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1 Introduction

The recent experimental results obtained at the Relativistic Heavy Ion Collider (RHIC)

and the Large Hadron Collider (LHC) indicate that a deconfined plasma phase consisted

of free quarks and gluons (QGP) has been created at high temperature and high num-

ber density [1–5]. Further, the interaction between the high energetic parton probes and

the QGP medium signifies that the associated free quarks and gluons are strongly cou-

pled [6, 7]. From the theoretical point of view, among the pre-existing successful theories

of quantum chromodynamics, the perturbative QCD and the lattice methods turn out to

be inadequate to address the strong coupling issues. On the other hand, the gauge/gravity

correspondence seems to be a promising theoretical candidate since it has been widely uti-

lized to study a large class of previously inaccessible strongly coupled gauge theories [8–11].

However, to make use of this correspondence we need to know the exact gravity dual of

real QCD at strong coupling and that is not well-understood till date. Nevertheless, the

gauge/gravity correspondence can extract some universal properties of a large class of

strongly coupled theories having well-defined gravity duals. Interestingly, those universal

properties qualitatively agree with the experimental data associated with strong coupling

phase of QGP [12–16]. Moreover, the correspondence holds true for some strongly cou-

pled gauge theories exhibiting some QCD like features such as chiral symmetry breaking,

confinement to deconfinement crossover etc [17–19].

Along this line of development, within the regime of gauge/gravity correspondence,

there has been a number of seminal works to obtain a better theoretical understanding of

strongly coupled QGP phase. For example, the dissipative dynamics of an external heavy

quark probing through the N = 4 SYM plasma is holographically computed in [20, 21].

The rate of radiative energy loss of an external quark rotating in the N = 4 SYM plasma is

successfully addressed in [22]. Furthermore, the holographic technique to compute the jet

quenching parameter carrying a measure of suppression of the heavy quark spectrum with
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high transverse momentum due to the medium induced scattering has been first prescribed

in [24]. The non-perturbative dynamics of heavy probe mesons moving through the N = 4

SYM plasma has been studied and the corresponding quark-antiquark binding energy as

well as screening length are qualitatively estimated in [25]. The holographic understanding

of the Brownian motion of an external probe quark is achieved in [26, 27]. There has been

a lot of further generalisations along this direction of research [28–52].

In spite of several such developments, except in the very few examples [53, 54, 56],

it remains very difficult to study the strongly coupled boundary gauge theory with large

number of flavour quarks. The introduction of the flavour quarks in the boundary theory

corresponds to adding an extra stack of Nf flavour branes probing the pre-existed Nc

number of colour branes in the dual gravity [55]. The addition of these flavour branes exerts

a back reaction of the order of
Nf

Nc
on the bulk geometry. Therefore, the back reaction can

not be neglected in the presence of large number of flavour branes (Nf ∼ N2
c or more) even

in the large Nc limit. The difficulty of going beyond the probe approximation motivated

one of us to construct a backreacted gravity background without any approximation [35].

The gravity background is realised as an AdS black hole back reacted in the presence of

a uniform distribution of large number of fundamental strings. These strings are assumed

to be non-interacting, static and infinitely long. One of the end points of each string is

attached to the boundary and the body of the string is aligned along the radial direction.

The bulk space time gets deformed due to the back reaction of the string distribution. The

back reacted geometry is explicitly computable by solving Einstein equation of motion with

negative cosmological constant sourced by the uniform string distribution. It turns out to

be a deformed black hole in AdS space time parameterized by the mass and density of the

strings. In five dimensional space time the solution reads as,

ds2 = f (u)

[
−h(u)dt2 + dx2 + dy2 + dz2 +

du2

h(u)

]
, (1.1)

where

f(u) =
l2

u2
and h(u) = 1− 2mu4

l6
− 2

3

bu3

l4
.

Here, b is the string cloud density, u is the radial coordinate of AdS space with boundary

at u = 0 and l is the radius of AdS space. The radius of horizon can be constructed by

solving the equation,

h(u+) = 1−
2mu4+
l6

− 2

3

bu3+
l4

= 0. (1.2)

The black hole geometry (1.1) turns out to be stable under vector and tensor perturbation.

The back reacted geometry is holographically dual to a system of large number of

heavy, static flavour quarks uniformly distributed over the N = 4 SU(Nc) SYM thermal

plasma. It is important to note that in the boundary theory, the SYM plasma together

with the quark distribution is effectively considered as back reacted plasma. Using the

holographic method applicable to the dual black hole background, dissipative force im-

parted by the back reacted thermal plasma on an external heavy probe quark has been

studied [35] Phenomenologically, in case of quark gluon plasma, the dynamical quantities
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like coefficient of drag force, jet quenching parameter, screening length are very significant

to probe strongly coupled interaction among the constituents. To study all these dynamical

quantities we need to consider heavy quark or qq̄ pair probing the strongly coupled medium.

However, in such considerations, the effects on the dynamics of heavy probes due to the

the presence of other heavy dynamical quarks (for example charm quark) are usually ne-

glected. In our present work, within the framework of gauge/gravity correspondence, the

motivation for considering the static heavy quark distribution in strongly coupled SYM

plasma is to take the other dynamical heavy quarks in to account with a very low or zero

velocity approximation.1

In continuation of the earlier work, in this paper we aim to study the effect of back

reaction on the jet quenching parameter q̂, screening length (Ls) and binding energy of a

quark-antiquark pair (qq̄). We also analyse the rotational dynamics of an external heavy

probe quark as well as heavy probe qq̄ bound state in the back reacted plasma.

To elaborate further, following the holographic prescription mentioned in [24], we com-

pute a phenomenological transport coefficient, namely jet quenching parameter(q̂) and

study the effect of back reaction on this parameter. In the holographic computation, the

quark-antiquark pair is mapped into the two endpoints of a fundamental string both of

which are attached to the boundary of the relevant dual background. The body of the

string hangs down along radial coordinate of the bulk geometry.

