the diffusion of the REE is equal to or slower than the major-elements. 

7.7 Conclusions 

The rim to rim traverses of all three garnets studied here show broadly decreasing 

concentrations of HREE and trace-elements from the core to rim caused primarily by 

fractionation of the EBC by garnet and/or other minerals. 

In addition to fractionation of the EBC temporal changes in Kd appear to be preserved 
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in both G9 and G31(1) whereby changing accessory mineral stability has caused 

concentration changes. The effect this has on each of the REE is different and is easily 

visible in the chondrite-normalised patterns. The change in concave to convex pattern in 

G31(1) is attributed to the saturation of apatite in the melt and the change from sloping 

HREE to flat HREE in G9 is attributed to the combined effect of zircon growth and 

fractionation. Whilst this is not a unique interpretation in the case of G9 (initial 

rimwards decrease from the core may also be produced by slow intergranular diffusion 

relative to garnet growth rates) it is likely to be the dominant factor. Such features 

suggest that garnet can act as a monitor for metamorphic reactions involving minerals 

with high REE or trace-elements concentrations such as monazite, zircon, allanite. 

Indeed, a recent study of zircons from eclogites in the Bohemian massif showed that 

-490 Ma zircons had HREE-enriched chondrite-normalised patterns and that -340 Ma 

zircons had flat HREE chondrite normalised patterns. The HREE-encriched pattern was 

interpreted as magmatic in origin and the flat pattern as a result of growth in the 

presence of garnet, allowing these authors to correlate precise age information with 

petrogenetic processes (von Quadt and Gunther, 1999). 

However, some of the more complicated and detailed features seen in the garnets 

studied here are still difficult to explain in these simple terms. There are many other 

processes which result in changes to the chemical system such as the breakdown of pre- 

existing minerals, fluid influx, fluid availability, oxidation state and other interrelated 

processes. Nevertheless, garnet can clearly act as a monitor of the chemical system 

during its growth and can, potentially, yield information about such processes. 

One of the future potential aspects of the work presented here is the integration of 

thermobarometric and accessory phase stability information obtained from garnet 

zonation with the precise age information obtained from accessory phases. This could, 

potentially, provide tight constraints on the petrogenetic history of the rocks as well as 
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give insights into the microscopic processes occurring during mineral growth. However, 

further work is required to (i) obtain trace-element concentrations which can be 

unequivocally linked to individual accessory phase behaviour (such as Th and P) and 

(ii) improve the sensitivity of LA-ICP-MS to allow more precise analyses of the LREE 

which often occur in extremely low abundance in garnet. 
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Simple numerical modelling of overthrust terrains has always assumed that thrust 

emplacement can be considered to be instantaneous (e. g. England and Thompson, 

1984). This assumption largely arose from the observation that thrusting occurs at plate 

tectonic rates or a few 10's of cm per year, while the rate of heat transport in the crust is 

much slower. The thermal time constant of a block of crust that is 35 km thick and has a 

thermal diffusivity of K=1x10-6 m2/s is -40 Ma: given by t=x2/K. However, the 

considerable complexity in real orogens is unlikely to be modelled by such simple 

approaches for the following reasons. Firstly, Grasemann (1993) has shown that the 

simplification of instantaneous thrusting is not consistent with geologically feasible 

deformation rates. Secondly, the long history of thrusting seen in the Himalaya, albeit at 

different locations at different times, produces much more complicated thermal histories 

than simple one-dimensional models. Finally, the interactions between tectonic 

structures and heat is likely to be complicated in the continental crust because of the 

strong temperature control on crustal rheology (Ranalli, 1995) and the importance of the 

redistribution of heat producing elements during orogenesis (e. g. Jamieson et al., 1998). 

In this thesis attempts have been made, combining garnet and accessory phase 

chronometry, thermobarometry, petrology and structural geology, to constrain the 

distribution of heat in the crust and relate that to the evolution of the Himalaya. 

Additionally, the systematics of the garnet isotopic and trace-element system have been 

studied to further understand the limitations to, and further uses of, garnet. The study of 

REE and other trace-elements in garnet also hint at the microscopic processes that 

control elemental distribution in metamorphic and igneous rocks, potentially opening 

new stores of information on the rock history. 

In this chapter the PTt history of the HHCS will be placed in the context of the evolving 
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orogenic wedge from continental collision to the present day and a simple model 

proposed for the development of the exposed sequence, including the production of the 

well-studied Miocene crustal melts. 

8.1 Pre-collision reconstruction 

The development of northern India prior to continental collision is recorded in the 

sediments that presently lie to the north of the Himalaya. Sedimentary history began in 

the late Proterozoic, and recorded a late Pan-African orogenic event around the 

Cambrian-Ordovician boundary, probably related to the assembly of the Gondwana 

supercontinent (Gaetani and Garzanti, 1991). A record of this event is also preserved in 

the metamorphic history of the upper-HHCS in Garhwal with the preservation of 

Cambrian garnets (see additional text Argles et al., Subm. ) and may be responsible for 

the granites intruded into the Harsil formation (Bhairongathi granite Stem et al., 1989). 

In addition Rb-Sr errorchrons for the metasediments of the HHCS in Garhwal suggest 

that much of the crystalline material currently exposed in the HHCS was deposited and 

partially metamorphosed in the early-Paleozoic (Ahmad et al., In press). This hypothesis 

is supported by the preservation of metamorphic assemblages in Ordovician granites in 

the Spiti region (Chawla et al., 1999) and suggests that the HHCS are part of the Indian 

shield on which the TSS were deposited. 

The Lesser Himalaya, over which the HHCS are now emplaced, have distinct isotopic 

characteristics indicating a much older origin than the HHCS and suggesting that the 

HHCS does not represent the basement to the Lesser Himalaya (Parrish and Hodges, 

1996; Ahmad et al., In press). However, the exact relationship between them - (either 

an unconformity (Parrish and Hodges, 1996) or a thrust relationship of distinctly 

different terrains (Ahmad et al., In press)) - is still unclear. The pre-Himalayan 

metamorphic history of the HHCS and the relationship between the Lesser Himalaya 

and the HHCS still remain poorly constrained. Answers to such questions may perhaps 
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be found in the Nanga Parbat syntaxis which appears to have many of the features of the 

HHCS but samples deeper crustal levels (Whittington, 1997). 

Subsequent to the Pan-African event, a long period of epicontinental deposition in 

shallow seas lasted until the Early Permian, when a neo-Tethyan rift began to open 

between paleo-India and microcontinents to the north (Gaetani and Garzanti, 1991). The 

subsequent history can be subdivided into two megasequences. The first began with 

breakup in the Late Permian and lasted until the end of the Jurassic. The second started 

in the Early Cretaceous with the final detachment of India from Gondwana and the 

opening of the Indian Ocean, and ended with the onset of India-Eurasia collision in the 

Early Eocene (Gaetani and Garzanti, 1991). This long history built up a thick sequence 

(-6km) of sedimentary rocks on the northern passive margin of the Indian shield 

(Searle, 1987), extending to the north some 200-300 km (Steck et al., 1998) and now 

forming the TSS. 

During northward subduction of the Tethys ocean floor beneath the Asian continent 

calc-alkaline batholiths formed to the north of the present Indus-Tsangpo suture (Debon 

et al., 1986). 

The timing of the continental collision is still unclear partly due to confusion in the 

literature about the implications of the various geological features associated with 

collision (see Chapter 1). Nevertheless, suturing of India with Asia and the onset of 

infra-continental tectonics (i. e. deformation of continental material) appears to have 

occurred at -49 Ma (Rowley, 1998) and is recorded in changes in the northward plate 

motion of India at that time (Patriat and Achache, 1984). The onset of such deformation 

appears to have occurred diachronously across the range with collision earlier in the 

northwest of the range due, in part, to the collision of microcontinental fragments with 

the Indian margin (Rowley, 1996). 

With the continued northward motion of India a series of nappes developed in the TSS, 
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best studied in the Northwest Himalaya between Zanskar and the Sutlej valley (Steck et 

al., 1998). Perhaps the earliest metamorphic consequence of the collision is preserved in 

the Tso Morari nappe in which eclogites formed at -55 Ma (de Sigoyer et al., 1999), in 

response to deep burial of portions of the northern Indian continental crust. 

Subsequently deformation propagated southwards, possibly forming the migmatites in 

the upper-HHCS. Small melt segregations from this melting event at 40 Ma are only 

rarely preserved (or understudied) in the upper-HHCS (see Chapter 5). The initiation of 

melting so early in the development of the orogen may be due to the heating of some 

rocks above the wet-melting solidus at significantly lower temperatures than the 

Miocene melting event which formed the HHL by dehydration melting of the lower- 

HHCS (Harris et al., 1993). Alternatively, the production of the small melts at 40 Ma, 

and possibly some of the migmatites, was due to thrust emplacement and infiltration of 

fluids from the overthrust rocks in a manner similar to that envisaged by Le Fort et al. 

(1987) for the generation of the Miocene leucogranites. However, contrary to Le Fort et 

al. (1987) such thrusting would be located within the exposed HHCS of Garhwal rather 

than on the MCT. 

Deformation and nappe development propagated southwards with thrust movements at 

-40 Ma. Evidence for such thrust displacements is found in the response of rocks in the 

Harsil formation and HHCS of both Zanskar and Garhwal which show growth of garnet 

during burial and heating (see Chapter 4 and Vance and Mahar, 1998; Vance and Harris, 

1999). That the unmetamorphosed equivalents of the HHCS are preserved within the 

Outer (i. e. southern) Lesser Himalaya by out-of-sequence thrusting is an intriguing 

possibility raised by the similar geochemical characteristics of the outer Lesser 

Himalaya and the HHCS/'TSS (Ahmad et al., In press). 

The thrusts and nappes responsible for this burial are still not well constrained but, 

simple calculations of the thermal response of the crust to burial suggest that it lies 
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around the level of the STDS, presently a normal fault (see Chapter 4 and Vance and 

Harris, 1999). In the Bhagirathi valley, Garhwal, this lies above the presently exposed 

Harsil formation and does not, therefore, coincide with the Jhala Normal Fault of Searle 

et al. (Subm. ) and Metcalfe (1993). 

The tectonic evolution of the HHCS at 40-25 Ma is still poorly understood but, the 

probably existence of intra-HHCS thrusting (Chapter 4) suggests that reorganisation of 

the HHCS may have occurred in this period. In the Harsil formation the youngest ages 

recorded suggest that metamorphism continued up to at least 29 Ma (Chapter 4). The 

youngest ages from Zanskar suggest that parts of the HHCS reached peak metamorphic 

conditions shortly after 27 Ma (Vance and Harris, 1999). It may be that intra-HHCS 

thrusting terminated metamorphism (via exhumation) in the upper-HHCS around 

-27 Ma via exhumation -a possibility hinted at by the partial resetting of monazite in 

the Harsil formation at 27 Ma (Chapter 4). This would account for the observation that 

the age of peak metamorphism in the mid-levels of the HHCS predating anatexis by -4- 

6 Ma, and for the prograde heating of the basal-HHCS as recently as -24 Ma (Sample 

G9; Chapter 4). 

Anatexis of the basal-HHCS, either following postulated intra-HHCS thrust 

emplacement at -27 Ma or thrusting at -40 Ma, could have coincided temporally with 

the movement on the MCT and STDS. Movement on these two faults led to much of the 

HHCS passing through -350°C at 22-16 Ma (Metcalfe, 1993; Oliver et al., 1995; Searle 

et al., Subm. ). The metamorphic history of the HHCS ends with this period but, the 

MCT was reactivated at -8 Ma (Catlos et al., 1999) in Garhwal. 

In summary there appears to be a continual evolution of thrusting from north to south in 

the orogen in accordance with the rules of forward thrust propagation characterised by 

the development of a number of nappes producing an orogenic wedge (Steck et al., 

1998). The continued reorganisation of the orogenic wedge accounts for the observation 
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that temperatures were increasing within the basal-HHCS close to the time of movement 

on the MCT and suggests that heat sources other than thermal re-equilibration are not 

necessarily required for anatexis of the crust. Indeed it is only some 25 Ma after the 

onset of continental collision that rocks of appropriate composition attain temperatures 

sufficient for vapour-absent melting - the only type of melt reaction capable of 

producing significant melt volumes in the crust (Clemens and Vielzeuf, 1987; 

Thompson and Connoly, 1995). 

8.2 A model for the structure, anatexis and exhumation of the 

HHCS 

The data presented here emphasise the importance of very simple aspects of the 

thermotectonic evolution of the crust - namely the position of deformation in the crust 

(which rocks are buried or uplifted and when) and the response of the crust to burial via 

thermal equilibration and internal heat production (explored in the simplest thermal 

models). The similarity of the results obtained here with those of Zanskar suggest that 

they may be generally applicable to a larger portion of the Himalaya. 

It seems reasonably clear that, in Garhwal at least, rocks in the basal HHCS were 

continuing to heat in response to overthrusting at times as late as 24 Ma. It is also clear 

that the rocks in this part of the orogen were sufficiently hot to melt at this time (Figure 

4.8). In this case, the possibility arises that the Miocene melting in the Himalaya is not 

causally related to the MCT but that it preceded it (c. f. Nelson et al., 1996)and occurred 

as a result of heting in response to burial by thrusts above the MCT. 

While, traditionally the MCT and STDS have often been thought of as causes of 

anatexis in the belt, it is possible that the causal relationship be the reverse provided that 

melting has occurred simply as a response to thickening of the crust. What effect would 

melting in the crust have on the tectonic and thermal evolution of the HHCS? This idea 
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will be explored further below in the light of the new data presented here on the thermal 

history of Garhwal. 

Possible causal relationships between thrust and normal faulting, anatectic melting and 

exhumation in the Himalaya were explored by England and Molnar (1993a). Two of the 

proposed possible causes for normal faulting -a reduction in the horizontal normal 

stress applied at the boundaries and an increase in the surface height of the belt - do not 

correspond to. any recorded changes at the time of leucogranite formation and 

movement on the MCT and STDS. However, the other two are of particular interest; (i) 

a reduction in the shear traction at the base of the belt and; (ii) a reduction in the 

strength of the material within the belt. Either of these two would result from anatexis of 

the HHCS and could contribute to the initiation of thrust faulting and normal faulting 

respectively. Indeed, a situation in which both thrust and normal faulting initiated as a 

response to melting within the crust would result in a positive feedback between the 

various processes: decreases in the strength of the crustal material produced by anatexis 

would increase thrust and normal fault movements and as a consequence increase melt 

production by a decompression process similar to that envisaged by Harris and Massey 

(1994). 

