229 research outputs found

    Evaluating the transport, health and economic impacts of new urban cycling infrastructure in Sydney, Australia – protocol paper

    Get PDF
    BACKGROUND: There are repeated calls to build better cycling paths in Australian cities if the proportion of people cycling is to increase. Yet the full range of transport, health, environmental and economic impacts of new cycling infrastructure and the extent to which observed changes are sustained is not well understood. The City of Sydney is currently building a new bicycle network, which includes a new bicycle path separated from road traffic in the south Sydney area. This protocol paper describes a comprehensive method to evaluate this new cycling infrastructure. METHOD: A cohort of residents within two kilometres of the new bicycle path will be surveyed at baseline before a new section of bicycle path is built, and again 12 and 24 months later to assess changes in travel behaviour, sense of community, quality of life and health behaviours. Residents in a comparable area of Sydney that will not get a new separated bike path will act as a comparison group. At baseline a sub-set of residents who volunteer will also take a small GPS device with them for one week to assess travel behaviour. DISCUSSION: This research should contribute to the advancement in evaluation and appraisal methods for cycling projects

    Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia

    Get PDF
    Recent studies have suggested that development of childhood acute lymphoblastic leukaemia may often be initiated in utero. To provide further evidence of an prenatal origin of childhood leukaemia, we conducted a molecular biological investigation of nine children with B-precursor acute lymphoblastic leukaemia carrying the chromosomal translocation t(12;21), the most common subtype of all childhood acute lymphoblastic leukaemia. Specifically, for each child we identified the non-constitutive chromosomal sequences made up by the t(12;21) fusion gene. From these, leukaemia clone-specific DNA primers were constructed and applied in nested polymerase chain reaction analyses of DNA extracted from the patients' Guthrie cards obtained at birth. Leukaemia clone-specific fusion gene regions were demonstrated in Guthrie card DNA of three patients, age 2 years 11 months, 3 years 4 months, and 5 years 8 months at leukaemia diagnosis. Our findings are consistent with previous observations, and thus provide further evidence that the development of t(12;21) B-precursor acute lymphoblastic leukaemia may be initiated in utero. Review of the current literature moreover indicates that age at leukaemia may be inversely correlated with the burden of cells with leukaemia clonal markers, i.e. leukaemia predisposed cells at birth, and that certain types of childhood acute lymphoblastic leukaemia develop as a multiple step process involving both pre- and postnatal genetic events

    MLL leukemia-associated rearrangements in peripheral blood lymphocytes from healthy individuals

    Get PDF
    Chromosomal translocations are characteristic of hematopoietic neoplasias and can lead to unregulated oncogene expression or the fusion of genes to yield novel functions. In recent years, different lymphoma/leukemia-associated rearrangements have been detected in healthy individuals. In this study, we used inverse PCR to screen peripheral lymphocytes from 100 healthy individuals for the presence of MLL (Mixed Lineage Leukemia) translocations. Forty-nine percent of the probands showed MLL rearrangements. Sequence analysis showed that these rearrangements were specific for MLL translocations that corresponded to t(4;11)(q21;q23) (66%) and t(9;11) (20%). However, RT-PCR failed to detect any expression of t(4;11)(q21;q23) in our population. We suggest that 11q23 rearrangements in peripheral lymphocytes from normal individuals may result from exposure to endogenous or exogenous DNA-damaging agents. In practical terms, the high susceptibility of the MLL gene to chemically-induced damage suggests that monitoring the aberrations associated with this gene in peripheral lymphocytes may be a sensitive assay for assessing genomic instability in individuals exposed to genotoxic stress

    Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus

    Get PDF
    Genetic variation and co-variation among the key pulpwood selection traits for Eucalyptus globulus were estimated for a range of sites in Portugal, with the aim of improving genetic parameters used to predict breeding values and correlated response to selection. The trials comprised clonally replicated full-sib families (eight trials) and unrelated clones (17 trials), and exhibited varying levels of pedigree connectivity. The traits studied were stem diameter at breast height, Pilodyn penetration (an indirect measure of wood basic density) and near infrared reflectance predicted pulp yield. Univariate and multivariate linear mixed models were fitted within and across sites, and estimates of additive genetic, total genetic, environmental and phenotypic variances and covariances were obtained. All traits studied exhibited significant levels of additive genetic variation. The average estimated within-site narrowsense heritability was 0.19±0.03 for diameter and 0.29± 0.03 for Pilodyn penetration, and the pooled estimate for predicted pulp yield was 0.42±0.14. When they could be tested, dominance and epistatic effects were generally not statistically significant, although broad-sense heritability estimates were slightly higher than narrow-sense heritability estimates. Averaged across trials, positive additive (0.64±0.08), total genetic (0.58±0.04), environmental (0.38±0.03) and phenotypic (0.43±0.02) correlation estimates were consistently obtained between diameter and Pilodyn penetration. This data argues for at least some form of pleiotropic relationship between these two traits and that selection for fast growth will adversely affect wood density in this population. Estimates of the across-site genetic correlations for diameter and Pilodyn penetration were high, indicating that the genotype by environment interaction is low across the range of sites tested. This result supports the use of single aggregated selection criteria for growth and wood density across planting environments in Portugal, as opposed to having to select for performance in different environment

    The Origin and Nature of Tightly Clustered BTG1 Deletions in Precursor B-Cell Acute Lymphoblastic Leukemia Support a Model of Multiclonal Evolution