Motivated by eikonal approximation [57, 58], the holographic working formula to calcu-

late the jet quenching parameter is constructed by considering the correspondence between

thermal expectation value of the light-like Wilson loop operator in fundamental represen-

tation, 〈WF
light−like〉 and the exponential of the string world-sheet action S, eiS . Similarly,

following [25] we compute the binding energy and the screening length (Ls) between a qq̄

pair moving with a constant linear speed in the hot back reacted plasma. The screening

length is defined as the maximum separation between a qq̄ pair beyond which the pair

breaks off and gets screened in the thermal medium. Here, the holographic dual to the qq̄

pair is similar to the one considered in the context of jet quenching parameter. The study

of Ls and the binding energy requires the correspondence between thermal expectation

value of the time like Wilson loop 〈Wfund(Ctime−like)〉 traced out by a qq̄ pair and eiS ,

where S is the string world sheet action. Consequently, we aim to obtain the Ls from the

boundary condition on radial coordinate of the background geometry and discuss how the

back reaction modifies the original computation given in [25].

In this paper we also investigate the effect of back reaction on the energy loss experi-

enced by an external heavy probe quark rotating along a circle of radius R with a constant

angular speed ω in the presence of other static heavy quarks uniformly distributed over

N = 4 SYM plasma. It has been pointed out in many occasions that in the course of rota-

1In [54], the author has considered a back reaction on a ten dimensional type IIB super gravity back-

ground due to the presence of a uniform distribution of strings preserving translational and SO(6) rotational

symmetry and interacting with the Neveu-Schwarz two-form flux. Furthermore, by performing a dimen-

sional reduction over this ten dimensional back reacted geometry an effective five dimensional geometry has

been constructed and a certain asymptotic limit of this effective five dimensional background reproduces

the same asymptotically locally AdS geometry previously mentioned in (1.1).
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tional dynamics there is an interference between the medium induced energy loss (drag) as

well as the radiative energy loss associated with the quark acceleration in the strongly cou-

pled medium [22, 31, 59–61]. The physical picture of medium induced energy loss is related

to the energetic collision and momentum transfer of the external probe with thermal plasma

whereas the radiative energy loss is nothing but the QCD realisation of Bremsstrahlung

radiation. In this holographic study, we focus on the different range of angular speed (ω)

and the linear speed (v = Rω) of the probe quark to identify the regions of dominance of

both drag and radiation.

It is interesting to note that unlike the heavy probe quark, the colour neutral qq̄ bound

states do not experience dissipative energy loss while performing a linear motion through

the strongly coupled thermal plasma [62–65]. In the dual gravity scenario, the motion of the

probe string continues without being dragged and the string profile remains un-trailed [63].

In the present work, we holographically showed that for rotational dynamics of a heavy

probe qq̄ pair the dual string profile still remains unaffected from rotational drag.

The paper is organised as follows. In section 2, we estimate the jet quenching parame-

ter. We then compute the screening length in section 3. Section 4 is devoted to the detailed

discussion on the energy loss of a heavy probe quark rotating in the back reacted plasma.

In section 5, we showed that the heavy rotating qq̄ probe in the presence of a static heavy

quark distribution is free of rotational drag. Finally, we conclude with the significance of

our main results in section 6.

2 Jet quenching parameter

Following the holographic prescription given in [24], in this section we compute the jet

quenching parameter (q̂) and study the effect of the back reaction on it. Phenomenolog-

ically, the parameter is related to the energy loss due to the suppression of heavy quark

with high transverse momentum in the presence of thermal medium.

In field theoretic point of view, the connection between the jet quenching parameter and

the expectation value of light-like Wilson loop in the adjoint representation is established

in the following way [66],

〈WA(C)〉 = e
− 1

4
√
2
q̂L−L2

. (2.1)

Here, the Wilson loop C is traced out by the separation length L of a qq pair and a length

L− along the light cone of the boundary gauge theory. Since the gauge theory is strongly

coupled, computation of the expectation value of light-like Wilson loop is extremely diffi-

cult due to lack of systematic formulation. However, within the domain of gauge/gravity

correspondence, we can calculate the expectation value using the following holographic

prescription,

〈WF (C)〉 = eiS(C). (2.2)

Here S(C) is the Nambu-Goto action for the fundamental string with two of it’s endpoints

attached to the boundary and are dual to the boundary quark-antiquark pair. The string

action can be written as,

S = − 1

2πα′

∫
dτdσ

√
−det gαβ , (2.3)
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where α′ is related with the string tension and gαβ is the induced world-sheet metric,

gαβ =
∂xµ

∂ξα
∂xν

∂ξβ
Gµν . (2.4)

Here Gµν is the background metric given in the equation (1.1) and ξα are the world sheet

coordinates where α = 0, 1.

It is important to note that the Wilson loop considered in (2.2), is in the fundamental

representation. However, by using the group theoretical identity, TrAdj = Tr2Fund, it is

easy to translate the form of expectation value from fundamental representation to adjoint

representation as,

〈WF (C)〉2 = 〈WA(C)〉. (2.5)

A combination of equations (2.1), (2.2) and (2.5) leads to a holographic working formula

for jet quenching parameter in the dual gravity theory,

q̂ = − 8
√

2i

L−L2
(S − S0), (2.6)

where S0 is the self energy contribution due to the total mass of q and q. In order to

compute the action S it is customary to write down the background metric (1.1) in the

light-cone coordinates. In this coordinates the metric becomes,

ds2 = f

[
− (1 + h) dx+dx− +

1

2
(1− h) {dx+2 + dx−2}+ dy2 + dz2 +

du2

h

]
. (2.7)

In the above metric we assume the definition of x± as follows,

x± =
t± x√

2
. (2.8)

We choose the static gauge, ξ0 = x− (L− ≥ x− ≥ 0) , ξ1 = y(−L
2 ≤ y ≤

L
2 ) and also set the

qq pair at y = ±L
2 on x+ = constant, z = constant plane. With these choices of parameters

and by considering L− � L, the profile of the string is entirely constrained to u = u(y).

Consequently the string action of equation (2.3) takes the form as,

S =
iL−√
2πα′

∫ L
2

0
dyf

√
(1− h)

(
1 +

u′2

h

)
. (2.9)

The fact that the above form of action does not explicitly depend on y leads to the following

conservation equation,
∂L
∂u′

u′ − L = E. (2.10)

Here E is the constant of motion and L is the integrand of equation (2.9). Finally the

equation of motion for the u can be written as,

u′ =

√
h

[
f2(1− h)

E2
− 1

]
. (2.11)
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Now from the symmetry of the problem we identify the boundary conditions as, u(±L
2 ) = 0

and u′(0) = 0. The second boundary condition related to the extrema of the variable

u signifies the existence of physical turning point(s). If we apply the boundary con-

dition u′(0) = 0 in the equation (2.11), we get two possible conditions for occurring

turning point(s),

h = 0 and h = 1− E2

f2
. (2.12)

Certainly, h = 0 sets the turning point on the horizon u1t = u+ whereas the other condition

h = 1− E2

f2
, for small values of E, sets the other turning point u2t very close to the boundary.