Such a model, in which exhumation of the HHCS occurs by synchronous movement on 

the STDS and MCT, is similar to the extrusion models for the HHCS (Burchfiel and 

Royden, 1985; Kundig, 1989; Hodges et al., 1993; Jain and Manickavasagam, 1993; 

Grujic et al., 1996). In this respect the model presented below it is a combination of. (i) 

the development of a sequence of thrust nappes resulting in temperatures capable of 

melting the lower crust with; (ii) the extrusion model for exhumation of the HHCS. 

A simple, schematic model for such a process is presented in Figure 8.1 in which it is 

assumed a priori that following development of a thick orogenic wedge from 50 Ma to 

-23 Ma as outlined above, high temperatures and anatexis at deeper levels result in 
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Figure 8.1 Schematic model for metamorphism and anatexis of the HHCS. (a) Burial and metamorphism from 40 Ma to-25 

Ma. Thrust imbrication of the TSS results in burial of different crustal levels represented by stars. From top to bottom: (i) 

parts of the TSS; (ii) metamorphosed Cambrian sequences of the upper- and mid-HHCS and (iii) mid- to lower-crustal rocks 

of the basal-HHCS. Continued thickening leads to (b) The crustal wedge attains temperatures sufficient for anatexis of the 

basal-HHCS and initiates thrusting in the basal-HHCS and collapse of the orogen along the STDS resulting in extrusion of 

the wedge in a manner similar to Grujic et a!. (1996). The HHL are intruded into the upper levels of the HHCS previously 

metamorphosed and melted during the early stages of orogenesis. All samples undergo rapid tectonic denudation 

accompanied with erosional denudation resulting in variable exhumation as shown by the length of the arrows. STDS has 

normal fault displacement and there is a possible footwall propagation of the MCTas envisaged by Royden (1993). 
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weakening of the crust, concentrating deformation in the lower crust. Extrusion, and 

exhumation, of the crustal material occurs with the hot semi-molten crust emplaced over 

cooler rocks in the hangingwall and as a result accreted to the footwall - the passage of 

the hot material over the base is enhanced by ensuring that footwall cooling of the high- 

temperature hangingwall is not significant. Additionally, reduction in the constitutive 

strength of the crust results in extensional movement on the normal faults above the 

HHCS, enhancing melt production by passing rocks into the melt field as envisaged by 

Harris and Massey (1994). Displacements along the STDS occur on the over-steepened 

thrusts which bound the HHCS to the north and may be lubricated by the emplacement 

of leucogranitic melts into the previously metamorphosed and still high temperature 

upper-HHCS. 

The thermal effect from normal fault displacements would be felt first in the upper- 

HHCS and delayed in the basal-HHCS with the upper-HHCS entering into sillimanite 

and cordierite field, but not attaining sufficient temperatures for large-scale melting (for 

petrological observations see Chapter 3). This would also result in the overprinting of 

top-to-the-south shear fabrics, developed during the burial of the upper-HHCS, by top- 

to-the-north fabrics developed by the STDS. 

The rapid exhumation would result in near-isothermal decompression of the basal- 

HHCS, which would bring the isotherms closer toghether (Whittington, 1995). This 

leads to the extremely rapid cooling through the Ar closure temperatures of biotite and 

muscovite as seen by Vance et al. (1998a) in Zanskar. Whether the basal-HHCS could 

produce the melt volumes at the appropriate times depends on the exhumation rates for 

the basal-HHCS and the timing of movement on the STDS. The rate of exhumation is 

controlled by movement on the MCT and STDS and will be a function of tectonic 

denudation, as a result of STDS normal movement, and enhanced erosional denudation, 

as a response to thrust movement on the MCT. Thus, in this model, movement of the 
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STDS and MCT are genetically linked to melting of the crust rather than the other way 

round. 

8.3 Discussion 

8.3.1 Comparison to other models 

The critical feature in this model is the variable exhumation velocities across the HHCS 

driven by rheological variations related to temperature. Jamieson et al. (1998) used such 

temperature dependent rheology in a numerical thermo-mechanical model of 

orogenesis. In Jamieson et al. (1998) the model geometry is based on fixed lithospheric 

movements -a down going plate against a stationary mantle wedge - and displacements 

for rocks initially above 35 km are modelled assuming a temperature dependent 

rheology, isostatic compensation and altitude dependent erosion. The fixed lithospheric 

displacements result in two shears in the upper 35 km, one in the direction of plate 

motion and the other opposite to that (Figure 8.2a). Where this model deviates from the 

geometry seen in the Himalaya is that the principal shear leading to exhumation of the 

crustal rocks makes an acute angle with the plane of the suducting lithosphere (i. e. dips 

to the south) whereas in the Himalaya the principal shear makes an obtuse angle to the 

plane of the subducting lithosphere (i. e. dips to the north; Figure 8.2a). However, what 

is of interest here is not the geometries but the thermal response of crustal rocks to 

burial and exhumation and, specifically, the effect of a temperature-dependent rheology 

on orogenesis. 

Expressly stated in the modelling is the interest in the redistribution of heat producing 

material during orogenesis and it is the various initial distributions of heat production 

that are explored. Two models, CE and CF, have initial conditions that closely 

correspond to those expected in the Himalaya (Figure 8.2a). In the first model, CE, 

high heat producing material is brought into the orogen along the down going plate. In 
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Figure 8.2 (a) Model geometry for thermo-mechanical mode! of Jamieson et a!. (1998). Heat production in different units 

Al, A2 andA3 was varied between models. Model CE modelled high heat production (1.5 µW/m') for unitA3 and model CF 

modelled high heat production in both A2 and A3; (b) results of model CFafter 28 Ma showing the crustal deformation field. 

Grid lines and stripes were originally horizontal and vertical. Deformation is concentrated along the retro shear; (c) 

thermal structure of the orogen at 28 Ma. Note inparticular the raised isotherms in the vicinity of the crustal shear. 
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model CF crustal material is brought in as for model CE but, additionally, a block of 

high heat producing material lies in the lithospheric wedge simulating subducted 

sediments during the early stages of subduction. The first-order feature of both these 

models is the competition between cooling by the down-going plate and heating by high 

heat producing material, either in the crust or lithospheric wedge. 

There are three features of these numerical models of particular relevance to the model 

proposed here. Firstly the deformation is highly concentrated along crustal shear zones 

due to the feedback between temperature and rheology - shears raise the geotherms 

resulting in weaker rocks and more concentrated deformation. Secondly, rocks above 

the shear zones undergo almost isothermal decompression over a period of several 

million years. Again this is a result of the dragging up of the isotherms and means that 

the thermal history of these rocks terminates in rapid near surface cooling as seen by 

Vance et al. (1998a). The more extreme effect melt would have on rock strength, as 

proposed here, would result in considerably enhanced exhumation rates along the shear 

zones and, potentially, catastrophic exhumation as envisaged by Hollister and Crawford 

(1986). Finally, rocks exhumed from the deepest levels in model CF (Jamieson et al., 

1998) attain temperatures of 743°C at pressures consistent with metamorphism in the 

kyanite field. This is very similar to the conditions recorded in rocks from the basal- 

HHCS of Garhwal (Chapter 2 and 3). 

On a smaller scale, exhumation along the MCT is closely approximated by the 2-D 

numerical model proposed by Grasemann (1993) in which an already hot crust is thrust 

over a ramp with a thermal conductivity contrast reducing heat loss to the footwall (See 

Chapter 3). The highest temperatures occur above the fault (see Chapter 3) and, as 

suggested by Grasemann (1993), such high temperatures, even in the absence of a melt, 

would considerably facilitate syn-metamorphic shearing in the HHCS. The need for a 

thermal conductivity contrast is potentially obviated as the accretion of the hot material 
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to the basal thrust would reduce cooling of the zones above. 

8.3.2 Comparison to observations 

The model proposed here can successfully account for many of the chronometric, 

petrologic and thermobarometric observations made both in Garhwal and across the 

orogen. Firstly the model requires that the development of the MCT and STDS occurs 

after the formation of the first melts. For the MCT present chronometric data suggests 

that this is exactly the situation seen in the Himalaya today. Studies show that the MCT 

was active at 22-20 Ma (Hubbard and Harrison, 1989; Metcalfe, 1993; Parrish, 1993; 

Coleman, 1998). Formation of the large leucogranite in Garhwal occurred earlier 

-23 Ma (Searle et al., Subm. ), as did melt formation at Manaslu (Harrison et al., 1999) 

and Makalu (Schärer, 1984) in Nepal. 

The agreement between STDS movement and first leucogranite melt production, 

however, is less clear. The present data place, for example, STDS movement in Zanskar 

as early as 26 Ma (Inger, 1998) and crustal melts have been dated at 17-25 Ma (Searle, 

1995). In the central Himalaya the constraints on the relative timing of melt production 

and STDS movement are inextricably linked as crosscutting or deformed leucogranites 

are used to time movement of the STDS (Edwards and Harrison, 1997; Searle et al., 

1997b; Hodges et al., 1998; Harrison et al., 1999) and thus do not constrain earliest 

movement. 

A specific test of the model is that the PTt evolution for the source regions should 

discriminate between different heat sources - such as shear heating from thermal 

relaxation. Given that the basal-HHCS of Garhwal are the likely source regions for the 

High Himalayan Leucogranites it is there that the best constraints on anatectic melting 

models are likely to lie. Unfortunately, neither of the two dated samples near the MCT 

presented in Chapter 4 clearly constrains the PTt path. From the prograde zoning in 

garnet, consistent with burial and heating, G57 indicates simple thermal relaxation for 
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the basal-HHCS but the growth period of the garnet is only constrained to between 

36 Ma and 22 Ma. Garnet in 4B(1), on the other hand, is constrained to have grown at 

-22 Ma but has unfortunately lost all prograde information due to high-temperature 

homogenisation. 

Additionally the model predicts that some of the products of the melt produced during 

exhumation lie as some distance above the MCT and in the differentially deformed 

basal extruding wedge. In Nepal the MCT lies at the sillimanite isograd and there is 

evidence for leucogranite production at ~22 Ma within the MCT zone (Coleman, 1998). 

However, in Garhwal footwall rocks of the MCT only reach staurolite grade and there is 

no evidence for the formation of melts in the MCTZ or above. This may to some extent 

be the result of later reactivation of the MCT cutting across the original sequence in the 

orogen or, alternatively, the two sections are sampling different structural levels - Nepal 

being the deeper of the two. It is, therefore, in Nepal that there is the greatest likely 

hood of determining the relative age and chemistry of deformed leucogranites formed 

during the earliest stages of anatexis in the Miocene. 

This model, as for the any model incorporating decompression, has the advantage of 

explaining the common observation of decompression textures in the upper levels of the 

HHCS (Brunel and Kienast, 1986; Hodges et al., 1992; Inger and Harris, 1992; Hodges 

et al., 1993; Davidson et al., 1997; Neogi et al., 1998; Vannay and Grasemann, 1998) - 

also be found in Garhwal in the form of cordierite rims on staurolite and kyanite 

assemblages within the Harsil formation. The structural reorganisation of the orogen 

maintained high temperatures throughout the crustal wedge until the synchrounous 

movement on the STDS and MCT. In this manner units near the top of the wedge 

passed into the low-P high-T field as shown by cordierite. Additionally petrological 

observations in Garhwal indicate that the basal-HHCS underwent its first phase of 

metamorphism in the kyanite field and that post-metamorphic deformation resulted in 
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deformation of primary kyanite and the development of secondary sillimanite or kyanite 

(Hodges and Silverberg, 1988). Indeed in Garhwal the extremely high temperatures and, 

most importantly, the age constraints at -22 Ma obtained from samples near the MCT 

are consistent with such a model. 

The model can qualitatively account for the PT data in the HHCS and some of the 

structural features associated with exhumation. As argued in Chapter 4 the isothermal 

temperature profile across the HHCS presented in Chapter 3 is partly the result of thrust 

imbrication within the HHCS, juxtaposing metamorphic rocks which attained peak 

conditions diachronously and at different places in the orogen. However, the basal- 

HHCS may be considered as a single unit. In Garhwal the thermal profile for the basal- 

HHCS has the highest temperatures above the MCT (Figure 3.2 and, Grasemann 

(1993)), as would be expected in this model and a feature also seen in other parts of the 

orogen (Hubbard, 1989). 

8.4 Using garnet chronometry 

U-Pb, Sm-Nd and Rb-Sr garnet chronometry is hampered by the incorporation of U, Sm 

and Rb rich inclusions which will often mask the signal from the garnet lattice itself. If 

such minerals were in equilibrium with the garnet and surroundings during growth they 

will not affect the age data, although they may make it difficult to obtain. However, 

when such minerals are out of equilibrium with the garnet they may significantly alter 

the chronometric information obtained. 

Given a knowledge of the relative concentrations of elements of interest in both 

inclusions and garnet the effect the inclusions have on chronometric information can be 

explored by simple modelling (Chapter 6). A complementary study to this is to separate 

the contributions from accessories and from the garnet itself by utilising the variable 

dissolution characteristics of the inclusions and garnet (Vance et al., 1998b). While both 

these approaches demonstrate that the Sm-Nd systematics of garnet are highly 

Timing ofprograde metamorphism... C. I. Prince 233 



Chapter 8 Conclusions 

susceptible to even tiny inclusions, the effect that they have will generally be to destroy 

all chronometric information. Whether the inclusions have affected chronometric 

information can be qualitatively constrained by comparing concentrations in the garnet 

lattice, inclusions and dissolved garnet. However, the best approach is by reproducing 

the chronometric results with a sufficient spread in parent/daughter ratios thus 

demonstrating that any inclusions, if present, were in isotopic equilibrium with the 

garnet during growth. 

8.5 Potential for use of trace-element zoning 

The slow diffusion of elements in the garnet lattice permit its use as a chronometer and 

for the extraction of PT information from major-element zoning. These features also 

mean that trace-element zoning will be preserved, giving information on the chemistry 

of the surrounding rock during growth. Thus garnet may potentially record chemical 

changes in metamorphic rocks: e. g. fluid influxes, mineral stability changes or 

fractionation of the EBC. The work presented here suggest that in igneous and 

metamorphic garnets, up to upper-amphibolite facies conditions, fractionation of the 

effective bulk composition by minerals with low-intracrystalline diffusion rates is the 

primary control on trace-element zonation. The changes in REE concentrations across 

the garnet can be qualitatively linked to changes in the fractionating minerals due to 

their different chemical signatures. 