    Get PDF
    Recurrent submicroscopic deletions in genes affecting key cellular pathways are a hallmark of pediatric acute lymphoblastic leukemia (ALL). To gain more insight into the mechanism underlying these deletions, we have studied the occurrence and nature of abnormalities in one of these genes, the B-cell translocation gene 1 (BTG1), in a large cohort of pediatric ALL cases. BTG1 was found to be exclusively affected by genomic deletions, which were detected in 65 out of 722 B-cell precursor ALL (BCP-ALL) patient samples (9%), but not in 109 T-ALL cases. Eight different deletion sizes were identified, which all clustered at the telomeric site in a hotspot region within the second (and last) exon of the BTG1 gene, resulting in the expression of truncated BTG1 read-through transcripts. The presence of V(D)J recombination signal sequences at both sites of virtually all deletions strongly suggests illegitimate RAG1/RAG2-mediated recombination as the responsible mechanism. Moreover, high levels of histone H3 lysine 4 trimethylation (H3K4me3), which is known to tether the RAG enzyme complex to DNA, were found within the BTG1 gene body in BCP-ALL cells, but not T-ALL cells. BTG1 deletions were rarely found in hyperdiploid BCP-ALLs, but were predominant in other cytogenetic subgroups, including the ETV6-RUNX1 and BCR-ABL1 positive BCP-ALL subgroups. Through sensitive PCR-based screening, we identified multiple additional BTG1 deletions at the subclonal level in BCP-ALL, with equal cytogenetic distribution which, in some cases, grew out into the major clone at relapse. Taken together, our results indicate that BTG1 deletions may act as “drivers” of leukemogenesis in specific BCP-ALL subgroups, in which they can arise independently in multiple subclones at sites that are prone to aberrant RAG1/RAG2-mediated recombination events. These findings provide further evidence for a complex and multiclonal evolution of ALL

    Relationship between plasma sialic acid and fibrinogen concentration and incident micro- and macrovascular complications in type 1 diabetes. The EURODIAB Prospective Complications Study (PCS)

    Get PDF
    AIMS/HYPOTHESIS: Type 1 diabetes is associated with an increased risk of vascular complications. This increased risk could be explained by sialic acid and/or fibrinogen. It is also not clear what explains the abolition of sex-related differences affecting risk of CHD in the presence of type 1 diabetes. Therefore, we examined whether fibrinogen and sialic acid are related to incident micro- and macrovascular complications in patients with type 1 diabetes. METHODS: A subset (n=2329) of the EURODIAB Prospective Complications Study was analysed. Sialic acid and fibrinogen concentrations were measured at baseline. The main outcomes after 7 years were development of albuminuria, retinopathy, neuropathy and CHD. RESULTS: Univariable and multivariable models using Cox proportional survival analyses showed that an SD unit increase in sialic acid and fibrinogen levels was significantly associated with CHD in men only. Adjusted standardised hazard ratios (sHRs) were 1.50 (95% CI 1.05-2.15) and 1.40 (95% CI 1.06-1.86) for sialic acid and fibrinogen, respectively. Initial associations between (1) sialic acid and incident retinopathy [standardised odds ratio (sOR) men 1.68, 95% CI 1.10-2.57], (2) fibrinogen and retinopathy (sOR women 1.37, 95% CI 1.06-1.78) and (3) sialic acid and neuropathy (sOR men 1.37, 95% CI 1.06-1.77) were shown, but became non-significant in multivariable models. CONCLUSIONS/INTERPRETATION: Sialic acid and fibrinogen are strong predictors of CHD in men with type 1 diabetes, beyond the effect of established risk factors. The associations found with microvascular complications were not independent of other risk factors

    Protein-based identification of quantitative trait loci associated with malignant transformation in two HER2+ cellular models of breast cancer

    Get PDF
    Background A contemporary view of the cancer genome reveals extensive rearrangement compared to normal cells. Yet how these genetic alterations translate into specific proteomic changes that underpin acquiring the hallmarks of cancer remains unresolved. The objectives of this study were to quantify alterations in protein expression in two HER2+ cellular models of breast cancer and to infer differentially regulated signaling pathways in these models associated with the hallmarks of cancer. Results A proteomic workflow was used to identify proteins in two HER2 positive tumorigenic cell lines (BT474 and SKBR3) that were differentially expressed relative to a normal human mammary epithelial cell line (184A1). A total of 64 (BT474-184A1) and 69 (SKBR3-184A1) proteins were uniquely identified that were differentially expressed by at least 1.5-fold. Pathway inference tools were used to interpret these proteins in terms of functionally enriched pathways in the tumor cell lines. We observed protein ubiquitination and apoptosis signaling pathways were both enriched in the two breast cancer models while IGF signaling and cell motility pathways were enriched in BT474 and amino acid metabolism were enriched in the SKBR3 cell line. Conclusion While protein ubiquitination and apoptosis signaling pathways were common to both the cell lines, the observed patterns of protein expression suggest that the evasion of apoptosis in each tumorigenic cell line occurs via different mechanisms. Evidently, apoptosis is regulated in BT474 via down regulation of Bid and in SKBR3 via up regulation of Calpain-11 as compared to 184A1

    Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis.

    Get PDF
    Cancer genome sequencing studies have identified numerous driver genes, but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from premalignant Barrett's esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently mutated genes and assessed clonal structure using whole-genome sequencing and amplicon resequencing of 112 EACs. We next screened a cohort of 109 biopsies from 2 key transition points in the development of malignancy: benign metaplastic never-dysplastic Barrett's esophagus (NDBE; n=66) and high-grade dysplasia (HGD; n=43). Unexpectedly, the majority of recurrently mutated genes in EAC were also mutated in NDBE. Only TP53 and SMAD4 mutations occurred in a stage-specific manner, confined to HGD and EAC, respectively. Finally, we applied this knowledge to identify high-risk Barrett's esophagus in a new non-endoscopic test. In conclusion, mutations in EAC driver genes generally occur exceptionally early in disease development with profound implications for diagnostic and therapeutic strategies
    corecore