We also notice that the right hand side of equation (2.11) remains positive very close to

horizon and becomes negative near boundary. The physical consistency demands u
′2 ≥ 0

always and that is not true in the range 0 ≤ u < u2t . So to avoid this region of inconsistency

we set a cut-off on boundary at some radial value u = δ > u2t . In this way we can safely

set the non-negative u
′2

in the range δ < u < u+. In the end, we consider the limit δ → 0

to make the final result cut-off independent. By using the form of u′ of equation (2.11),

we can re-write the action for the fundamental string as,

S =
iL−√
2πα′

∫ u+

δ
duf

√
1− h
h

[
1− u4E2

l4(1− h)

]− 1
2

. (2.13)

The above action is divergent since it contains self energies of the quark and antiquark pair.

The self energy contribution can be holographically realised by considering the world-sheets

of two free straight fundamental strings both hanging from the boundary to the horizon.

Within the choice of gauge x− = ξ0, u = ξ1, the self-contribution reads as,

S0 =
iL−

πα′

∫ u+

δ
du
√
GuuG−− =

iL−√
2πα′

∫ u+

δ
duf

√
1− h
h

. (2.14)

Now, the regularised action of our interest takes the following form,

S − S0 =
iL−√
2πα′

∫ u+

δ
duf

√
1− h
h

[{
1− u4E2

l4(1− h)

}− 1
2

− 1

]
≈ iL−E2

2
√

2πα′
I1, (2.15)

where,

I1 =

∫ u+

δ

du

f
√
h(1− h)

. (2.16)

At this point we replace E in terms of quark-antiquark pair separation distance L. In

order to do so, we first compute the separation distance L between the quark-antiquark

pair from equation (2.11) and it comes out as,

L = 2

∫ u+

δ
du

1√
h
[
f2(1−h)
E2 − 1

] . (2.17)

For a given small separation between qq̄ pair we can invert the above equation and estimate

the conserved parameter E up to the first order in L as,

E =
L

2I1
− E3

2

I2
I1
≈ L

2I1
+O(L)3, (2.18)
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where we define,

I2 =

∫ u+

δ

du

f3(1− h)
√
h(1− h)

. (2.19)

Therefore we obtain,

S − S0 ≈
iL−L2

8
√

2πα′I1
, (2.20)

and correspondingly the jet quenching parameter takes the form as,

q̂ =
1

πα′I1
. (2.21)

However, by using the relation l4

α′
= g2YMNc we can settle the form of the jet quenching

parameter in terms of boundary parameters,

q̂ =

√
g2YMNc

πI ′1(T, b)
, (2.22)

where I ′1(T, b) =
∫ u+(T,b)
δ

u2du√
h(1−h)

and gYM is the Yang Mills (YM) gauge coupling. To have

a better understanding of the back reaction effect on the jet quenching phenomenon we plot

the relevant parameter q̂ with respect to quark cloud density b, keeping temperature T fixed

(Plot 1). We find that the parameter q̂ increases monotonically as we tune up the value

of quark density from zero to some finite number. This implies that the presence of heavy

static quarks back-reacting the plasma enhances the energy loss due to the suppression

of the external heavy probes moving with high transverse momentum. We also plot the

parameter q̂ with respect to temperature, T keeping the quark cloud density fixed in plot

2. We observe again that q̂ monotonically increases with temperature. It is important

to note that at zero temperature the jet quenching parameter is finite and increases with

respect to the magnitude of back reaction. To summaries we notice that the jet quenching

phenomenon enhances as we increase the back reaction as well as the temperature of the

plasma.

3 Screening length

The purpose of the present section is to study the screening length (Ls) of a qq̄ pair probing

the back-reacted N = 4 SYM plasma. Screening length (Ls) is defined as the maximum

separation between a qq̄ pair moving with a constant speed in the plasma. If the separation

between them exceeds Ls, they get detached from each other with no binding energy.

Consequently they become screened in the QGP medium. The holographic computation

of the screening length is prescribed in [25] and the prescription requires the consideration

of a time-like Wilson loop(Ctime−like) traced out by the qq̄ pair. Moreover, the computation

becomes much simpler in the rest frame of qq̄ pair where plasma flows with a constant speed.

Correspondingly, in the dual theory, the black hole background is boosted by a rapidity

parameter. For the shake of holographic computation, in this boosted background, we

consider a fundamental string with both of it’s ends attached to the boundary of the space

– 7 –
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Figure 1. Plot 1 shows the variation of jet quenching parameter as a function of quark density b

for T = 0.1(Green), 0.5 (Blue), 1 (Red) respectively. Plot 2 describes the variation of jet quenching

parameter as a function of T for the values of b = 0 (Green), 20 (Blue), 120 (Red) respectively.

time. The end points of the fundamental string are realised as the holographic dual to

the qq̄ pair in the boundary theory. As the separation of q and q̄ approaches to the Ls,

in the dual picture, the body of the string tends to reach at the horizon of the geometry.

When the separation goes beyond Ls, two isolated strings are energetically favourable in

the dual theory. Binding energy of q and q̄ is related to the thermal expectation value of the

time like Wilson loop operator, 〈W(Ctime−like)〉. Thereby, using the holographic mapping

between 〈Wfund(Ctime−like)〉 and eiS , we calculate the binding energy in dual gravity.

The set up for holographic computation is followed by some assumptions in the dual

boundary theory. Firstly, we consider that in the rest frame of qq̄ pair, the thermal plasma

moves along a flat boundary coordinate (z) with a constant speed v. We also assume

that the Wilson loop traced out by the qq̄ pair lies in the t − x plane. We specify the

temporal length and the spatial length of the loop by the parameters T and L respectively.

Finally we consider the limit T � L signifying the invariance of string world-sheet under

time translation.