While there are many additional potential causes for trace-element zonation, the relative 

significance of each them is, as yet, poorly understood. However, studies here 

demonstrate that LA-ICP-MS can be a powerful technique for the measurement of 

concentrations at the part-per-billion level in garnet. This technique may lead to new 

sources of information on chemical processes in metamorphosing and crystallising 

rocks. 
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Appendix A- Sample Localities 

Loc. Refers to sample localities on maps in this Appendix. Alak. = alaknanda, Bhag. = 

Bhagirathi, IS = In-situ, F= not in-situ, Orient. = orientation of thin section (right-hand 

rule unless otherwise stated), ts= thin section, ps = probe section, m= majors element 

XRF analyses, t= trace elements XRF analyses. 

Samples are held at the OU. See Figure A. 1 and Figure A. 2 for sample localities. 

Whole-rock geochemical data is summarised in Appendix D 

Selected mineral data is in Appendix E or in text. A full dataset is available from the 

author. 
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FigureA. 1 Sample localities for theAlaknanda valley. 
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Appendix B- Thermobarometric techniques 

B. 1 Thermocalc annotated example output 

Below is an example of Thermocalc output used in Chapter 3. Text in italics is the 

authors otherwise it is output from Thermocalc and Ax98. Mineral endmember 

abbreviations are listed in Table B. 1. 

The firstly for thermocalc to determine a temperature and pressure it requires mineral 

endmember activities. These are calculated from microprobe data using the program 

Ax98. The mineral endmember activities are calculated by Ax98 using the same solid 

solution models as are used in Thermocalc and are summarised in Table B. 2. The 

endmember activities are then input into Thermocalc in a data file, an example of which 

is given below: 

%th d4a3 600,7 "%" indicates text for information only 
py 0.002 

gr 0.0021 
alm 0.44 
mst 0.0016 
fst 0.41 
mu 0.68 
pa 0.98 
cel 0.019 
phl 0.069 
ann 0.037 
east 0.051 
san 0.81 
ab 0.93 
q no activity indicates that it is unity i. e. no solid solution 
H2O 

If errors on the endmember activities are not given Thermocalc assigns an error to the 

activities. Using the supplied endmembers Thermocalc calculates a complete set of 

independent reactions which could be formed an example of which is given below; 

Independent set of reactions 

1) phl + east + 6q = py + 2cel 
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2) 2mst + 25ph1 + 4san + 68q =18py + 29ce1 
3) Spy + 2mst + 23ce1= 23east + 76q + 4H20 
4) 21py + 6mst + 41ann + 12san = 41alm + 19cel + 34east 
5) 6fst + 75ph1 + 12san + 204q = 46py + 8alm + 87ce1 
6) 2mst + 17phl + 4ab + 44q = 14py + 4pa + l7cel 

Using the mineral end-member activites thermocalc calculates thermodynamic data and 

errors for each of the reactions as shown below; 

P(T) sd(P) A sd(a) b c ln_K Sd(in_K 

1 7.9 2.88 65.13 3.91 0.02782 -3.658 -8.492 1.348 
2 6.3 3.48 958.89 28.18 0.42384 -45.228 -146.24 21.334 
3 6.5 3.92 1108.09 23.91 0.0483 -35.544 -128.65 18.929 
4 12.5 10.37 -1538.86 125.67 1.28816 -23.087 96.687 28.064 
5 7.1 3.26 2960.76 84.1 1.25381 -137.94 -428.85 60.825 
6 6.1 3.61 661.34 17.84 0.22936 -29.283 -95.844 14.353 

The thermodynamic data defines position of the reaction in PT space for each equation 

and the error. The intersection of these lines in PT space yields the average PT (avPT) 

result. The error on the intersection is calculated by a chi test weighting for the more 

precise reactions. This yields an average PT, errors and a measure of the correlation 

between the lines and the significance of the intersection as shown below. 

T=721°C, sd=47 

P= 12.1 kbar, sd = 3.1, cor = 0.851, sigfit =1.43 

If the significance of the fit is greater than that specified by Thermocalc then the PT 

result is not meaningful. In this case more detailed information is available on the 

contribution of each mineral endmember to the calculated average PT. This often 

highlights suspect data. As detailed by Thermocalc (some punctuation added by the 

author): 

avP, avT, sd's, cor, fit are result of doubling the uncertainty on In(a). ln(a) is suspect if 

any are very different from lsq values. e* are In(a) residuals normalised to In(a) 

uncertainties: large absolute values, say >2.5, point to suspect info. "hat" are the 

diagonal elements of the hat matrix: large values, say >0.46, point to influential data. 
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For 95% confidence, fit (= sd(fit)) < 1.54 however a larger value may be OK - look at 

the diagnostics! 

avP sd avT sd cor fit 

lsq 12.1 3.1 721 47 0.851 1.43 

P sd(P) T sd(T) cor fit e* Hat 
py 13.08 2.67 738 41 0.863 1.2 -1.6 0.12 
alm 10.96 3.02 706 45 0.871 1.29 0.83 0.09 
mst 11.36 3.09 706 49 0.872 1.35 0.86 0.2 
fst 11.76 3.12 718 46 0.854 1.4 -0.38 0.04 
pa 11.69 3.2 726 47 0.68 1.4 0.38 0.6 
cel 13.44 3 734 43 0.86 1.27 -1.32 0.25 
phl 12.72 3.17 732 50 0.871 1.39 0.55 0.13 
ann 11.33 2.89 706 45 0.865 1.29 -1.19 0.13 
east 12.15 3.17 721 48 0.861 1.43 0 0.05 
san 11.85 3.06 715 48 0.858 1.4 0.38 0.04 
ab 12.01 3.1 723 47 0.796 1.42 -0.19 0.15 
q 12.15 3.06 721 47 0.851 1.43 0 0 
H2O 12.15 3.06 721 47 0.851 1.43 0 0 

Of the mineral endmembers used in this calculation muscovite has already been 

removed as it had an e* of -3.06 - well above the value given above and its inclusion 

resulted in a very poor fit for the avPT. The present data satisfy the fit specified for this 

sample (1.54) and are therefore acceptable. The removal of mineral endmembers 

should normally be justified for geological reasons although many endmembers have 

very poorly constrained activity models. 

Table B. 1 Formulae of end-members used here f rom the Holland and Powell (1998) dataset. 

Ortho & Ring Silicates 
Pyrope Py Mg3 A12 Si3 012 
Almandine Alm Fe3 A12 Si3 012 
Spessartine spss Mn3 A12 Si3 012 
Grossular gr Ca3 A12 Si3 012 
Andradite andr Ca3 Fee Si3 012 
Andalusite and A12 SiOs 
Kyanite ky A12 SiOs 
Sillimanite sill A12 Si05 
Mg-staurolite mst Mg4 Ala Si7.5 048 H4 
Fe-staurolite fst Fe4 A118 Si7.5 048 H4 
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Mn-staurolite tunst Mn4 A118 Si7.5 048 H4 
Cordierite crd Mgt A14 Si5 018 
Fe-cordierite fcrd Fee A14 Si5 018 
Mn-cordierite mncrd Mn2 A14 Si5 018 
Chain Silicates 
Tremolite tr Ca2 Mg5 Sis 024 H2 
Ferroactinolite fact Cat Fes Sib 024 H2 
Tschermakite is Cat Mg3 A14 Sib 024 H2 
Gedrite ged M g5 A14 Sib 024 H2 
Sheet Silicates 
muscovite mu KA13 Si3 012 H2 
celadonite cel KmgAlSi4 012 H2 
Fe-celadonite fcel KfeAlSi4 012 H2 
paragonite pa NaA13 Si3 012 H2 
margarite ma CaA14 Sie 012 H2 
phlogopite phl KMg3 A1Si3 012 H2 
annite ann KFe3 A1Si3 012 H2 
Mn-biotite mnbi KMn3 A1Si3 012 H2 
eastonite east KMg2 A13 Sie 012 H2 
Na-phlogopite naph NaMg3 AISi3 012 H2 
clinochlore clin Mg5 A12 Si3 018 Hs 
amesite ames Mg4 A14 Sie O18 H8 
Al-free chlorite afchl Mg6 Si4 On H8 
daphnite daph Fes A12 Si3 018 H8 
Mn-chlorite mnchl Mn5 A12 Si3 018 H8 
Framework Silicates 

albite ab NaAlSi3 08 
high albite abh NaAlSi3 Os 
Microcline mit KAISi3 08 
Sanidine san KA1Si3 Os 
Anorthite an CaA12 Si2 08 
Quartz Si02 
Oxides & Hydroxides 
Rutile ru Ti02 
Hematite Hem Fee 03 
Ilmenite Ilm FeTiO3 
Elements & Gases 
Water fluid H2O H2O 
Carbon dioxide C02 C02 

Table B. 2 Summary of activity models used in Ax98 for minerals of interest. Abbreviations are summarised in Table 

B. 1. "Max Ratio" is maximum allowed ferriclferrous iron. 

Name and abbreviation Mixing model and ferric iron 
Garnet G 2-site mixing. Ferric from Cation Sum =8 for 12 oxygens. 

py. alm=2.5, gr. py=41.4 - 0.0188T, py. andr=73, alm. andr=60, 
spss. andr=60 (kJ) 

Feldspar Pl Holland and Powell (1992) model 1. All ferric. 
Ksp Waldbaum & Thompson (1969). All ferric 

Staurolite St 4-site ideal Fe-Mg mixing. All ferrous 
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Muscovite Mu Holland and Powell (1998) nonideal mu-cel-fcel-pa 
interactions. Ferric from Tet + Oct cation sum = 6.05 for 11 
oxygens. Max Ratio = 0.7 

Ilmenite-hematite Ilhem 2-site ideal mixing. 3 oxygens, 2 cations. 
Cordierite Cd 2 site mixing. 18 oxygens, 11 cations. WfeMg=1.5, 

WMnMg=1.5 (kJ) 
Chlorite Chl Ordered Al(M4) model. (Holland et al., 1998). Ferric from: 

Cation Sum<=10 for 14 oxygens. Max Ratio = 0.2. Wcl-da = 
2.5, Wcl-am = 18, Wam-da = 20.5 (kJ) 

B. 2 Notes on producing pseudosections from Thermocalc 

While the principles of using thermocalc are outlined elsewhere (Powell et al., 1998) for 

a more gentle basic introduction see Roger Powell's website at 

http: //rubens. its. unimelb. edu. au/-rpowell. For mineral and dataset information see Tim 

Holland's web page at http: //www. esc. cam. ac. uk/astaff/holland Also try 

http: //www. earth. ox. ac. uk/-davewa/ for some extra hints. Don't forget to get the latest dataset 

(HP98 at time of going to press). Below however, are a few additional hints gleaned 

from using thermocalc.... 

When starting out predict what minerals you will have. You can do this from the bulk 

composition calculations of Al', X(Fe) and X(Mn) or from looking at a series of AFM 

diagrams such as in Frank Spear's monograph (Spear, 1993). This part seems a bit 

dodgy to me as you don't really know what minerals might have been there but 

nevertheless.... 

Once you have decided which minerals are likely to appear search for the lowest 

possible variance assemblage. You may not find this. 

Then work up variance till you find some fields. 

Once you have found some fields (e. g. three overlapping trivariant fields) adjust your 

starting mineral composition guesses and search for the lower variance assemblages in 

the areas where the higher variance assemblages overlap. The lower variance 

assemblages may be extremely small and therefore always use the smallest possible 

pressure and temperature step size i. e. smallest likely area of PT and maximum number 
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of steps. 

Once you have found the lowest variance assemblage determine the boundaries of the 

field using the "setmodeiso" and "zeromodeiso" facilities (see Holland and Powell 

websites for details of scripting). Finding boundaries can be greatly speeded up if you 

find the invariant points first i. e. where two minerals go to zero. Once you have found 

the invariant points you will probably need to recalculate the univariant boundaries as 

the errors on the points may be larger than the size of the fields (see diagrams in 

Chapter 3). 

From there work in a circular pattern from the lowest variance field calculating which 

minerals go to zero and hence the field boundaries. As an example, around a divariant 

field of grt, st, bt, als, chl, mu, plag, q, and H2O there are often [chl], [st] and [als] fields 

([) indicates absent). Each of these must therefore have a boundary against the other 

field at which the absent mineral goes to zero from the other field. So start by finding, 

for example, the als=0 boundary to the [chl] field. 

It is important to bear in mind that there may be other minerals which become stable 

away from the starting divariant field and therefore producing other divariant fields. 

These other minerals can be constrained by using petrogenetic grids. An example of this 

is cordierite as it can only appear below a certain pressure. 

The next step is to contour the PT space for compositional contours of minerals of 

interest specifically garnet which preserves most of its growth zoning. When calculating 

these "isopleths" make sure that you reduce the initial guesses for the minerals because 

Thermocalc cannot calculate isopleths if the total cations in the mineral (desired + 

starting guesses) is greater than one. 

Also Thermocalc seems very picky about finding isopleths and it may be necessary to 

change the starting guesses for all the minerals so that they agree with the calculated 

compositions in the PT area in which you are working. 
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Good luck! 
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C. 1 Whole rock elemental analyses 

C. 1.1 Sample preparation 

Weathered surfaces were removed and whole-rock samples were split into <3cm 

fragments. The fragments were then crushed using a hardened steel jaw crusher. 

Powders were obtained using an agate tema mill for 10-20 minutes. Rock powders were 

dried for a minimum of 24 hrs prior to use in any analytical procedure. 

C. 1.2 Elemental geochemistry 

Major- and trace-element analyses of whole-rock powders were obtained by wavelength 

dispersive XRF spectrometry at the Open University. Whole-rock major-element 

analysis were obtained from glass discs, which were prepared as follows. Dried whole- 

rock powder was mixed in a 5: 1 ratio with lithium metaborate/tetraborate flux 

(Spectroflux 100B). The mixture was fused for 20 minutes at 900 °C in a Pt - 5% Au 

crucible, during which time it was stirred at 5 minute intervals in order to avoid 

entrapment of gas bubbles. The fused mixture was poured into a preheated, 3.6 cm 

diameter mould, and formed using a sprung press, thus producing a 1.5 mm thick glass 

disc. Loss on ignition values were calculated by percentage weight loss after igniting the 

sample powder at 100 °C for 30 minutes. 

