96 research outputs found

    Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms

    Get PDF
    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.National Institute of Dental & Craniofacial ResearchFundação para a CiĂȘncia e Tecnologia (FCT) - SFRH/BD/28222/2006National Institute of Allergy and Infectious Disease

    Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles

    Get PDF
    Acquired drug resistance is a major problem in cancer treatment. To explore the genes involved in chemosensitivity and resistance, 10 human tumour cell lines, including parental cells and resistant subtypes selected for resistance against doxorubicin, melphalan, teniposide and vincristine, were profiled for mRNA expression of 7400 genes using cDNA microarray technology. The drug activity of 66 cancer agents was evaluated on the cell lines, and correlations between drug activity and gene expression were calculated and ranked. Hierarchical clustering of drugs based on their drug–gene correlations yielded clusters of drugs with similar mechanism of action. Genes correlated with drug sensitivity and resistance were imported into the PathwayAssist software to identify putative molecular pathways involved. A substantial number of both proapoptotic and antiapoptotic genes such as signal transducer and activator of transcription 1, mitogen-activated protein kinase 1 and focal adhesion kinase were found to be associated to drug resistance, whereas genes linked to cell cycle control and proliferation, such as cell division cycle 25A and signal transducer of activator of transcription 5A, were associated to general drug sensitivity. The results indicate that combined information from drug activity and gene expression in a resistance-based cell line panel may provide new knowledge of the genes involved in anticancer drug resistance and become a useful tool in drug development

    Social network and dominance hierarchy analyses at Chimpanzee Sanctuary Northwest

    Get PDF
    Different aspects of sociality bear considerable weight on the individual- and group-level welfare of captive nonhuman primates. Social Network Analysis (SNA) is a useful tool for gaining a holistic understanding of the dynamic social relationships of captive primate groups. Gaining a greater understanding of captive chimpanzees through investigations of centrality, preferred and avoided relationships, dominance hierarchy, and social network diagrams can be useful in advising current management practices in sanctuaries and other captive settings. In this study, we investigated the dyadic social relationships, group-level social networks, and dominance hierarchy of seven chimpanzees (Pan troglodytes) at Chimpanzee Sanctuary Northwest. We used focal-animal and instantaneous scan sampling to collect 106.75 total hours of associative, affiliative, and agonistic data from June to September 2016. We analyzed our data using SOCPROG to derive dominance hierarchies and network statistics, and we diagrammed the group\u27s social networks in NetDraw. Three individuals were most central in the grooming network, while two others had little connection. Through agonistic networks, we found that group members reciprocally exhibited agonism, and the group\u27s dominance hierarchy was statistically non-linear. One chimpanzee emerged as the most dominant through agonism but was least connected to other group members across affiliative networks. Our results indicate that the conventional methods used to calculate individuals\u27 dominance rank may be inadequate to wholly depict a group\u27s social relationships in captive sanctuary populations. Our results have an applied component that can aid sanctuary staff in a variety of ways to best ensure the improvement of group welfare

    Phenotypic and Genome-Wide Analysis of an Antibiotic-Resistant Small Colony Variant (SCV) of Pseudomonas aeruginosa

    Get PDF
    Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5) on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels.By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system

    The Immune System in Stroke

    Get PDF
    Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Corrigendum to ‘An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs’ [J Hepatol 2021;75(3):572–581]

    Get PDF

    Cell division: control of the chromosomal passenger complex in time and space

    Get PDF
    • 

    corecore