For the shake of holographic computation of Ls, we introduce a boost in the dual

gravity background in the following way,

dt = cosh η dt∗ − sinh η dz∗

dz = − sinh η dt∗ + cosh η dz∗. (3.1)

Under this boost the metric (1.1) takes the following form,

ds2 = f

[
− {1− cosh2 η(1− h)}dt∗2 + {1 + (1− h) sinh2 η}dz∗2

−2(1− h) cosh η sinh η dt∗dz∗ + dx2 + dy2 +
du2

h

]
, (3.2)

where η = tanh−1 v is the rapidity parameter. In the due course of computation we assume

a choice of static gauge,

τ = t∗, σ = x, y = z∗ = 0, (3.3)

– 8 –
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and a set of suitable boundary conditions,

u

(
σ = ±L

2

)
= 0, u (σ = 0) = uextrm, u

′ (σ = 0) = 0. (3.4)

With the above choice of static gauge and boundary conditions the world-sheet action of

equation (2.3) for dual fundamental string reads as,

S = −T l2

2πα′

∫
dσ

√
1

u4
{

1− cosh2 η (C1u4 + C2u3)
}{

1 +
u′2

1− C1u4 − C2u3

}
, (3.5)

where C1 and C2 are defined as,

C1 =
2m

l6
, C2 =

2b

3l4
. (3.6)

The Lagrangian in the above string action does not explicitly depend on σ. Consequently

we can construct a Hamiltonian like function as a constant of motion,

∂L
∂u′

u′ − L = W. (3.7)

It is straightforward to derive the equation of motion of u coordinate by combining equa-

tions (3.5) and (3.7),

u′2 =
{1− C1u

4 − C2u
3}

W 2u4
{1− cosh2 η(C1u

4 + C2u
3)−W 2u4}. (3.8)

Clearly, u has an extrema (uextrm1) that lies on the horizon itself,

1− C1u
4
extrm1 − C2u

3
extrm1 = 0. (3.9)

However, if the condition of extrema (3.9) is attained, the string reaches at the horizon,

breaks down into two separate strings, holographically corresponds to a pair of free quark

with no binding energy. The other extrema (uextrm2) is fixed by the following constraint,

1

W 2

[
1

u4extrm2

{1− cosh2 η
(
C1u

4
extrm2 + C2u

3
extrm2

)
} −W 2

]
= 0. (3.10)

Since hyperbolic cosine function is always positive and ≥ 1, therefore the factor 1
W 2

[
1
u4
{1−

cosh2 η(C1u
4 +C2u

3)}−W 2
]

takes negative value and u′ becomes unphysical in the range

u ∈ [uextrm2, uextrm1]. On the other hand, for sufficient small W , the factor reduces,

1

W 2

[
1

u4
{1− cosh2 η(C1u

4 + C2u
3)} −W 2

]
≈
[

1

W 2u4
− 1

]
and is always positive and large near the boundary. It is then natural to conclude that

u′2 switches sign at uextrm2 = uc and we identify uc as a physical turning point of the

string configuration. By solving the constraint equation (3.10) we explicitly determine uc.
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Figure 2. Plot 3 shows the variation of screening length as a function of constant of motion for

T = 1, m = 1, η = 1 and b =1 (Red), 5 (Blue), 15 (Green) respectively. Plot 4 describes the

variation of screening length as a function of constant of motion for T = 1, m = 1, η = 5 and b =1

(Red), 5 (Blue), 15 (Green) respectively.

Once this physical turning point is extracted, integrating (3.8) and exploiting the boundary

condition u(σ = ±L
2 ) = 0 we obtain the separation distance between a qq pair,

L = 2W

∫ uc

0

u2du√
(1− C1u4 − C2u3){1− cosh2 η(C1u4 + C2u3)−W 2u4}

. (3.11)

To examine the effect of back reaction on the separation distance of a qq̄ pair we plot

the L with respect to the constant of motion W , keeping the rapidity parameter η fixed.

It is evident from both plot 3 and plot 4 that there is no separation distance, L when

the constant of motion W takes zero value. For finite W , L increases monotonically till

it attains the maximum value corresponding to a certain W and then it falls of. The

maximum value of the separation length L = Lmax signifies that beyond this value of L

there is no solution of equation (3.10). Physically it means that the qq̄ pair dissociates

with no binding energy if they are separated beyond Lmax and this maximum value of L is

recognised as the screening length Ls associated with the qq̄ pair. In plot 3, we study the

function L(W ) for three different values of quark cloud densities (b=0, Red; b=1, Blue;

b=10, Green) and a fixed rapidity parameter η = 1. We find that the more the plasma is

back reacted, the less Ls is allowed for a qq̄ pair. In plot 4 we consider the same set values

of quark density but fix the rapidity parameter at a higher value η = 5. Again we observe

that the enhancement of back reaction screens the qq̄ pair at a lower value of the separation

length. However, for a fixed magnitude of back reaction, we find that Ls|η=1 > Ls|η=5.

Furthermore, for a given set of values of L < Ls there are two possible values of constant

of motion W . Therefore to know the preferable one we find the minimum potential energy

for a given set of values of L < Ls. The holographic computation of the binding energy V

is based on the consideration of the following prescription,

V = −S − S0
T

, (3.12)

where S0 is the self energy contribution coming from two free quarks. S0 is realised as the

Nambu-Goto action of a fundamental string hanging from the boundary to the horizon of
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(a) Plot 5.

Figure 3. Plot 5 shows the variation of binding energy V of qq̄ pair as a function of separation

length L between them. Here we study the variation of potential energy for following three choices

of parameters: red (η = 5, T = 1, b = 1); blue (η = 5, T = 1, b = 5) and green (η = 5, T = 1,

b = 15).

the back reacted black hole geometry. To compute S0 we choose the gage as follows,

τ = t∗, σ = u, x = x(σ), y = 0, z∗ = 0 . (3.13)

With this gauge choice, we compute the S0 using following form of action,

S0 = − 2T
2πα′

∫ u+

0

√
−detg, (3.14)

where gαβ = ∂αX
µ∂βX

νGµν is the induced metric and Gµν is given in (3.2). The factor

2 comes in front of the action to take care of the contributions from both quark and

anti-quark.

To study the potential energy between qq̄ pair we use the equation (3.11) to solve W

as a function of L and plug back the solution W (L) in (3.12). We then study the potential

energy V (L) of a qq̄ pair as function of separation distance between them.