Trace-elements were analysed from pressed powder pellets, which were prepared by 

thoroughly mixing 9-10 g of rock powder with 7 ml of PVP-methyl cellulose binder. 

Thorough and quick mixing was ensured by gently kneading the mixture in a 2" square 

resealable sample bag (technique developed by J. Watson, the Open University). The 

mixture was pressed into a 3.8 cm stainless-steel mould using a hydraulic press at 10 Pa 

pressure. Pellets were dried overnight at 80-100 °C prior to analysis. 
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During analysis (carried out by J. Watson), X-rays were generated using a3 kW Rh 

anode end-window X-ray tube, with AX06, PET, Ge 111, LiF200 and LiF220 diffracting 

crystals. Elemental intensities were corrected for background and known peak 

interferences, and instrumental drift was accounted for using a drift monitor. 1-sigma 

analytical precision is 2% relative for concentrations >100 ppm and better than 10 

relative for concentrations >10 ppm. 

0.3g of dry powder was weighed into a polythene capsule, the lid of which was then air- 

tight sealed using a soldering iron. Nine samples and two standards (AC-2 microgranite, 

Whin Sill internal standard) were loaded into a polythene cylinder, with an accurately 

weighed iron foil between each capsule in order to monitor neutron flux variations 

along the length of the cylinder. Samples were irradiated at the Imperial College 

Reactor Centre in a thermal neutron flux of 5*1012ncm2/s for 24-30 hours. Samples 

were left for a week prior to analysis in order to allow short-lived isotopes to decay. 

Analysis were performed at the Open University by N. Rogers. Details of counting 

conditions, peak fitting, calibration and corrections are described by Potts et al. (1985). 

1-sigma analytical precision is 5% relative for concentration <0.5 ppm and better than 

3% for concentrations >0.5 ppm. 

C. 2 Isotopic analyses 

C. 2.1 Sample preparation 

Impure garnet was separated from hand-specimen by a variety of techniques. Bulk- 

separates were obtained by crushing the sample to -200 µm and removing garnet with 

heavy liquids. Alternatively, single crystals were removed from the whole-rock and 

crushed to obtain a separate from either individual crystals or a mixture of crystals. 

Large garnets were cut in half using a slow-saw and one half mounted for electron- 

microprobe analysis and the other half separated into core and rim portions. 
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Once a garnet separate was obtained, pieces without visible inclusions were separated 

under propanol (to reduce surface reflections) using a binocular microscope. The 

samples were then cleaned in ultrasonic baths of methanol, acetone and H2O prior to 

dissolution. 

Between 100-200 g of whole-rock were crushed of which a -100 mg representative 

portion was dissolved for analysis. 

C. 2.2 Chemical separation and mass spectrometry 

Chemical and mass-spectrometric techniques were very similar those of Cohen et al. 

(1988) and only the differences from that approach are detailed here. The principal 

difference is that samples were spiked at dissolution and the isotope composition and 

isotope dilution measurements were made on the total sample. This was achieved using 

high purity '50Nd/'49Sm and 84Sr/85Rb spikes. Samples were spiked so as to minimise 

spike correction to the isotope ratio measurement while maintaining -0.5% precision on 

the Sm/Nd and Rb/Sr ratios. For the particular Sm-Nd spike used, the spike correction 

was always less than the internal precision on the mass spectrometric analysis if the 

measured 150Nd/'"NNd was less than about 0.4. This was routinely achieved. Garnet 

samples were digested on a hot-plate for -3 days in closed PFA screw-cap beakers. 

Whole-rocks were digested at 180°C for 3 days in bombs. Total procedural blanks for 

Nd were 5-15pg and always negligible. 

Mass spectrometric runs were carried out statically on a MAT 262 mass spectrometer at 

ETH Zürich. For Nd samples were loaded on double Re filaments and masses 150-143 

measured. A correction for 144 Sm on 144Nd was made using mass 147Sm but was always 

negligible. Isotope ratios are normalised to '46Nd/144Nd = 0.7219. Repeated analyses of 

the La Jolla Nd standard (n > 30) gave 0.511853 f 0.000007 (2(r. ). For Sm analyses the 

sample was loaded on single Re or Ta filaments. Masses 146-149 were measured in 
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static mode. 147-149 were used for isotope dilution measurements and fractionation 

correction. A correction for 148Nd correction was made using 146Nd and was always 

small. 

Sr techniques are as for Cohen et al. (1988) except that the Sr fraction from the cation 

column was further purified on small (50 µl) Sr spec columns, eluting with HNO3 and 

H2O. Total procedural blanks for the garnet analyses, carried out at ETH Zürich, were 

20-40 pg. Samples were loaded on single filaments according to the method of Birck 

and Allegre (1986) which allowed around 1 ng of Sr to be measured to an internal 

precision of less than 100 ppm. Mass spectrometry was carried out statically on a MAT 

262 mass spectrometer and ratios normalised to 86Sr/88Sr = 0.1194. Repeat 

measurements of the NBS 987Sr standard gave 0.710317±0.000031.87Rb correction to 

the 87Sr measurements is not trivial with spike Rb present in the Sr analysis as the 

87Rb/85Rb ratio in the separated sample may not be natural. In fact, given the loss of the 

spike Rb from the Sr fraction during chromatographic separation and the subsequent 

addition of blank, the measured 85Rb/87Rb ratio in the Sr fraction should lie somewhere 

between the spike and normal value. For these analyses 87Rb correction was therefore 

done by plotting the measured 87/86 ratio against the measured 85/86 ratio. The slope 

of the resulting line gives the 87Rb/85Rb ratio of the Rb in the Sr fraction while the 

intercept gives the sample 87Sr/86Sr ratio. 
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XRF Majors 
Sample 005b 005c 008 014A 014B 035A 035B 035C 26(1) 
Si02 70.74 74.33 60.73 72.31 76.1 75.01 75.47 70.17 70.68 
Ti02 0.745 0.663 0.7 0.757 0.668 0.67 0.161 0.743 0.685 
A1203 12.6 9.97 16.65 12.37 10.65 11.57 13.91 14.78 13.52 
Fe203 5.14 4.66 7.23 4.75 4.25 4.4 1.41 6.06 3.63 
MnO 0.078 0.164 0.089 0.053 0.078 0.063 0.013 0.059 0.022 
MgO 2.59 2.3 3.36 3.48 1.9 1.16 0.29 1.03 3.76 
CaO 2.01 4.27 2.75 0.77 1.15 0.84 0.7 0.5 0.5 
Na20 2.83 1.86 3.95 2.18 2.11 1.44 3.28 0.91 3.37 
K20 2.17 0.59 2.68 1.87 1.97 3.17 3.93 4.02 2.05 
P205 0.171 0.092 0.183 0.169 0.135 0.114 0.295 0.076 0.135 
LOI 0.52 0.72 1.05 0.95 0.79 1.05 1.05 1.76 0.91 
Total 99.594 99.619 99.372 99.659 99.801 99.487 100.509 100.108 99.262 

Rb 107.7 24.9 137.2 75.2 92.5 149.5 318.6 230.5 86.3 
Sr 138.5 92.3 159.1 55.3 98 69 39.1 65.4 62.8 
Y 29.9 34 30.1 32.5 26.4 25.9 9.5 37.1 25.8 
Zr 216 209 123 217 239 257 60 247 192 
Nb 13.9 11.6 14.2 11.6 9.2 15.4 19.6 18.4 9.8 
Ba 332 86 1038 396 467 701 87 628 297 
Pb 40 14 21 8 17 11 31 15 6 
Th 13 14 16 12 12 17 8 18 12 
U 4 3 6 3 3 3 8 4 3 
Sc 9 9 19 11 8 8 2 10 10 
V 83 66 180 91 73 65 5 92 92 
Cr 87 69 125 95 69 55 9 71 73 
Co 17 15 22 14 11 13 4 16 13 
Ni 36 31 42 37 30 23 0 26 41 
Cu 22 4 37 11 8 9 11 5 1 
Zn 78 61 116 42 54 60 64 87 44 
Ga 14 12 22 15 13 16 20 23 18 
Mo 0 0 0 0 0 0 0 0 0 
As 3 7 2 3 10 0 1 2 2 
S 37 53 776 149 77 59 62 58 27 

La 
Ce 
Nd 
Sm 
Eu 
Tb 
Yb 
Lu 
Th 
U 
Ta 
Hf 
Cs 
Zn 
w 
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XRF Majors 
Sample 4A(2) 4A(3) 4B(1) G100 G11 G125 G135 G160 G166 
Si02 69.72 64.63 77.39 73.02 71.55 77.59 61.6 56.24 51.22 
Ti02 0.686 0.791 0.66 0.577 0.78 0.055 1.032 0.864 0.896 
A1203 13.36 18.33 9.82 12.63 12.07 12.23 19.33 19.94 21.89 
Fe203 5.38 6.78 4 2.37 4.99 1.57 6.63 8.17 13.31 
MnO 0.092 0.083 0.071 0.016 0.054 0.059 0.087 0.156 0.18 
MgO 2.69 1.39 1.79 4.22 3.62 0.05 5.83 3.22 3.05 
CaO 1.67 0.58 1.75 0.34 0.84 0.43 0.17 1.94 0.69 
Na20 1.97 0.83 2.28 3.34 2.43 3.36 1.38 -1.84 0.69 
K20 2.97 3.91 1.44 2.11 1.95 3.7 1.19 5.26 5.66 
P205 0.149 0.112 0.142 0.111 0.174 0.037 0.099 0.2 0.09 
LOI 0.81 2.56 0.4 1.04 1.13 0.55 2.49 1.7 2.42 
Total 99.497 99.996 99.743 99.774 99.588 99.631 99.838 99.53 100.096 

Rb 127.8 189.9 76.2 88.3 80.3 474.9 54 275.1 265 
Sr 102.7 53 97.4 66.5 60.3 6.7 30.2 138 45.4 
Y 27 33.3 24.9 13.5 31.3 54.4 45 55.7 21.5 
Zr 189 215 244 185 240 48 225 135 145 
Nb 10.9 15.1 9.2 10 12.5 18.7 17.3 21 9.5 
Ba 669 674 463 330 381 19 276 1528 863 
Pb 15 13 18 15 8 22 3 29 6 
Th 14 20 14 12 13 13 21 37 18 
U 5 4 3 3 4 31 8 2 2 
Sc 13 13 6 6 13 3 24 18 22 
V 95 131 66 42 90 4 171 191 163 
Cr 90 97 67 50 98 7 152 132 145 
Co 17 13 9 4 15 2 21 24 29 
Ni 40 21 25 28 43 2 52 45 52 
Cu 19 97 16 2 14 14 11 89 5 
Zn 70 92 48 27 45 35 64 116 69 
Ga 17 24 11 13 13 20 32 26 31 
Mo 0 1 0 0 0 2 1 0 0 
As 0 23 0 7 1 3 8 0 0 
S 30 384 29 205 171 24 587 61 53 

La - 33.4 
Ce 67.5 15 
Nd 30.6 30.7 
Sm 5.98 19 
Eu 1.15 4.11 
Tb 0.85 0.06 
Yb 2.71 1.34 
Lu 0.39 7.71 
Th 14.7 1.19 
U 3 11.967 
Ta 1.06 32 
Hf 7.61 4.84 
Cs 3.91 2.98 
Zn 52 455 
W 0.0049 
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XRF Majors 
Sample G189 G205 G209 G211 G226 Dup G242 G26 G28 
Si02 74.59 44.64 82.81 73.49 74.64 73.88 77.27 75.16 
Ti02 0.09 1.36 0.277 0.688 0.049 0.101 0.056 0.096 
A1203 14.91 27.52 7.88 12.83 14.78 14.85 13.41 14.2 
Fe203 0.62 10.93 3.42 5.93 0.6 1.08 0.88 0.62 
MnO 0.019 0.214 0.027 0.119 0.014 0.038 0.069 0.025 
MgO 0.12 2.67 0.47 1.1 0.09 0.15 0.19 0.21 
CaO 0.52 0.29 0.5 0.47 0.64 0.68 1.95 1.21 
Na2O 1.89 0.55 1.65 0.69 4.07 4.06 . 3.9 3.21 
K20 5.52 8.56 2.27 3.85 4.67 4.1 1.94 4.02 
P205 0.149 0.197 0.034 0.035 0.134 0.171 0.061 0.093 
LOI 1.12 3.14 0.47 1.12 0.5 0.82 0.86 0.66 
Total 99.548 100.071 99.808 100.32 100.187 99.93 100.586 99.504 

Rb 201.8 353.8 73.4 164 295.1 311.7 56.3 106 
Sr 95.8 89.3 84.8 91.7 36.3 79 119 174.6 
Y 29.2 64.6 15 34.1 9.2 15 4.3 11.1 
Zr 40 335 101 216 31 44 14 11 
Nb 11.3 26.5 5.9 13.1 8.5 15.6 1.3 1.8 
Ba 273 1335 532 849 127 177 264 799 
Pb 46 46 22 19 40 56 38 59 
Th 6 33 6 14 3 5 0 1 
U 4 7 1 1 7 9 1 3 
Sc 4 32 4 12 1 2 5 2 
V 0 178 28 83 3 5 5 7 
Cr 5 168 25 60 7 8 6 6 
Co 1 28 7 21 2 1 1 2 
Ni 3 52 4 27 1 2 3 3 
Cu 5 32 4 86 3 2 20 5 
Zn 12 119 32 68 29 51 8 10 
Ga 18 34 9 17 22 21 14 12 
Mo 0 0 0 0 0 0 0 0 
As 8 0 0 0 3 3 2 1 
S 20 37 48 669 24 27 20 31 

La 5.3 9.6 5.8 4.2 
Ce 5.7 11.8 21.7 10.6 7.4 
Nd 27.3 11.1 5.6 10.8 4.6 3.2 
Sm 13.3 5.5 1.33 2.34 0.82 0.73 

