1,819 research outputs found

    Numerical investigation of steady state laminar natural convection of power-law fluids in side-cooled trapezoidal enclosures heated from the bottom

    Get PDF
    Laminar, steady-state, natural convection of power-law fluids in 2-D trapezoidal enclosures with a heated bottom wall, adiabatic top wall and cooled inclined sidewalls has been analyzed for the first time based on numerical simulations for a range of different values of nominal Rayleigh number (i.e. (Formula presented.)), power-law index (i.e. (Formula presented.)), nominal Prandtl number (i.e. (Formula presented.)) and sidewall inclination angle (i.e. (Formula presented.)). It has been found that the mean Nusselt number (Formula presented.) increases with increasing nominal Rayleigh number (Formula presented.) (up to a 187% increase for (Formula presented.) and up to 2.3% increase for (Formula presented.) between (Formula presented.) and (Formula presented.)) and decreasing power-law index (Formula presented.) (up to a 4.1% increase for (Formula presented.) and up to 193% increase for (Formula presented.) between (Formula presented.) and 1.8) due to the strengthening of advective transport. Moreover, an increase in the sidewall inclination angle (Formula presented.) leads to a decrease in (Formula presented.) (approximately 44% decrease for (Formula presented.) across values of (Formula presented.) and up to 33% decrease for (Formula presented.) across values of (Formula presented.)) due to an increase in the area for heat loss from the cavity. It has been found that (Formula presented.) does not vary significantly with the values of (Formula presented.) considered in the current study. Furthermore, a new correlation for the mean Nusselt number (Formula presented.) in this configuration has been identified which provides adequate approximation of the corresponding values obtained from the simulations

    Large sulfur isotope fractionations in Martian sediments at Gale crater

    No full text
    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods

    Flame self-interaction during turbulent boundary layer flashback of hydrogen-rich premixed combustion

    Get PDF
    A three-dimensional direct numerical simulation database of turbulent boundary layer flashback of a hydrogen-rich premixed flame with an equivalence ratio of 1.5 has been analyzed to investigate flame self-interaction (FSI) events. The nonreacting turbulence characteristics of the channel flow are representative of the friction-velocity-based Reynolds number, Reτ=120. A skeletal chemical mechanism with nine species and twenty reactions is employed for the representation of hydrogen-air combustion. Three definitions of the reaction progress variable, c, based on the mass fractions of H2, O2, and H2O, have been considered to define the progress variable. It is found that the FSI events predominantly occur close to the burned gas side for all definitions of c at all the wall normal distances. No FSI events adjacent to the wall have been identified for the c definition based on O2 and H2O mass fractions, whereas FSI events occur for c based on H2 in the near-wall region. In the regions further away from the wall, all c definitions show that tunnel formation and tunnel closure type FSI events remain predominant, which is consistent with the earlier findings by Griffiths et al. [Proc. Combust. Inst. 35, 1341 (2015)1540-748910.1016/j.proci.2014.08.003] involving hydrogen-air premixed flame under shear flow conditions. In this work for c based on H2 mass fraction, unburned gas pockets have also been identified at all wall normal distances and are a consequence of the hydrogen-rich nature of the flame. The reason for the variations in topologies with the change in the definition of c based on different species and wall normal distance is a consequence of several factors, including the changes in the level of turbulence within the turbulent boundary layer, heat loss to the isothermal wall in the near-wall region, and the differential diffusion induced by the nonunity Lewis number. The results from the current analysis show that the turbulent boundary layer and heat loss at the wall play important roles in determining the FSI topologies. The differences in the qualitative nature and distributions of the FSI events between different definitions of c have important implications on the possible extension of flame-surface-based modeling methodology for hydrogen-rich flames within turbulent boundary layers

    Identification of multiple root disease resistant wheat germplasm against cereal nematodes and dryland root rot and their validation in regions of economic importance

    Get PDF
    História da literatura portuguesa coordenada por Giulia Lanciani - primeiras páginas de um total pp. 7-108)História literária do século XVIII portuguêsGoverno de Portuga

    Back reaction effects on the dynamics of heavy probes in heavy quark cloud

    Get PDF
    We holographically study the effect of back reaction on the hydrodynamical properties of N=4\mathcal{N} = 4 strongly coupled super Yang-Mills (SYM) thermal plasma. The back reaction we consider arises from the presence of static heavy quarks uniformly distributed over N=4\mathcal{N} = 4 SYM plasma. In order to study the hydrodynamical properties, we use heavy quark as well as heavy quark-antiquark bound state as probes and compute the jet quenching parameter, screening length and binding energy. We also consider the rotational dynamics of heavy probe quark in the back-reacted plasma and analyse associated energy loss. We observe that the presence of back reaction enhances the energy-loss in the thermal plasma. Finally, we show that there is no effect of angular drag on the rotational motion of quark-antiquark bound state probing the back reacted thermal plasma.Comment: 29 pages, 21 figure

    The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.

    Get PDF
    The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere
    • …
    corecore