We plot the binding energy V of a qq̄ pair as a function of L for a fixed value of

the rapidity parameter, η = 5 in plot 5. It is evident in this plot that for a given set of

values of L < Ls there are two possible branches of corresponding binding energies. One

branch is associated with the higher energy values (higher W ) whereas the other branch

corresponds to the lower energy values (lower W ) and it is the physically favourable energy

configuration of a qq̄ pair. If the energy configuration of a qq̄ pair is in the high energy

branch, due to instability, the pair makes a transition to the low energy branch. From the

physically favoured lower branch of energy configuration, it is clearly visible that the the

presence of the back reaction actually reduces the binding energy of a qq̄ pair.

4 Energy loss of a rotating heavy quark

In this section we study the dynamics of a heavy probe quark rotating with a constant

angular speed in the presence of other static heavy quarks uniformly distributed over
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N = 4 SYM plasma. In particular, we assume that the quark rotates on a two dimensional

flat space along a circle of radius R with a constant angular frequency ω. The constant

speed and the constant acceleration related to the rotating quark are given as v = Rω
and a = ω2R respectively. The strong interaction between the rotating quark and the

back reacted thermal plasma results into an energy loss either in the form of radiation

or due to in-medium dissipation. The energy loss due to the interaction between the

probe quark and the strongly coupled thermal plasma is very difficult to compute in the

boundary theory. However, following the holographic methods described in [23, 32], we can

compute the same energy loss by studying the motion of a rotating spiral string probing

the deformed AdS black hole space-time (1.1) in the weakly coupled dual gravity theory.

One of the end points of this spiral string is attached to the boundary of this back ground

geometry and holographically corresponds to the boundary rotating quark. The body of

the string experiences a centrifugal force, takes a spiral profile and stretches up to the black

hole horizon u = u+. To achieve a holographic estimation of the energy loss in the bulk

theory we need to study the dynamics of the rotating string governed by the Nambu Goto

action (2.3). Since we have assumed the quark in the boundary theory is constrained to

rotate on a plane, in the dual gravity theory, we choose the following parameterizations of

the string world sheet preserving the SO(2) symmetry,

Xµ(τ, σ) = (t = τ, u = σ, x = ρ(σ) cos(ωt+ θ(σ)), y = ρ(σ) sin(ωt+ θ(σ)), z = 0). (4.1)

The parameters ρ(σ) and θ(σ) are introduced to depict the radial and angular profiles of

the rotating string and they obey the following boundary conditions,

ρ(0) = R, θ(0) = 0. (4.2)

If we use the suitable ansatz (4.1) in the Nambu Goto action (2.3), the Lagrangian density

takes the following form,

L =

[
f2

h
(h− ρ2ω2) + f2(h− ρ2ω2)ρ′2 + hf2ρ2θ′2

] 1
2

, (4.3)

where, the prime denotes the derivative with respect to u. It is important to note that

the Lagrangian density does not explicitly depend on the θ coordinate, so the conjugate

momentum will be a constant of motion and can be written as,

Πθ =
∂L
∂θ′

=
hf2ρ2θ′

L
. (4.4)

Rewriting (4.4) according to our convenience we get,

θ′ =

√
(h− ρ2ω2)(1 + hρ′2)

h2ρ2(hf2ρ2 −Π2
θ)

. (4.5)

Again it is important to note that the numerator under square root contains the factor

(h− ρ2ω2) which is always positive at the boundary since the speed of the quark is always

less than the speed of light. On the other hand, the same factor is negative at the horizon
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as h(u+) = 0. Therefore in between the boundary and the horizon, numerator changes

sign at some special value of the radial coordinate. We consider this special value as the

critical point (uc) in the bulk. In order to avoid the imaginary value of ξ′, we insert the

following conditions at this critical point,

h(uc)− ρ(uc)
2ω2 = 0, (4.6)

h(uc)f(uc)
2ρ(uc)

2 −Π2
θ = 0. (4.7)

By solving the above two equations we get,

ρ(uc) =

√
Πθ

f(uc)ω
, (4.8)

f(uc) =
Πθω

h(uc)
. (4.9)

So the spiral profile of the rotating string starts at u = 0, ρ = R, goes through (uc, ρc)

and tends to be extended up to the black hole horizon. It has been shown in [22] that the

body of the string embedded in the range u < uc are causally disconnected from the part of

string embedded in u > uc. The physically relevant part of the rotating string is confined

to the region u < uc and moves with a speed slower than the local speed of light. It is

important to note that h(uc) = ρ(uc)
2ω2 is the curve that signifies the radial profile ρl of a

string moving with a local speed as same as that of light. All curves corresponding to the

general radial profile of string moving with speed slower than speed of light should intersect

the curve ρl at the critical point u = uc. To obtain the spiral profile of the rotating string

we follow the strategy prescribed in [22]. First, by using (4.5) we eliminate the θ′ from the

equation of motion for ρ coordinate. Consequently, the equation of motion for ρ takes the

form as,

2(Π2
θ − ω2f2ρ4)− [2fhρ3(h− ω2ρ2)f ′ − ρ{Π2

θ − f2(2hρ2 − ω2ρ4)}h′]ρ′

+2h(Π2
θ − ω2f2ρ4)ρ′2 − ρ3[2fh2(h− ω2ρ2)f ′ − (Π2

θω
2 − f2h2)h′]ρ′3

+2ρ(h− ω2ρ2)(Π2
θ − f2hρ2)ρ′′ = 0. (4.10)

Then we solve the differential equation (4.10) with appropriate boundary conditions for ρ

as a function of u and constant Πθ. Moreover by substituting the solution in (4.5) and then

integrating, the angular profile θ(u) can be obtained. Here we are interested to extract the

radial profile only as we will see later the measure of radial profile at the boundary has a

direct consequence to estimate the rate of energy loss of the boundary quark. However, to

achieve an analytic solution for the equation of motion for ρ is extremely difficult except

few occasions [23].

Instead of achieving an analytic solution here we solve (4.10) using numerical methods.

We specify the boundary conditions by fixing the values of ρ and ρ′ at u = uc for a suitable

choices of ω and Π. To determine ρ′(uc) we expand the radial coordinate ρ(u) around uc
and consider the terms up to linear order.

ρ(u) = ρ(uc) + ρ′(uc)(u− uc) + · · ·. (4.11)
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(a) Plot 6. (b) Plot 7. (c) Plot 8.

Figure 4. Plot 6, 7 show the radial dependence ρ(u) of the rotating string for two different choices

of densities of quark cloud, b = .1(plot6), b = 100(plot7) and for some fixed values of temperature

T = 1 and ω = .05. Each plot has four different branches corresponding to the four different values

of momentum Πθ = .1(red), Πθ = 1(green), Πθ = 10(pink) and Πθ = 70(blue) respectively. In plot

8 we compare the radial profiles for two different values of quark cloud density (dotted for b = .1

and dashed for b = 100).