Eu 1.28 0.276 0.4 0.93 1.31 
Tb 0.61 0.276 0.33 0.54 0.12 0.2 
Yb 0.81 0.325 0.74 1.39 1.57 1.09 
Lu 3.98 0.74 0.09 0.2 0.28 0.16 
Th 0.09 3.41 4.61 1.89 1.4 
U 5.55 3.16 6.3 12.8 0.8 1 
Ta 6.3 1.28 3.93 0.1 0.32 
Hf 1.74 1.36 1.34 1.89 0.76 0.5 
Cs 1.5 1.42 8.6 18.1 4.38 2.94 
Zn 200 285 30 48 
W 0.0375 0.00889 
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XRF Majors 
Sample G30 G31(1) Du p G49 G51(2)L G51(2)M G51(5) G62 G65 
Si02 75.79 75.89 56.71 75.4 75.49 75.37 70.83 64.44 
T102 0.062 0.049 0.775 0.018 0.643 0.551 0.703 0.769 
A1203 14.99 13.89 21.19 14.61 11.47 10.35 13.4 17.15 
Fe203 1.04 1.05 10.67 0.27 4.38 4.07 4.81 6.35 
MnO 0.1 0.131 0.103 0.038 0.065 0.103 0.043 0.08 
MgO 0.19 0.11 1.87 0.05 2.29 1.93 2.22 2.54 
CaO 0.8 0.59 0.69 4.1 2.4 4.92 0.9 0.92 
Na20 2.36 2.09 1 3.92 2 1.09 3.37 2.58 
K20 3.92 4.98 4.22 0.58 2.33 1.51 2.17 3.27 
P205 0.104 0.095 0.094 0.016 0.159 0.146 0.094 0.167 
LOI 0.51 0.43 2.75 0.82 0.5 0.84 1.11 1.62 
Total 99.866 99.305 100.072 99.822 101.727 100.88 99.65 99.886 

Rb 105.6 131.6 190.6 10.8 139.1 84.3 114.4 149.9 
Sr 121.9 153.5 81.7 200.1 109.8 130.1 107.1 76 
Y 5.6 6 34 7.5 25.6 31.6 27.7 32.4 
Zr 22 19 139 49 236 211 227 194 
Nb 1.2 1.3 13.9 0.5 11.7 9.5 15.8 17.6 
Ba 755 1322 565 139 537 398 506 763 
Pb 55 62 5 41 19 20 488 134 
Th 0 1 21 0 18 19 18 19 
U 1 1 3 3 3 3 5 5 
Sc 5 3 28 2 7 6 14 17 
V 4 7 137 3 76 56 84 109 
Cr 4 7 134 3 67 59 86 112 
Co 1 1 22 1 11 10 9 19 
Ni 3 2 46 1 27 24 15 32 
Cu 5 4 4 2 42 3 13 34 
Zn 8 3 37 3 60 53 221 179 
Ga 14 11 27 12 13 11 19 22 
Mo 0 0 0 0 0 0 1 0 
As 3 6 2 1 0 2 6 1 
S 21 27 51 18 38 32 561 1373 

La 3.7 3.5 
Ce 7.1 2.8 6.1 
Nd 3.1 4.8 2.9 
Sm 0.71 2 0.59 
Eu 1.1 0.37 1.38 
Tb 0.14 1.37 0.11 
Yb 1.75 0.15 2.07 
Lu 0.29 2.08 0.36 
Th 1.37 0.34 1.16 
U 1.5 0.85 1.4 
Ta 0.23 0.9 0.26 
Hf 1.06 0.22 1.12 
Cs 3.11 1.04 2.81 
Zn 125 
W 
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Appendix D Whole rock chemistry 

XRF Majors 
Sample G74 G75 G77 G87 G9 Dup 17/97 26A197 
S102 73.22 74.39 72.54 50.19 68.8 74.02 74.4 
T102 0.069 0.06 0.488 1.12 0.585 0.063 0.038 
A1203 15.11 15.25 13.34 27.95 17.21 15.26 14.98 
Fe203 0.72 0.65 3.33 7.02 5.04 0.71 0.61 
MnO 0.021 0.031 0.049 0.05 0.132 0.012 0.007 
MgO 0.1 0.07 0.79 3.66 0.87 0.1 0.16 
CaO 0.52 0.5 2.13 0.96 0.6 0.67 0.82 
Na20 4.23 5 2.76 1.21 1.9 4.03 4.54 
K20 4.49 3.61 4.02 4.68 3.62 4.46 4.35 
P205 0.188 0.185 0.104 0.56 0.087 0.092 0.055 
LOI 0.55 0.6 0.5 2.52 1.47 0.63 0.42 
Total 99.218 100.346 100.051 99.92 100.314 100.047 100.38 

Rb 477.4 440.1 174.5 255.5 160.6 382.3 170.9 
Sr 32.8 23.1 101.8 73.4 64.6 51.4 47 
Y 10.5 11.5 49.1 66.5 51.4 7.4 24.4 
Zr 33 31 198 322 280 38 26 
Nb 19.6 22.8 12.1 20.6 17.9 12.7 0.5 
Ba 103 62 555 862 747 151 126 
Pb 47 38 18 23 14 67 108 
Th 4 4 25 30 14 6 6 
U 14 16 8 6 4 7 12 
Sc 1 0 8 24 9 1 0 
V 1 3 44 166 57 4 3 
Cr 4 7 16 130 38 7 3 
Co 2 1 7 10 10 2 1 
Ni 1 1 7 13 17 2 2 
Cu 3 3 4 8 9 1 2 
Zn 62 55 38 107 80 46 16 
Ga 25 26 18 31 26 21 15 
Mo 0 0 0 1 0 0 0 
As 7 1 3 0 0 0 0 
S 22 18 44 575 70 19 20 

La 8.8 40.3 39.2 7.7 10.4 
Ce 15.6 8.4 86.6 87 15.6 20.7 
Nd 9 16 105 43.3 41.6 7.3 10.2 
Sm 1.26 8.9 44.8 9.3 9.2 1.7 2.19 
Eu 0.26 1.27 1.33 1.35 0.37 0.3 
Tb 0.33 0.2 1.1 1.48 1.49 0.33 0.63 
Yb 0.7 0.35 1.43 6.2 6.46 0.4 2.29 
Lu 0.11 0.84 4.61 0.92 0.97 0.07 0.33 
Th 3.5 0.1 17 16.8 4.63 6.62 
U 22.2 3.597 22.6 3.4 3.8 7.8 17.8 
Ta 2.78 20.9 1.49 1.51 7.76 0.02 
Hf 1.4 2.02 1.13 8.59 8.49 1.76 1.06 
Cs 31 1.44 5.94 8.31 8.24 45.7 3.79 
Zn 58 435 175 79 79 45 18 
W 0.00652 0.01205 
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Appendix D Whole rock chemistry 

XRF Majors 
26B/97 Sample 26C/97 26D/97 30A/97 40C/97 400/97 G42 G47 

67.26 Si02 71.7 73.98 75.73 73.65 74.32 74.91 74.9 
0.229 Ti02 0.119 0.106 0.02 0.09 0.062 0.092 0.035 
17.28 A1203 16.08 14.93 14.08 15.03 14.73 14.03 14.18 
1.98 Fe203 0.63 0.46 0.66 0.79 0.7 1.01 0.61 

0.025 MnO 0.011 0.007 0.02 0.021 0.027 0.035 0.007 
0.45 MgO 0.17 0.14 0.08 0.13 0.09 0.13 0.12 
0.88 CaO 0.93 0.77 0.44 0.7 0.53 0.61 0.55 
3.94 Na20 3.46 2.94 7.29 4.17 4.31 3.22 3.78 
7.01 K20 6.08 5.64 0.21 4.47 3.97 4.92 4.75 

0.103 P205 0.169 0.153 0.145 0.158 0.174 0.212 0.172 
0.61 LOI 0.71 0.76 0.42 0.63 0.71 0.82 0.66 

99.767 Total 100.059 99.886 99.095 99.839 99.623 99.989 99.764 

350.8 Rb 260.9 246.7 17.2 392.6 466.5 311.5 200.4 
79.5 Sr 92.5 73.5 10.1 66.9 48.1 18.3 79.1 
46.5 Y 21.8 17.5 14.3 8.6 9 8.7 7.5 

30 Zr 26 25 61 40 30 29 23 
13.2 Nb 8.5 10.9 25.3 12.7 12.7 11.8 10.6 
347 Ba 388 229 4 178 95 36 222 

64 Pb 60 47 257 45 39 28 31 
31 Th 3 6 12 4 2 2 4 
11 U 2 4 9 7 7 9 5 
4Sc 4 5 0 1 1 1 1 
3V 2 3 3 5 1 3 3 
4Cr 3 4 4 8 3 5 5 
3Co 2 2 1 1 2 1 2 
3Ni 2 2 1 2 1 2 2 
3Cu 1 2 1 4 1 1 10 

55 Zn 18 13 48 54 42 29 31 
19 Ga 20 21 26 24 22 19 20 
0Mo 0 0 0 0 0 0 0 
4As 1 2 0 6 2 0 1 

22S 17 16 157 17 15 74 24 

15.5 La 10.1 7.9 6.5 10 6 
30.3 Ce 19.9 15.3 14.1 20.2 11.4 9.5 4.8 

14 Nd 8.7 6.4 8 10 5.6 16.4 9 
3.07 Sm 2.26 1.6 2.17 2.39 1.3 9.4 4.1 
0.67 Eu 0.73 0.56 0.08 0.46 0.25 1.15 1.2 
1.06 Tb 0.6 0.45 0.52 0.42 0.34 0.16 0.15 
3.98 Yb 1.66 1.41 1.56 0.55 0.68 0.35 0.31 
0.58 Lu 0.25 0.2 0.29 0.08 0.1 1.22 0.57 
8.37 Th 4.7 4.84 9.61 4.86 2.47 0.17 0.08 
15.9 U 4.8 4.4 9 8.8 9.7 3.23 4 
1.29 Ta 0.8 0.75 32.2 3.99 3.18 23.5 4.6 

0.988 Hf 1 1.09 3.475 1.55 1.27 1.3 3.62 
19.4 Cs 14.8 7 5.15 95.5 212 1.68 1.098 

53 Zn 21 19 53 54 41 300 200 
W 0.0069 0.0079 
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Appendix E- Summary of mineral chemistry 

Sample 2no 2no 2no 2no 2nj 2nj 2nj 2nj tkm tkm 2km 
mineral art bt mu fsp st bt fsp grt smu bt fsp 
Si02 37.33 35.12 44.35 60.76 26.95 37.09 65.68 38.62 45.82 35.48 63.24 
T102 0 3.01 1.26 0 0.87 1.56 0.08 0 1.32 3.31 0.01 
A1203 20.9 17.74 34.44 23.55 52.37 17.2 21.05 21.38 32.14 18.04 22.26 
Cr203 0 0.07 0.07 0.05 0.11 0 0.02 0.01 0.06 0.12 0 
Fe203 1.09 0 0 0.04 0 2.32 0 1.3 0 0 0.08 
FeO 32.62 18.49 1.11 0 13.06 11.83 0 31.08 1.71 18.05 0 
MnO 2.28 0.07 0 0 0.07 0.05 0 0.95 "0 0.03 0.06 
MgrtO 4.13 9.93 0.5 0 2.49 15.87 0 6.75 1.39 10.23 0 
CaO 1.82 0 0 5.32 0.01 0 2.02 1.28 0 0 3.67 
Na20 0 0.25 1.19 8.51 0.5 0.55 10.84 0.1 0.73 0.16 9.35 
K20 0 9.4 9.1 0.05 0 8.08 0 0 9.95 9.37 0.12 
totals 100.17 94.1 92.04 98.29 96.43 94.57 99.7 101.45 93.13 94.79 98.79 
cations 
Si 2.983 2.705 3.045 2.742 7.599 2.741 2.896 2.993 3.129 2.701 2.825 
Ti 0 0.175 0.065 0 0.185 0.087 0.003 0 0.068 0.189 0 
Al 1.969 1.611 2.787 1.253 17.41 1.499 1.094 1.953 2.588 1.619 1.172 
Cr 0 0.004 0.004 0.002 0.024 0 0.001 0 0.003 0.007 0 
Fe3+ 0.066 0 0 0.001 0 0.129 0 0.076 0 0 0.003 
Fe2+ 2.18 1.192 0.064 0 3.079 0.731 0 2.014 0.098 1.149 0 
Mn 0.154 0.005 0 0 0.018 0.003 0 0.062 0 0.002 0.002 
Mgrt 0.492 1.14 0.052 0 1.046 1.748 0 0.78 0.141 1.16 0 
Ca 0.156 0 0 0.257 0.003 0 0.096 0.106 0 0 0.176 
Na 0 0.038 0.158 0.744 0.271 0.079 0.928 0.015 0.096 0.024 0.809 
K 0 0.925 0.798 0.003 0 0.763 0 0 0.868 0.911 0.007 
Total Cations 8 7.794 6.973 5.003 29.635 7.779 5.018 8 6.99 7.764 4.995 

Sample 2hdib 2hdib 2hdib 2hdib 2hdib 2grtxa 2grtxa 2grtxa 2grtxa 2grtu 2grtu 

mineral grt mu ksp pi bt grt bt mu fsp rt bt 
S102 36.36 45.11 63.57 63.67 32.96 36.75 33.82 45.51 62.22 36.26 33.66 
T102 0 0.62 0.26 0 2.67 0 2.74 0.56 0.01 0 3.2 
A1203 20.24 35.76 18.29 21.52 18.73 20.13 18.37 35.91 21.93 20.26 17.84 
Cr203 0.02 0 0 0.05 0 0 0.01 0.01 0.01 0.05 0.01 
Fe203 1.05 0 0.01 0.11 0 1.29 0 0 0.04 1.73 0 
FeO 37.51 1.21 0 0 26.07 36.96 25.61 1.25 0 33.76 25.46 
MnO 0.47 0 0.04 0 0.05 1.34 0.19 0 0 5.03 0.2 
MgrtO 1.67 0.36 0 0 4.21 1.93 4.51 0.47 0.02 1.69 5 
CaO 1.97 0.02 0 2.87 0 1.46 0 0 3.37 1.13 0 
Na20 0 0.58 1.33 9.86 0.29 0.06 0.11 0.52 8.95 0.01 0.11 
K20 0 10.39 15.3 0.27 9.68 0.01 9.47 10.28 0.19 0 9.58 

totals 99.29 94.06 98.81 98.34 94.67 99.92 94.83 94.51 96.75 99.93 95.08 

cations 
Si 2.987 3.042 2.975 2.856 2.634 2.998 2.682 3.049 2.832 2.968 2.667 

Ti 0 0.031 0.009 0 0.161 0 0.163 0.028 0 0 0.19 

Al 1.96 2.842 1.009 1.138 1.765 1.936 1.718 2.837 1.177 1.955 1.667 

Cr 0.002 0 0 0.002 0 0 0.001 0 0 0.004 0.001 

Fe3+ 0.065 0 0 0.004 0 0.079 0 0 0.001 0.106 0 

Fe2+ 2.577 0.068 0 0 1.742 2.522 1.699 0.07 0 2.311 1.687 

Mn 0.033 0 0.001 0 0.003 0.093 0.013 0 0 0.349 0.013 

Mgrt 0.204 0.036 0 0 0.501 0.234 0.533 0.047 0.002 0.207 0.591 

Ca 0.173 0.001 0 0.138 0 0.127 0 0 0.165 0.099 0 

Na 0 0.076 0.12 0.857 0.046 0.01 0.017 0.068 0.79 0.001 0.017 
K 0 0.895 0.914 0.015 0.988 0.001 0.959 0.88 0.011 0 0.97 
Total Cations 8 6.991 5.029 5.009 7.839 8 7.783 6.978 4.979 8 7.803 
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Appendix E Summary of mineral chemistry 

Sample 
mineral 

2km 
grt 

2jm 
grt 

2jm 
mu 

2jm 
bt 

2jm 
fsp 

2jh 
grt 

2jh 
mu 

2jh 
bt 

2esb 
grt 

2esb 
chl 

2esb 
mu 

2esb 
bt 

Si02 37.5 36.53 47.55 33.29 63.26 36.46 44.82 33.94 36.52 23.78 35.26 38.09 
T102 0.03 0 0.84 2.89 0 0.11 0.75 3.13 0.01 0.12 1.89 1.73 
A1203 21.01 20.35 30.76 17.06 22.68 19.95 35.12 17.43 20.66 21.55 17.3 18.49 
Cr203 0 0.08 0.03 0 0.01 0 0.03 0.01 0 0.01 0.02 0.03 
Fe203 1.48 0.9 0 0 0.01 1.5 0 0 2.29 0.4 12.3 0 
FeO 30.31 34.55 2.77 26.69 0 37.16 1.35 25.45 32.03 27.76 11.07 18.96 
MnO 1.36 3.65 0.01 0.45 0 1.21 0 0.14 3.18 0.08 0 0 
MgrtO 4.62 1.32 1.26 4.68 0 1.68 0.43 5.21 1.7 12.49 8.54 7 
CaO 3.85 2.4 0 0.13 4.17 1.72 0.03 0 3.74 0 0 0.49 
Na20 0 0 0.29 0.19 8.9 0.02 0.67 0.1 0.11 0.05 0.16 1.7 
K20 0 0 9.86 8.84 0.2 0.01 9.82 9.37 0.03 0.04 9.3 8.2 
totals 100.2 99.78 93.39 94.22 99.23 99.81 93.04 94.79 100.3 86.28 95.85 94.7 
cations 
Si 2.972 2.988 3.237 2.678 2.813 2.986 3.05 2.692 2.955 2.595 2.658 2.885 
Ti 0.002 0 0.043 0.175 0 0.007 0.039 0.187 0.001 0.01 0.107 0.099 
Al 1.963 1.963 2.469 1.618 1.189 1.926 2.818 1.63 1.971 2.773 1.537 1.651 
Cr 0 0.005 0.002 0 0 0 0.002 0.001 0 0.001 0.001 0.002 
Fe3+ 0.088 0.056 0 0 0 0.092 0 0 0.139 0.033 0.698 0 
Fe2+ 2.009 2.364 0.158 1.796 0 2.545 0.077 1.688 2.167 2.534 0.698 1.201 
Mn 0.092 0.253 0 0.03 0 0.084 0 0.009 0.218 0.007 0 0 
Mgrt 0.546 0.161 0.128 0.561 0 0.205 0.043 0.616 0.205 2.031 0.959 0.79 
Ca 0.327 0.211 0 0.012 0.199 0.151 0.002 0 0.324 0 0 0.04 
Na 0 0 0.039 0.029 0.767 0.003 0.089 0.016 0.017 0.011 0.023 0.25 
K 0 0 0.858 0.909 0.011 0.001 0.854 0.949 0.003 0.006 0.895 0.793 
Total Cations 8 8 6.933 7.807 4.981 8 6.973 7.788 8 10 7.576 7.711 

Sample 2grtu 2grtu 2fq 2fq 2fq 2fq 2fn 2fn 2fn 2fn 2fc 2fc 
mineral fs mu rt mu bt fsp mu grt bt fs mu bt 
Si02 63.66 44.74 36.75 45.34 34.2 65.03 45.32 37.14 35.02 65.6 46.48 36.13 
T102 0.04 1.15 0.09 1.2 2.15 0.04 1.01 0.04 2.46 0 0.89 2.04 
A1203 22.21 34.58 20.22 32.95 16.96 21.11 34.36 20.5 17.62 20.77 32.24 17.79 
Cr203 0.03 0 0 0 0.03 0 0 0 0.05 0.03 0.01 0.03 
Fe203 0.02 0 2.19 0 0 0.01 0 1.02 0 0 0 0 
FeO 0 1.41 33.89 2.08 24.97 0 1.38 36.56 21.06 0 1.74 17.23 
MnO 0 0.03 1.98 0.06 0.16 0 0 0.29 0.06 0 0.03 0.17 
MgrtO 0.05 0.42 0.91 0.8 5.95 0 0.6 2.45 8.46 0 1.61 10.96 
CaO 3.36 0 4.61 0 0 2.38 0 2.33 0 1.8 0 0 
Na20 9.29 0.52 0.13 0.48 0.15 10.22 0.85 0.03 0.13 9.9 0.37 0.18 
K20 0.27 10.34 0 10.01 9.51 0.1 8.83 0.04 9.3 0.07 10.11 9.48 
totals 98.94 93.2 100.8 92.94 94.07 98.89 92.35 100.4 94.16 98.17 93.49 94.02 
cations 
Si 2.836 3.051 2.974 3.106 2.731 2.89 3.088 2.996 2.727 2.923 3.156 2.761 
Ti 0.001 0.059 0.005 0.062 0.129 0.001 0.052 0.003 0.144 0 0.045 0.117 
Al 1.167 2.78 1.929 2.661 1.597 1.106 2.76 1.949 1.617 1.091 2.58 1.603 
Cr 0.001 0 0 0 0.002 0 0 0 0.003 0.001 0.001 0.002 
Fe3+ 0.001 0 0.134 0 0 0 0 0.062 0 0 0 0 
Fe2+ 0 0.08 2.293 0.119 1.668 0 0.078 2.466 1.371 0 0.099 1.101 
Mn 0 0.001 0.136 0.003 0.011 0 0 0.02 0.004 0 0.002 0.011 
Mgrt 0.003 0.042 0.11 0.082 0.708 0 0.061 0.295 0.981 0 0.163 1.248 
Ca 0.161 0 0.4 0 0 0.113 0 0.201 0 0.086 0 0 
Na 0.802 0.069 0.02 0.063 0.024 0.881 0.112 0.004 0.02 0.855 0.049 0.027 
K 0.016 0.9 0 0.876 0.97 0.006 0.768 0.004 0.925 0.004 0.876 0.926 
Total Cations 4.987 6.984 8 6.972 7.838 4.998 6.92 8 7.792 4.961 6.971 7.795 
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Appendix E Summary of mineral chemistry 

Sample 
mineral 
Si02 
Ti02 
A1203 
Cr203 
Fe203 
FeO 
MnO 
MgrtO 
CaO 
Na20 
K20 
totals 
cations 
Si 
Ti 
Al 
Cr 
Fe3+ 
Fe2+ 
Mn 
Mgrt 
Ca 
Na 
K 
Total Cations 

Sample 
mineral 
Si02 
Ti02 
AI203 
Cr203 
Fe203 
FeO 
MnO 
MgrtO 
CaO 
Na20 
K20 
totals 
cations 
Si 
TI 
Al 
Cr 
Fe3+ 
Fe2+ 
Mn 
Mgrt 
Ca 
Na 
K 
Total Cations 

2en2 
bt 

36.52 
1.34 

18.71 
0.01 

0 
16.86 

0 
11.26 

0 
0.54 
8.72 

93.97 

2.768 
0.076 
1.672 
0.001 

0 
1.069 

0 
1.272 

0 
0.079 
0.844 
7.781 

2fc 

60.98 
0 

23.01 
0.09 

0 
0 

0.03 
0 

5.13 
8.37 
0.17 

97.78 

2.764 
0 

1.229 
0.003 

0 
0 

0.001 
0 

0.249 
0.736 
0.01 

4.993 

2en2 2en2 2en2 
grt mu st 

26 26 26 
mu bt 

37.22 45.13 26.94 36.81 
0.07 0.49 0.38 0.01 

20.94 34.74 52.55 20.7 
0.04 0.01 0.06 0.05 
1.11 0 0 1.98 

36.08 0.99 12.2 30.06 
0.07 0 0.02 2.07 
3.39 0.66 1.64 2.34 
1.71 0 0 5.55 
0.04 1.38 0.91 0.09 

0 8.93 0 0.06 
100.67 92.34 94.7 99.71 

2.977 3.078 7.697 2.965 
0.004 0.025 0.082 0 
1.974 2.793 17.7 1.966 
0.003 0.001 0.014 0.003 
0.067 0 0 0.12 
2.413 0.056 2.915 2.025 
0.005 0 0.005 0.141 
0.404 0.067 0.698 0.281 
0.147 0 0 0.479 
0.006 0.182 0.505 0.014 

0 0.778 0 0.006 
8 6.98 29.62 8 

2fc 2en3 
grt 9n 

37.52 37.11 
0 0.12 

21.33 20.69 
0.06 0.07 
1.19 1.45 

27.08 30.36 
1.38 0.12 
3.71 1.88 
7.56 8.31 
0.02 0 

00 
99.85 100.1 

2en3 2en3 
mu bt 
45.94 36.41 
0.47 1.43 

34.29 17.95 
0 0.07 
00 

0.96 18.67 
0.07 0 
0.92 10.54 

0 0.01 
0.98 0.27 
10.1 8.73 

93.74 94.09 

2.969 2.97 3.103 2.782 
0 0.007 0.024 0.082 

1.99 1.952 2.73 1.617 
0.004 0.004 0 0.004 
0.071 0.088 0 0 
1.792 2.032 0.054 1.193 
0.093 0.008 0.004 0 
0.438 0.224 0.093 1.2 
0.641 0.713 0 0.001 
0.003 0 0.128 0.04 

0 0 0.871 0.852 
8 8 7.008 7.771 

45.68 
0.88 

32.85 
0.05 

0 
2.14 

0 
1.21 

0 
1.06 
9.81 

93.69 

26 023a 
bt 

35.55 61.02 36.16 
1.81 0.02 1.67 

17.16 24.08 17.93 
0.04 0 0.09 

0 0.01 0 
18.14 0 15.87 
0.07 0 0.06 

10.54 0 11.58 
0 5.79 0 

0.23 8.47 0.28 
9.77 0.06 9.22 

93.34 99.45 92.86 

3.107 2.761 2.726 2.774 
0.045 0.106 0.001 0.096 
2.634 1.571 1.268 1.622 
0.003 0.002 0 0.005 

0 0 0 0 
0.122 1.178 0 1.018 

0 0.005 0 0.004 
0.122 1.22 0 1.324 

0 0 0.277 0 
0.14 0.035 0.734 0.041 

0.852 0.969 0.003 0.904 
7.025 7.849 5.008 7.788 

2en3 2en3 2eja 2eja 
fsp chi grt fsp 

59 24.2 37.26 63.67 
0 0.11 0 0.01 

25.22 22.23 20.89 22.55 
0.09 0 0 0.02 
0.02 0.84 1.43 0.07 

0 22.76 30.37 0 
0.02 0.1 2.02 0 

0 15.71 3.28 0 
7.28 0 4.7 3.85 
7.45 0.13 0.04 9.62 

0.08 0.01 0.04 0.17 
99.16 86.07 100 99.98 

2.654 2.577 2.977 2.815 
0 0.009 0 0 

1.338 2.791 1.968 1.176 
0.003 0 0 0.001 
0.001 0.067 0.086 0.002 

0 2.027 2.03 0 
0.001 0.009 0.137 0 

0 2.493 0.39 0 
0.351 0 0.402 0.183 
0.65 0.027 0.005 0.825 

0.004 0.001 0.004 0.01 
5.002 10 8 5.012 

023a 023a 
grt mu 

37.78 45.75 
0.03 0.48 

20.96 36.34 
0.02 0 
1.33 0 

30.86 0.57 
1.11 0.04 
5.91 0.54 
1.74 0 
0.08 1.32 
0.04 8.85 

99.84 93.89 

2.989 3.055 
0.001 0.024 
1.955 2.861 
0.001 0 
0.079 0 
2.042 0.032 
0.074 0.002 
0.696 0.053 
0.147 0 
0.012 0.171 
0.004 0.755 

8 6.953 

2eja 2eja 
mu bt 

45.92 35.26 
1.25 3.28 

33.48 17.53 
0.05 0 

00 
1.66 19.16 
0.01 0.12 

1 9.32 
00 

0.63 0.25 
9.91 9.54 

93.91 94.46 

3.103 2.717 
0.063 0.19 
2.667 1.592 
0.003 0 

00 
0.094 1.234 

0 0.008 
0.101 1.07 

00 
0.083 0.037 
0.855 0.939 
6.968 7.786 
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Appendix E Summary of mineral chemistry 

Sample 
mineral 
Si02 
Ti02 
A1203 
Cr203 
Fe203 
FeO 
MnO 
MgrtO 
CaO 
Na20 
K20 
totals 
cations 
Si 
Ti 
Al 
Cr 
Fe3+ 
Fe2+ 
Mn 
Mgrt 
Ca 
Na 
K 
Total Cations 