By plugging the expansion (4.11) into (4.10) and keeping terms up to linear order

in u we observe that the zeroth order coefficient turns out to be zero to satisfy the con-

straints (4.9), whereas the linear order coefficient sets a quartic equation in ρ′(uc). The

physically consistent solution of ρ′(uc) signifying the fact that the radius of rotation is

always real, positive and smaller than the critical radius is given as,

ρ′c =
1

(4uch3cρc)

[
− 4u2ch

2
c − h3cρ2c + ω2h2cρ

4
c + 2uch

2
cρ

2
ch
′
c −Π2u4ch

′
c
2

(4.12)

+
(

16u2ch
5
cρ

2
c + (h3cρ

2
c + Π2u4ch

′
c
2

+ h2c(4u
2
c − ω2ρ4c − 2ucρ

2
ch
′
c))

2
)
1
2

]
,

where we have assumed ρ(uc) = ρc and hc = h(uc). However, u = uc is a singular point

for both the Lagrangian (4.3) and the equation of motion (4.10). Furthermore, at u = uc
the numerical method breaks down. To overcome this difficulty we separately solve the

equation (4.10) in the ranges defined from uc − δ to the boundary as well as from uc + δ

to the horizon and then combine them in a consistent way by considering δ → 0 limit.

In figures 4, 5, 6 we notice that the radial profile of the rotating spiral string is charac-

terised by different choices of temperature T , string density b, conserved string momentum

Πθ and the angular speed ω. For each profile there exists a unique limit ρ(u → 0) = R
holographically signifying the radius of the rotating quark in the boundary theory.

The fact that the speed of the boundary quark never exceeds the speed of light put

some constraint R < ω. Each radial profile clearly validates the constraint ρ(u→ 0)ω < 1

even if we increase the conserved string momentum Πθ in an unbound way. The intersection

between the black dotted profile (ρl) and each of the radial profiles (ρ(u)) fixes the value

of the radius at the turning point ρ(uc). For a given ω, as we increase the value of Πθ the

value of ρ(uc) also gets enhanced. It is also evident from the plots that as ω < 1, the radial

profile is almost constant (ρ(u = 0) ≈ ρ(uc) ≈ ρ(u = u+)) whereas for ω > 1 the bending

of string profile is significant and the radius at horizon is always bigger than the radius at

boundary (R < ρ(u = u+)). For a given choice of momentum Πθ and angular frequency
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(a) Plot 9. (b) Plot 10. (c) Plot 11.

Figure 5. Plot 9, 10 show the radial dependence ρ(u) of the rotating string for two different choices

of densities of quark cloud, b = .1(plot 9), b = 100(plot 10) and for some fixed values of temperature

T = 1 and ω = .5. Each plot has four different branches corresponding to the four different values

of momentum Πθ = .1(red), Πθ = 1(green), Πθ = 10(pink) and Πθ = 70(blue) respectively. Plot

11 corresponds to a comparison between the radial profiles for two different values of quark cloud

density (dotted for b = .1 and dashed for b = 100).

ω, if we increase the intensity of back reaction the radius of rotation decreases accordingly.

However this effect is more visible for ω < 1.

Having discussed the generic features of the radial profile of the rotating string, now

we study the a holographic estimation of the rate of energy loss of a heavy probe quark

rotating in the back reactedN = 4 SYM plasma. In the dual gravity theory, the holographic

definition of the rate of energy loss associated with the rotating string can be presented in

the following form,
dE

dt
= − δS

δ(∂σX0)
= Πσ

t , (4.13)

where S stands for the Nambu Goto action. Using the metric of the back reacted back-

ground (1.1) in the above formula and the equation (4.7) we re-write the expression for dE
dt

in the following way,

dE

dt
=
hf2ωρ2θ′

2πα′
√
−g

=
Πθω

2πα′
=
f(uc)h(uc)

2πα′
=

h(uc)

2πα′u2c
. (4.14)

Here we consider l = 1. Therefore the energy loss of a rotating string depends on the

critical value uc(Πθ, ω, b). However, to understand the influence of the back reaction on

the energy loss we prefer to study ratio between the energy loss with finite valued quark

density and the same with zero quark density with respect to the boundary quark speed

v. The holographic recipe to compute the aforementioned ratio is the following. First, we

choose a set of ω’s and b’s and for each combination of ω, b we select a range of values

for Πθ. For each values of Πθ together with ω and b we figure out the (ρc, ρ
′
c) and use

them to solve the equation (4.10) by numerical method. Then we set the speed by taking

the boundary limit (u → 0) of the solution (v = ρ(u → 0)ω). For a fixed speed v, we

holographically compute the rate of energy loss using equation (4.14).

In figure 7 we plot the ratio between the rate of total energy loss in the back reacted

SYM thermal plasma to the rate of total energy loss in the usual SYM thermal plasma as

a function of speed. It is evident from the plot that the effect of back reaction enhances the

energy loss due to the strong interaction between probe and the plasma. For a lower and
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(a) Plot 12.
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(b) Plot 13. (c) Plot 14.

Figure 6. Plot 12, 13 show the radial dependence ρ(u) of the rotating string for two different

choices of densities of quark cloud, b = .1(plot 14), b = 100(plot 15) and for some fixed values

of temperature T = 1 and ω = 5. Each plot has four different branches corresponding to the

four different values of momentum Πθ = .1(red), Πθ = 1(green), Πθ = 10(pink) and Πθ = 70(blue)

respectively. In plot 14 we compare the radial profiles for two different values of quark cloud density

(dotted for b = .1 and dashed for b = 100).

an intermediate angular speed, the ratio
dE
dt
|b 6=0

dE
dt
|b=0

increases monotonically and falls down to

unity when the linear speed of probe approaches unity. The fall of the ratio is more sharp

for lesser value of the angular speed. However, the back reaction effect ceases to exist for

high values of angular speed.

In figure 8 we plot the ratio between the total energy loss rate to the drag energy loss.