023a 
fsp 

016c1 016c1 
grt bt 

63.12 37.18 35.09 
0 0.04 3.33 

22.22 20.75 18.68 
0 0.09 0.08 

0.03 1.28 0 
0 31.44 18.3 

0.01 1.86 0.22 
0 4.85 8.91 

3.74 1.91 0 
9.78 0.02 0.19 
0.09 0 9.57 

99.01 99.41 94.37 

016c1 
fsp 

016c1 

mu 

014a 

grt 
64.24 44.27 38.17 

0 1.27 0 
22.64 34.79 21.12 
0.03 0.14 0 
0.12 0 1.03 

0 1.18 30.04 
0 0.02 0.82 
0 0.57 7.27 

3.88 0 1.32 
8.89 0.69 0.02 
0.09 9.72 0.01 
99.9 92.67 99.79 

014a 
bt 

014a 
fsp 

006b1 
grt 

37.58 65.63 36.64 
1.54 0 0.07 

18.71 21.31 20.39 
0.02 0.06 0 

0 0 1.13 
14.87 0 32.56 
0.06 0 1.81 

13.01 0 3.68 
0 2.26 2.24 

0.28 9.92 0 
8.94 0.04 0.02 

95.02 99.21 98.54 

006b1 006b1 006b1 
bt fsD mu 

Sample 
mineral 
Si02 
Ti02 
A1203 
Cr203 
Fe203 
FeO 
MnO 
MgrtO 
CaO 
Na20 
K20 
totals 
cations 
Si 
Ti 
Al 
Cr 
Fe3+ 
Fe2+ 
Mn 
Mgrt 
Ca 
Na 
K 
Total Cations 

35.6 63.56 45.99 
2.35 0 1.38 

17.89 22.24 33.15 
0.15 0.03 0.07 

0 0 0 
17.76 0 1.25 
0.02 0.01 0.07 

10.72 0 1.1 
0 3.63 0 

0.19 9.54 0.95 
9.16 0 9.5 

93.87 99.02 93.46 

2.819 2.978 2.692 2.831 3.027 2.995 2.785 2.9 2.984 2.73 2.831 3.113 
0 0.003 0.192 0 0.065 0 0.086 0 0.004 0.136 0 0.07 

1.17 1.959 1.689 1.176 2.805 1.954 1.634 1.11 1.957 1.617 1.168 2.646 
0 0.006 0.005 0.001 0.008 0 0.001 0.002 0 0.009 0.001 0.004 

0.001 0.077 0 0.004 0 0.061 0 0 0.069 0 0 0 
0 2.106 1.174 0 0.068 1.972 0.922 0 2.217 1.139 0 0.071 

0.001 0.126 0.014 0 0.001 0.054 0.004 0 0.125 0.001 0 0.004 
0 0.579 1.018 0 0.058 0.85 1.437 0 0.446 1.226 0 0.111 

0.179 0.164 0 0.183 0 0.111 0 0.107 0.195 0 0.173 0 
0.847 0.003 0.028 0.76 0.092 0.003 0.04 0.85 0 0.029 0.825 0.124 
0.005 0 0.938 0.005 0.848 0.001 0.846 0.002 0.002 0.897 0 0.821 
5.022 8 7.751 4.961 6.972 8 7.754 4.971 8 7.784 4.997 6.965 

2ee 2ee 2ee Zee 2eb4a 2eb4a 2eb4a 2eb4a 017a 017a 017a 017a 
grt fsp bt mu grt cmu cbt fsp grt bt mu fsp 
37.21 63.14 35.82 45.16 37.2 45.07 35.35 64.69 36.62 34.61 44.63 63.46 
0.06 0 1.34 0.5 0.04 0.78 2.38 0 0 3.09 1 0 

20.57 22.45 17.66 35.93 20.92 34.89 17.91 21.45 20.56 18.52 34.97 22.6 
0.03 0.05 0 0.03 0 0 0 0 0.02 0 0 0.01 
2.2 0.02 0.14 0 0.86 0 0 0.14 1.38 0 0 0 

33.61 0 19.53 0.87 34.7 0.94 18.6 0 29.99 19.98 1.24 0 
0.08 0 0.03 0.01 1.23 0.03 0 0 6.98 0.24 0 0.04 
2.15 0 9.95 0.35 3.53 0.7 9.55 0 3.02 8.07 0.53 0 
4.7 3.95 0 0 1.6 0 0 2.67 1 0 0 3.94 

0.19 9.37 0.25 1.57 0.05 1.08 0.47 10.29 0 0.29 0.6 9.4 
0.04 0.05 8.33 7.89 0 9 8.09 0.05 0.02 9.62 9.88 0.17 

100.8 99.03 93.05 92.32 100.1 92.5 92.36 99.3 99.6 94.43 92.85 99.63 

2.976 2.815 2.779 3.057 2.986 3.067 2.751 2.87 2.974 2.681 3.043 2.814 
0.004 0 0.078 0.025 0.002 0.04 0.139 0 0 0.18 0.051 0 

1.94 1.18 1.615 2.868 1.98 2.799 1.643 1.122 1.969 1.692 2.811 1.182 
0.002 0.002 0 0.002 0 0 0 0 0.001 0 0 0 
0.132 0.001 0.008 0 0.052 0 0 0.005 0.085 0 0 0 
2.248 0 1.267 0.049 2.329 0.054 1.211 0 2.037 1.295 0.071 0 
0.005 0 0.002 0.001 0.084 0.002 0 0 0.48 0.016 0 0.002 
0.256 0 1.15 0.035 0.422 0.071 1.108 0 0.365 0.931 0.054 0 
0.403 0.189 0 0 0.138 0 0 0.127 0.087 0 0 0.187 
0.029 0.81 0.038 0.207 0.008 0.142 0.071 0.885 0 0.044 0.079 0.809 
0.004 0.003 0.825 0.682 0 0.782 0.804 0.003 0.002 0.952 0.86 0.01 

8 5 7.763 6.927 8 6.956 7.726 5.011 8 7.791 6.969 5.004 

Timing of prograde metamorphism... C. I. Prince 286 



Appendix E Summary of mineral chemistry 

Sample 
mineral 

006a 
art 

006a 
bt 

006a 
mu 

006a 
fsp 

005b 
bt 

005b 
fsp 

005b 
grit 

005a 
grt 

005a 
bt 

005a 
mu 

005a 
fsp 

S102 37.74 35.06 46.05 61.53 36.65 60.75 38.37 38.08 35.28 46.01 63.07 
T102 0 2.59 1.5 0 2.18 0.01 0 0.07 2.56 1.48 0.07 
A1203 21.01 17.03 32.56 23.24 17.61 24.08 21.32 21.11 17.06 31.77 22.75 
Cr203 0 0.08 0.07 0.02 0.06 0.02 0 0.02 0.03 0 0 
Fe203 0.9 0 0 0.08 0 0 0.96 0.66 0 0 0.02 
FeO 29.44 18.31 2 0 15.89 0 23.1 28.34 18.63 2.05 0 
MnO 1.32 0.12 0 0.02 0.14 0.01 1.63 1.38 0.09 0 0 
MgrtO 3.75 10.5 1.17 0 12.42 0 4.07 3.61 10.12 1.48 0 
CaO 5.99 0 0 5.01 0 5.9 10.74 7.12 0 0 4.25 
Na20 0 0.22 0.69 9.06 0.23 8.55 0 0.06 0.13 0.49 9.25 
K20 0 9.52 9.94 0.11 9.61 K20 0.04 0.01 9.6 9.86 0.17 
totals 100.2 93.42 93.99 99.09 94.8 99.41 100.2 100.5 93.5 93.14 99.58 
cations 
Si 2.991 2.724 3.118 2.757 2.76 2.718 2.993 3 2.741 3.142 2.801 
TI 0 0.151 0.076 0 0.123 0 0 0.004 0.15 0.076 0.002 
Al 1.963 1.56 2.599 1.228 1.564 1.27 1.961 1.961 1.562 2.557 1.191 
Cr 0 0.005 0.004 0.001 0.004 0.001 0 0.001 0.002 0 0 
Fe3+ 0.054 0 0 0.003 0 0.056 0.039 0 0 0.001 
Fe2+ 1.951 1.19 0.113 0 1.001 0 1.507 1.868 1.211 0.117 0 
Mn 0.088 0.008 0 0.001 0.009 0 0.108 0.092 0.006 0 0 
Mgrt 0.443 1.216 0.118 0 1.394 0 0.473 0.424 1.171 0.151 0 
Ca 0.509 0 0 0.241 0 0.283 0.898 0.601 0 0 0.202 
Na 0 0.033 0.09 0.787 0.034 0.742 0 0.009 0.019 0.064 0.797 
K 0 0.945 0.86 0.006 0.925 0.09 0.004 0.001 0.952 0.86 0.01 
Total Cations 8 7.832 6.979 5.024 7.812 5.019 8 8 7.813 6.966 5.004 

Sample 004a 004a 004a 004a G90 G90 G90 G90 G57 G57 G57 

mineral grt mu bt fsp rt fsp bt chi mu bt fs 
Si02 37.15 45.68 36.85 62.11 38.16 66.79 38.22 27.05 48.27 36.29 63.95 

T102 0.02 0.55 1.78 0 0.01 0 1.65 0.15 1.08 2.25 0 

A1203 20.43 35.74 18.32 22.63 21.77 21.11 18.06 22.56 33.77 18.29 21.75 

Cr203 0.05 0.08 0.09 0 0 0 0 0 0 0 0 

Fe203 0.95 0 0 0.01 2.31 0 2.23 0 0.81 0 0 

FeO 33.92 1.15 18.74 0 30.02 0 11.36 15.72 0.68 17.04 0 

MnO 1.09 0 0.04 0.05 0.51 0 0.02 0.02 0.01 0.06 0 

MgrtO 2.83 0.68 10.79 0 7.81 0 15.55 22.29 1.21 11.54 0 

CaO 3.42 0 0 4.23 0.92 1.87 0 0.01 0 0 3.09 

Na20 0 1.69 0.16 8.89 0 10.28 0.58 0 0.76 0.23 9.87 

K20 0 8.22 9.1 0.03 0 0.04 7.59 0 8.07 8.78 0.08 

totals 99.87 93.81 95.89 97.94 101.51 100.09 95.26 87.8 94.67 94.49 98.74 

cations 
Si 2.997 3.057 2.764 2.8 2.943 2.921 2.776 2.693 3.178 2.741 2.853 

Ti 0.001 0.028 0.101 0 0.001 0 0.09 0.011 0.053 0.128 0 

Al 1.943 2.82 1.62 1.203 1.979 1.089 1.546 2.648 2.621 1.629 1.144 

Cr 0.003 0.004 0.005 0 0 0 0 0 0 0 0 

Fe3+ 0.058 0 0 0 0.134 0 0.122 0 0.04 0 0 

Fe2+ 2.288 0.064 1.176 0 1.936 0 0.69 1.309 0.037 1.076 0 

Mn 0.074 0 0.003 0.002 0.033 0 0.001 0.002 0.001 0.004 0 

Mgrt 0.34 0.068 1.206 0 0.898 0 1.683 3.307 0.119 1.299 0 

Ca 0.296 0 0 0.204 0.076 0.088 0 0.001 0 0 0.148 

Na 0 0.22 0.024 0.777 0 0.872 0.082 0 0.097 0.034 0.854 

K 0 0.702 0.872 0.001 0 0.002 0.704 0 0.679 0.847 0.005 
Total Cations 8 6.964 7.77 4.988 8 4.972 7.693 9.972 6.825 7.757 5.004 
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Appendix E Summary of mineral chemistry 

Sample 
mineral 

004b 
grt 

004b 
bt 

004b 
mu 

004b 
fsp 

21y 
rt 

21y 
bt 

21y 
mu 

21y 
pi 

21y 
ksp 

21w 
rt 

21w 
bt 

S102 37.77 36.49 45.87 62.53 36.63 34.41 45.36 62.67 63.59 37.41 35.11 
T102 0.02 2.28 0.58 0.03 0.05 3.27 0.89 0 0.22 0 2.89 
A1203 21.21 17.78 33.14 23.22 20.53 18.39 34.95 22.54 18.48 20.57 19.31 
Cr203 0.05 0.05 0.02 0.02 0.08 0 0.01 0.05 0.04 0.04 0 
Fe203 0.79 0 0 0.04 2.26 0 0 0 0 0.7 0 
FeO 29.58 17.28 1.45 0 31.08 22.26 1.33 0 0 32.04 19.02 
MnO 1.82 0.17 0.01 0 6.18 0.18 0.03 0 0 , 3.27 0.22 
MgrtO 3.44 10.61 1.22 0 2.12 6.25 0.49 0 0 3.86 8.46 
CaO 5.96 0 0 4.72 1.59 0 0 4.14 0 1.93 0 
Na20 0 0.05 0.68 8.93 0.13 0.04 0.42 9.48 1.18 0 0.23 
K20 0 9.2 9.69 0.08 0.03 9.67 10.45 0.1 15.16 0 9.88 
totals 100.7 93.9 92.67 99.57 100.7 94.46 93.94 98.98 98.68 99.82 95.14 
cations 
Si 2.985 2.783 3.132 2.779 2.96 2.693 3.064 2.802 2.974 3.004 2.683 
Ti 0.001 0.131 0.03 0.001 0.003 0.192 0.045 0 0.008 0 0.166 
Al 1.976 1.599 2.667 1.216 1.956 1.697 2.784 1.188 1.019 1.947 1.74 
Cr 0.003 0.003 0.001 0.001 0.005 0 0.001 0.002 0.002 0.003 0 
Fe3+ 0.047 0 0 0.001 0.137 0 0 0 0 0.042 0 
Fe2+ 1.955 1.102 0.083 0 2.1 1.457 0.075 0 0 2.152 1.215 
Mn 0.122 0.011 0.001 0 0.423 0.012 0.002 0 0 0.222 0.015 
Mgrt 0.405 1.206 0.124 0 0.255 0.729 0.049 0 0 0.462 0.963 
Ca 0.505 0 0 0.225 0.138 0 0 0.198 0 0.167 0 
Na 0 0.007 0.09 0.769 0.02 0.005 0.055 0.822 0.107 0.001 0.034 
K 0 0.896 0.845 0.004 0.003 0.966 0.901 0.006 0.906 0 0.964 
Total Cations 8 7.737 6.972 4.997 8 7.752 6.976 5.017 5.015 8 7.78 

Sample G57 G96 G96 G96 G96 2jb 2jb 2jb 2jb 2hh 2hh 
mineral rt fsp bt mu rt rt bt mu fsp rt bt 
Si02 38.11 60.58 36.06 46.47 37.58 36.29 33.77 44.79 64.23 36.74 34.3 
T102 0.01 0 3.11 0.49 0.01 0 1.43 0.36 0.01 0 2.84 
A1203 21.39 25.71 16.83 32.13 20.48 20.15 18.35 33.56 21.75 20.44 18.35 
Cr203 0 0 0 0 0 0.1 0 0 0 0.01 0.01 
Fe203 1.32 0.06 0 0 1.15 1.31 0 0 0.03 1.8 0 
FeO 30.84 0 21.31 2.55 22.32 32.81 24.3 1.78 0 32.13 22.08 
MnO 1.13 0 0.17 0 5.57 4.76 0.39 0.09 0.02 5.96 0.15 
MgrtO 6.53 0 8.79 1.46 1.58 2.09 5.91 0.67 0 2.48 6.42 
CaO 1.53 6.92 0.04 0.02 11.06 1.59 0 0 3.01 0.68 0.01 
Na20 0 7.64 0.05 0.28 0 0 0.1 0.51 9.88 0.1 0.25 
K20 0 0.12 9.72 10.8 0 0 9.87 10.58 0.2 0 9.97 
totals 100.9 101 96.1 94.2 99.76 99.11 94.14 92.35 99.12 100.3 94.41 
cations 
Si 2.976 2.669 2.756 3.156 3.001 2.981 2.692 3.093 2.856 2.977 2.693 
Ti 0.001 0 0.179 0.025 0.001 0 0.086 0.019 0 0 0.168 
Al 1.969 1.335 1.517 2.572 1.928 1.951 1.725 2.732 1.14 1.953 1.698 
Cr 0 0 0 0 0 0.006 0 0 0 0 0.001 
Fe3+ 0.077 0.002 0 0 0.069 0.081 0 0 0.001 0.11 0 
Fe2+ 2.014 0 1.362 0.145 1.491 2.253 1.62 0.103 0 2.177 1.45 
Mn 0.075 0 0.011 0 0.376 0.331 0.027 0.005 0.001 0.409 0.01 
Mgrt 0.76 0 1.001 0.147 0.188 0.256 0.702 0.069 0 0.3 0.751 
Ca 0.128 0.327 0.004 0.001 0.947 0.14 0 0 0.143 0.059 0 
Na 0 0.653 0.008 0.037 0 0 0.016 0.068 0.852 0.016 0.039 
K 0 0.007 0.949 0.936 0 0 1.005 0.933 0.011 0 1 
Total Cations 8 4.992 7.786 7.02 8 8 7.871 7.023 5.005 8 7.809 
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Appendix E Summary of mineral chemistry 

Sample 
mineral 

21w 
Ifsp 

21w 
mu 

Si02 61.66 45.03 
T102 0.03 1.07 
A1203 23.93 34.51 
Cr203 0.05 0.07 
Fe203 0.04 0 
FeO 0 1.14 
MnO 0 0 
MgrtO 0.04 0.64 
CaO 5.4 0 
Na20 8.6 0.32 
K20 0.23 10.36 
totals 100 93.13 
cations 
Si 2.738 3.065 
Ti 0.001 0.055 
Al 1.253 2.769 
Cr 0.002 0.004 
Fe3+ 0.001 0 
Fe2+ 0 0.065 
Mn 0 0 
Mgrt 0.003 0.065 
Ca 0.257 0 
Na 0.741 0.042 
K 0.013 0.9 
Total Cations 5.01 6.965 

Sample 2hh 2hh 
mineral ksp fsp 
Si02 63.67 65.19 
Ti02 0.24 0 
A1203 18.34 21.61 
Cr203 0.04 0.03 
Fe203 0.01 0 
FeO 0 0 
MnO 0 0.01 
MgrtO 0 0 
CaO 0 2.32 
Na20 1.08 9.76 
K20 15.27 0.27 
totals 98.69 99.21 

cations 
Si 2.979 2.885 
Ti 0.009 0 
Al 1.012 1.127 
Cr 0.002 0.001 
Fe3+ 0.001 0 
Fe2+ 0 0 
Mn 0 0.001 
Mgrt 0 0 
Ca 0 0.11 
Na 0.098 0.838 
K 0.912 0.015 
Total Cations 5.011 4.977 
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Appendix F Isotope Summary 
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Appendix H- OU Rb-Sr summary 

In order to better constrain the post peak deformation and exhumation path in the 

Alaknanda and Dhuali valleys a number of Rb-Sr mineral analyses were undertaken at 

the Open University. Given problems with previous studies regarding the incomplete 

attainment of Rb-Sr isotopic equilibrium between different phases (eg. Inger 1998), the 

initial analytical philosophy was to try to obtain mineral separates which were, as far as 

it was possible to judge, close to isotopic equilibrium. In the case of sample 43/97 

(MCTZ augen gneiss), therefore, the approach was to obtain very small separates of 

feldspars and micas that were adjacent to each other and in textural equilibrium. In 

addition, the extent of equilbirium between micas wrapping feldspar augen and different 

portions of the augen was assessed by Rb-Sr analysis of different fractions of the augen 

from core to rim. For all other samples a bulk separate of muscovite was obtained and a 

bulk separate of feldspar (4B1, HW40A, HW61B) or the whole rock (23.97, G9) used 

as the low Rb/Sr phase. The problem with the first approach, however, was that the 

analytical blank was often large in comparison to the sample size and the resultant 

errors on the isotopic analyses are also large. In the case of the second approach the 

data, though intriguing in some respects, are complex. At this stage it is difficult to 

judge whether this complexity is due to: (i) further undientified analytical problems; (ii) 

disequilibrium between whole rock/feldspar and bulk separates of mica or; (iii) a real 

feature of the cooling and deformation history of the terrain. For these reasons, the data 

have not been written up fully but the results are given here with some short discussion. 

Sample preparation varied for each sample and is described with the sample details 

below. Chemical and mass spectrometric techniques were as for garnet samples (see 

Appendix Q. The results are summarised in Table H. 1. Sr blanks were 123 ± 104 pg (n 

= 4) and had an average 87Sr/86Sr of 0.7155 ± 57. The blank constituted 0-4 percent of 
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Appendix H OU Rb-Sr summary 

the analysed sample and blank corrections were applied to all mineral separates. NBS 

987 standards gave 87Sr/86Sr of 0.710317 ± 31 (2a, n=16) in the period of analysis. The 

2 sigma errors in Table H. 1 are full propagated errors including the uncertainty on the 

individual mass spectrometric analysis, standard analyses and the blank correction. 

These uncertainties are mostly dominated by the uncertainty on the blank correction to 

the Sr isotope composition. The uncertainty on the Rb/Sr ratio was assumed to be 1% (2 

sigma) for all samples. 

Samples 

43/97: MCTZ augen gneiss. K-feldspar augen wrapped by, and breaking down to, 

muscovite was cut into segments A-E, representing a rim to rim profile, from which an 

optically pure separate was obtained by hand picking under propanol with a binocular 

microscope. Muscovite was removed from the edges of the augen and purified as for the 

feldspar separates. wm A. 2 is from adjacent to feldspar A. 2 while the spatial 

relationship of Wm. 1 to the augen is not known. 

23197: Lesser Himalayan calc-silicate. A bulk separate of muscovite was obtained from 

the whole rock by crushing with an agate pestle and mortar under propanaol. Final hand 

picking of micas was carried out under a binocular microscope. A whole-rock sample 

was used as the low Rb/Sr phase and obtained as for XRF analyses (see Appendix C). 

G9,4B1, HW40A and HW61B: HHCS gneiss and schists. Bulk separates of micas and 

feldspars were obtained from whole-rock crushates and purified under a binocular 

microscope. G9 and 4B 1 have been previously described (see Chapter 4). HW40A and 

HW61B are both leucogranites from the Dhuali valley. HW40A is highly deformed 

with the development of ribbon textures, kinked muscovites and sericitised feldspars. 

HW61B is undeformed with large platy muscovites and sericitised feldspars. 
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Discussion 

The ages calculated from the blank-corrected isotope data are sumarised in Table H. 2. 

The Rb-Sr ages for micas scatter from 450 to 4.5 Ma and have some rather enigmatic 

features. However, there is a preponderance of ages around 10 Ma which may have 

some significance. The data are discussed briefly below: 

The data for sample 43.97, from the augen gneiss in the MCTZ, are the most detailed 

and all the ages are around 9-10 Ma, regardless of the mineral pair used to do the 

calculation. In other words, the age recorded by the feldspar fractions and the two mica 

separates are the same. Moreover, the age of the rim of the feldspar augen relative to the 

mica separates is identical to that of the core. Such a coincidence of ages suggests that 

the last re-equilibration between these phases occurred at this time. A priori, mobility of 

Rb and Sr at around 10 Ma could be due to either temperature-activated volume 

diffusion or to deformation. In the former case, these data would imply continued high 

temperature conditions at or above the closure temperature for the Rb-Sr system in 

white mica (-550°C - eg. Inger 1998) in the MCTZ until 9-10 Ma. This possibility is in 

agreement with the observation that garnet in MCTZ rocks in Nepal apparently grew as 

late as 6 Ma (Catlos, 1999 #2123). On the other hand, rocks in the MCTZ are highly 

deformed and it is possible that deformation and mass transfer on small scales until 6- 

10 Ma led to the continued recrystallisation and isotopic re-equlibration of both the Rb- 

Sr system in feldspar and the Th-Pb system in monazite. 

The data for the other samples are much more equivocal and scattered. Sample 23.97, 

from the Lesser Himalaya, was chosen because it exhibited the same deformational 

style as rocks from the MCTZ. However, the preserved age is clearly pre-Himalayan 

and suggests that the Rb-Sr system in this rock has not re-equilibrated since 450 Ma. 

Two of the other samples also yield ages close to 10 Ma - biotite in G9 and muscovite in 

HW61B. However, muscovite in G9 is much older than either biotite or garnet from this 
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rock at 37 Ma. Moreover, sample HW40A muscovite also yields a surprisingly old age 

of 48 Ma. The reason for these discepancies is unclear. In the case of G9 muscovite, the 

Rb/Sr of the white mica is not as high as for other white micas analysed here and, as a 

result, is much more prone to problems with correction of the initial Sr isotope 

composition. For G9 this correction was done with a whole rock, an approach that is 

open to problems with alteration by fluids. Note that the change in the whole rock 

isotope composition required for the white mica to yield a 10 Ma age does not shift the 

age of the biotite significantly due to the very high Rb/Sr ratio of the latter. White mica 

in HW40A, on the other hand, does have a high Rb/Sr yet still yields an old age. 

Taken as a whole, the dataset in Table H. 2 point tantalisingly to very young Rb-Sr ages 

(5-10 Ma) for the whole of the HHCS, but this conclusion cannot be verified without 

much further work. If these young ages do turn out to be robust for the whole of the 

HHCS, Ar-Ar ages for the upper HHCS of 16-20 Ma, suggesting cooling beneath 300- 

400°C at these times, then resetting of the Rb-Sr system in white mica would appear to 

be much more dependent on deformation than thermally-activated diffusion. In this 

context, apart from the muscovite age in G9 which may have problems with correction 

for initial Sr, the older ages for HW40A and 23.97 may simply be a reflection of the 

timing of the last ductile deformation leading to recrystallisation in these rocks. 
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Table H. I Summary of Rb-Sr Tims ID and isotope ratio analyses. (87Srl6Sr)bc refers to blank corrected values. 

Sample Phase [Sr] [Rb] "Rb/"°Sr "SrPSr 2 sigma (USr/06Sr)bc 2 sigma 

23.97 WR 
Wm 

103.6 
17.84 

3.693 
231.9 

0.103 
38.52 

0.712438 
0.9586 

0.000031 
0.0010 

0.712438 
0.9601 

0.000031 
0.0021 

43.97 Wm A. 2 19.48 511.9 76.65 0.788979 0.000085 0.7907 0.0021 
Fsp A. 2 440.2 352.1 2.331 0.78011 0.00017 0.78040 0.00049 
Fsp B. 2 480.4 469.6 2.848 0.780978 0.000036 0.78105 0.00010 
fsp C. 2 514.9 368.1 2.083 0.781263 0.000036 0.78136 0.00013 

fsp D. 2 345.2 332.9 2.810 0.781147 0.000031 0.781220 0.000094 

fsp E. 2 482.0 999.8 6.046 0.781921 0.000031 0.781951 0.000048 
Wm .1 28.17 690.0 71.44 0.78898 0.00022 0.7900 0.0013 
Fsp D. 1 457.3 144.7 0.922 0.781 0.011 0.781 0.011 
Fsp E. 1 609.7 294.1 1.406 0.780630 0.000031 0.78096 0.00041 

4B I bi 6.738 489.9 211.5 0.761645 0.000050 0.76186 0.00027 
fsp 474.8 7.425 0.0454 0.74843 0.00057 0.748442 0.000060 

G9 WR 83.34 151.77 5.302 0.771132 0.000028 0.771158' 0.000028 

wm 47.12 338.1 20.90 0.779222 0.000031 0.779268 0.000064 
bi 1.633 568.5 1026 0.89387 0.00013 0.9014 0.0094 

HW40A wm 9.791 282.2 85.08 0.913048 0.000069 0.9143 0.0015 

fsp 15.28 61.60 11.84 0.860057 0.000040 0.8647 0.0058 

HW61B wm 16.39 319.8 56.70 0.74933 0.000175 0.74945 0.00023 

fsp 479.3 12.23 0.0741 0.741110 0.000031 0.741119 0.000033 

' Corrected to OU value standard 
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Table H. 2 Summary of ages obtained from Rb-Sr analyses in Table H. 1 

Sample Pair Age (Ma) 

43.97' wm. 1 - fsp A. 2 9.8: t 1.4 
wm. 1 - fsp B. 2 9.2: t 1.4 
wm. 1- fsp C. 2 8.8: t 1.4 
wm. 1- fsp D. 2 9.0* 1.4 
wm. 1 - fsp E. 1 9.1 t 1.4 
wm. 1- fsp E. 2 8.7 t 1.4 

23.97 wm-WR 453: t 6 

4B (1) bt-fsp 4.5. t 0.1 

G9 bt-WR 9.0: t 0.7 
wm-WR 36.6: t 0.6 

HW61 B wm-fsp 10.4: t 0.3 

HW40A wm-fsp 48: t 6 
`Wm A. 2 gives identical age 

Timing of prograde metamorphism... C. 1. Prince 308 