The energy loss due to drag is given as,

dE

dt

∣∣∣
drag

= − δS

δ(∂σX0)
=

h(uc)

2πα′u2c

∣∣∣
drag

, (4.15)

where uc|drag is the critical value of the radial coordinate when the string profile is trailed

due to only drag. The profile of such string world sheet can be parameterized as follows,

Xµ(τ, σ) = (t = τ, u = σ, x = vt+ ξ(σ), y = 0, z = 0), (4.16)

where ξ(u) is a function of radial coordinate signifying the trailing profile of the string.

With this gauge choice, the Nambu-Goto Lagrangian can be written as,

L = − 1

2πα′

√
f2 + hf2ξ′2 − f2v2

h
. (4.17)

Notice that the Lagrangian density (4.17) does not explicitly depend on ξ, so the conjugate

momentum, Πξ for the field ξ should be conserved and takes the form as,

Πξ = − 1

2πα′
hf2ξ′√

f2 + hf2ξ′2 − f2v2

h

= constant, (4.18)

and some rearrangement of variables in the equation of motion with respect to the

field ξ gives,

ξ′ =

√√√√ Π2
ξ (h− v2)

h2
(

hf2

4π2α′2 −Π2
ξ

) . (4.19)
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(a) Plot 15.

0.5 0.6 0.7 0.8 0.9 1.0
v

1.05

1.10

1.15

1.20

1.25

1.30

A dE

dt
E

b=0

A dE

dt
E

b¹0

(b) Plot 16.

0.75 0.80 0.85 0.90 0.95
v

0.2

0.4

0.6

0.8

1.0

A dE

dt
E

b¹0

A dE

dt
E

b=0
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Figure 7. The ratio of the total energy loss in finite value quark density to the zero quark density

for different angular velocities: ω = 0.05, 0.5, 5.0 from left to right. Each plot corresponds to two

different values of quark density: b = 20 (red), b = 5 (blue) and temperature T=1.
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(a) Plot 18.
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Figure 8. The ratio of the total energy loss rate to the drag energy loss rate for finite valued quark

density and fixed temperature T = 1. The plots from left to right have different angular velocities;

ω = 0.5 and 5.0. and each plot has to two different values of quark density: b = 20 (red), b = 5

(blue). For ω = 5.0, the numerical value of the ratio at the origin is unity.

The reality of ξ′ brings the imposition of the following constraints,

h(uc) = v2,

h(uc)f(uc)
2

4π2α′2
= Π2

ξ , (4.20)

where uc is the solution of the equation,

1− 2mu4c
l6
− 2

3

bu3c
l4
− v2 = 0. (4.21)

It is evident from the plot 8 that as angular speed is sufficiently small the total energy

loss is dominated by the drag. The dominance of energy loss due to drag prevails even

if the strength of back reaction takes lower value. As the angular speed increases the

ratio
dE
dT
|total

dE
dT
|drag

takes higher values than unity implying the fact that radiation energy loss

contributes substantially. However, it is interesting to note that for a higher value of

angular speed, the more is the strength of back reaction the less is the contribution from

radiation energy loss. It already evident from the plots 4, 5, 6 that at small ω the speed of
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(a) Plot 20.
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Figure 9. The ratio of the total energy loss rate in finite value quark density to the rate of vacuum

radiation energy loss for fixed temperature T and different angular velocities: ω = 0.5, and 5.0 from

left to right. For ω = .05, the numerical value of the ratio at the origin is unity. Each plot has two

different values of quark density: b = 20 (red)b = 5 (blue) and a fixed temperature T=1.

boundary quark is almost same as the local speed of the rotating string for each value of

the radial coordinate. Therefore the corresponding string profile is very similar to dragged

profile. However, for higher values of angular speed the influence of rotational motion

modifies the string profile significantly.

Before closing this section we compare the total energy loss of a heavy probe quark

performing rotational motion in a finite temperature back reacted plasma with the energy

loss of a heavy probe quark rotating in the vacuum of the theory. The vacuum of the

theory is realised as the N = 4 SYM theory. For pure rotational motion inside the strongly

coupled thermal plasma, the vacuum energy loss of a boundary quark is first proposed by

Mikhailov [67]. The form of the energy loss is given as,

dE

dt

∣∣∣
vacuum radiation

∼ v2ω2

(1− v2)2
. (4.22)

In 9, we plot the ratio of total energy loss in the back reacted thermal plasma to the

vacuum energy loss. We notice that for two different values of quark’s angular speed the

energy loss in back reacted thermal plasma never turns out to be lesser than the vacuum

energy loss. The ratio smoothly falls off to unity as the quark’s speed approaches to the

speed of light. This property holds true even the strength of back reaction increases. By

studying the plots, we infer that for a lower value of angular speed of the boundary probe

quark, the dominating contribution for energy loss comes from the drag. However, for a

higher value of the angular speed the ratio is very close to unity. Therefore as the angular

speed becomes substantially large the radiation energy loss starts dominating over drag

energy loss.

5 Effect of angular drag on rotating heavy qq̄ probe

In this section we briefly study the effect of angular drag force on rotational motion of the

heavy qq̄ probe moving inside the back reacted thermal N = 4 SYM plasma. In [63], it

has been shown that the translational degrees of freedom of the qq̄ probe are free of drag

effect. In this present work, we show that the rotational degrees of freedom of qq̄ probe are
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also unaffected by the drag force imparted by the back reacted thermal plasma. We start

our analysis with two dimensional uniform motion of a qq̄ bound state with a separation

length L and the centre of the pair is at the origin of the boundary coordinates.

In the dual gravity theory, we consider a spiral profile of a rotating string with both

of its ends are attached at the boundary with the separation length L and the body of the

string hanging in to the radial direction u of the bulk described by (1.1). The ansatz for

string profile is given as,

Xµ(τ, σ) = (t = τ, u = σ, x = ρ(σ) cos(ωt+ θ(σ)), y = ρ(σ) sin(ωt+ θ(σ)), z = 0). (5.1)

The profile of the string stretches into the bulk up to a certain radial distance implying,

du

dρ
= 0. (5.2)

For pure translational motion of the boundary qq̄ probe, the dual string does not experience

a drag force and therefore it does not trail behind its endpoints attached to the boundary.

However, we are mainly interested in rotational motion of the qq̄ probe. Our aim is to

holographically show that there should not be any effect of angular drag on the spiral profile

of dual rotating string. Using the string profile ansatz (5.1) we compute the Lagrangian

density as

L =

[
f2

h
(h− ρ2ω2) + f2(h− ρ2ω2)ρ′2 + hf2ρ2θ′2

] 1
2

. (5.3)

The momentum along the direction of θ and ρ can be derived as,

Πu
θ =

hf2ρ2θ′

L
and Πu

ρ =
f2(h− ω2ρ2)ρ′

L
. (5.4)

By solving (5.4) for ρ′ and θ′ we get,

ρ′ =
Πu
ρ ρ√

(h− ω2ρ2)(f2hρ2 −Πu2
θ )− hΠu2

ρ ρ
2
, (5.5)

and

θ′ =
Πu
θ (h− ω2ρ2)

hρ
√

(h− ω2ρ2)(f2hρ2 −Πu2
θ )− hΠu2

ρ ρ
2
. (5.6)

Since at turning point ρ′ becomes infinity, the condition for turning point can be achieved

by setting the denominator of the right hand side in the equation (5.5) to zero.

(h− ω2ρ2)(f2hρ2 −Πu2

θ )
∣∣∣
uturning point

= hΠu2

ρ ρ
2. (5.7)

To obtain a non-trivial turning point in this set up we consider Πu
ρ takes non-zero value.

Furthermore, the ratio of ρ′ to θ′ takes the following form,

ρ′

θ′
=

hρ2Πu
ρ

(h− ω2ρ2)Πu
θ

. (5.8)

– 19 –



J
H
E
P
0
5
(
2
0
1
6
)
0
9
4

In the left hand side of equation (5.8) we get ρ′ = ∞ at the maxima of the string, so in

the right hand side until the condition h = ω2ρ2 is met the momentum along the angular

direction Πu
θ should be equal to zero. In addition to that, to achieve a non trivial value of

the turning point we always set Πu
ρ 6= 0⇒ h 6= ω2ρ2.

Consequently, the θ equation of motion of the string can be written as,

∂t(Π
t
θ) + ∂u(Πu

θ ) = 0. (5.9)

Since the Lagrangian we are interested in is independent from the explicit dependence of

time it implies that Πu
θ is a constant of motion. Therefore, Πu

θ vanishes not only at the

turning point of the string, but also through out the full string profile. Therefore there is no

drag force in the θ direction and we can conclude that the rotating qq̄ experience no drag in

the angular direction. It is very interesting to study the translational and rotational motion

together and extract the condition for no drag for qq̄ bound state. However, the analysis

is fully time dependent and requires heavy numerical analysis. We leave this problem for

our future study.

6 Conclusion

In this work, using various holographic methods, we study the effect of back reaction

on the hydrodynamical properties of the strongly coupled N = 4 SYM plasma at finite

temperature. To estimate the effect of back reaction on the strong coupling properties

of the plasma we use heavy quark and qq̄ bound state as probes and compute the jet

quenching parameter, screening length and binding energy. In each case, we observe that

the presence of the back reaction enhances strong coupling effect of the thermal plasma.

This observation is consistent with drag force result reported in [35]. We also compute the

energy loss of a heavy probe quark rotating in the back reacted plasma. We conclude that

the presence of back reaction enhances the energy loss.

Gauge/gravity duality allows us to study these hydrodynamic properties of strongly

coupled back reacted thermal plasma by doing the computation in the corresponding dual

gravity theory. In this dual theory, we consider a uniform distribution of infinitely long,

static strings hanging from the boundary of the AdS black hole space-time and stretching

up to the horizon of the black hole. As a result of introducing this long strings, the AdS

black hole gets back reacted and this back reacted geometry is exactly computable. The

back reacted geometry is parameterised by the mass of the black hole as well as long string

density. The gravitational stability of the back reacted black hole has been analysed using

tensor and vector perturbations.

In this present work, using holographic technic, we study the jet quenching parameter

signifying the energy loss due to the suppression of heavy probe quarks with high transverse

momentum in the presence of thermal medium. From our analysis, we note that the

presence of back reaction always results into enhancement of heavy quark suppression. We

also note that for a fixed value of back reaction the jet quenching parameter monotonously

increases with respect to the temperature of the medium.
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Moreover we analyse the screening length between the qq̄ pair probing the back reacted

plasma. It turns out that with the enhancement of back reaction, the screening length of

a qq̄ pair reduces significantly. Furthermore, the effect of back reaction also reduces the

binding energy of the qq̄ pair.

To have a qualitative understanding of the effect of back reaction on energy loss we

study the dynamics of a heavy quark rotating with constant angular speed inside the

thermal plasma. Using holographic prescription, we study the ratio of the total energy loss

in the presence of back reaction to the total energy loss without back reaction with respect

to boundary speed v = ρ(u → 0)ω. When the quark’s angular speed is very small the

radiation energy loss naturally remains insignificant. However, it is evident from the plot

that the effect of back reaction significantly enhances the total energy loss. This particular

observation leads to the conclusion that the presence of back reaction actually results in to

the enhancement of the drag energy loss. Moreover, as the linear speed of quark approaches

to the speed of light, it overcomes the drag force imparted by the back reacted plasma.

When the quark’s angular speed increases sufficiently the ratio takes values very close to

unity and this observation implies that the dominating contribution for total energy loss

comes from the radiation effect. The study of the ratio of the total energy loss to the

drag energy loss gives more support to these conclusions. We also plot the ratio of total

energy loss in the back reacted thermal plasma to the energy loss in the vacuum of the

theory. The plot clearly shows that for a lower angular speed of probe quark, the ratio

takes very high values. This signifies that the energy loss is fully dominated by the drag

effect. For a higher angular speed, the ratio becomes close to unity and it implies that

radiation effect contributes more to the total energy loss of the probe quark. The reason

behind the enhancement of energy loss due to the presence of back reaction is related to the

strong interaction of the heavy probe with other heavy quarks uniformly distributed over

the plasma. As a consequences of this interaction with the heavy quark distribution, the

probe quark always expenses more energy as it performs both linear and circular motion

in the strongly coupled thermal plasma.

Finally we have studied the dynamics of a heavy rotating qq̄ pair in the back reacted

thermal plasma. We show that in the case of pure rotational motion the dynamics of the

qq̄ probe is free of angular drag.

It is important to note that in the phenomenological study of hydrodynamical aspects

associated with the QGP medium, the back reaction of the plasma is usually neglected.

The back reaction we consider can be created by adding other heavy static quarks in the

thermal plasma. Within the regime of gauge/gravity duality, our present work perhaps

makes an effort to capture such back reaction effect produced by those other heavy quarks

present in the plasma.
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