374 research outputs found

    The effects of three days of sub-maximal-intensity mountain biking on sleep

    Get PDF
    Objectives. We determined the effect of three consecutive days of sub-maximal-intensity mountain biking (4.5 hours per day, ~64 km per day), on the sleep of ten healthy, trained male and female mountain bikers. Methods. The sleep of the mountain bikers was assessed both subjectively (visual analogue scales and sleep questionnaires) and objectively (activity data logger) on each night of mountain biking and for seven nights when they were not cycling (pre-exercise, mean of seven nights). The cyclists’ mood and muscular pain were assessed each night using visual analogue scales. The cyclists slept at home in their normal environment. Results. There was no significant difference between the mountain bikers’ muscular pain and mood (calm/anxious visual analogue scale) measured during the pre-exercise stage and their pain and mood measured on each of the mountain biking nights (p>0.05). However, compared with the pre-exercise stage, the mountain bikers reported that they were significantly more tired (tired/energetic visual analogue scale) on each night of cycling (p<0.01). The sleep of the mountain bikers was disrupted on the night of the third day of mountain biking only. On this night, compared with the pre-exercise stage, the mountain bikers reported that they woke up more during the night (double the number of times) (p<0.001), and an activity data logger recorded that they were awake for about half an hour longer during the night (p<0.05). Conclusion. We have shown that three days of repeated, endurance sub-maximal mountain biking disrupted the sleep of the mountain bikers on the third night of cycling

    CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth

    Get PDF
    Engineering T cells to express chimeric antigen receptors (CARs) specific for antigens on hematological cancers has yielded remarkable clinical responses, but with solid tumors, benefit has been more limited. This may reflect lack of suitable target antigens, immune evasion mechanisms in malignant cells, and/or lack of T cell infiltration into tumors. An alternative approach, to circumvent these problems, is targeting the tumor vasculature rather than the malignant cells directly. CLEC14A is a glycoprotein selectively overexpressed on the vasculature of many solid human cancers and is, therefore, of considerable interest as a target antigen. Here, we generated CARs from 2 CLEC14A-specific antibodies and expressed them in T cells. In vitro studies demonstrated that, when exposed to their target antigen, these engineered T cells proliferate, release IFN-γ, and mediate cytotoxicity. Infusing CAR engineered T cells into healthy mice showed no signs of toxicity, yet these T cells targeted tumor tissue and significantly inhibited tumor growth in 3 mouse models of cancer (Rip-Tag2, mPDAC, and Lewis lung carcinoma). Reduced tumor burden also correlated with significant loss of CLEC14A expression and reduced vascular density within malignant tissues. These data suggest the tumor vasculature can be safely and effectively targeted with CLEC14A-specific CAR T cells, offering a potent and widely applicable therapy for cancer

    You Name It – How Memory and Delay Govern First Name Dynamics

    Get PDF
    The adoption and abandonment of first names through time is a fascinating phenomenon that may shed light on social dynamics and the forces that determine cultural taste in general. Here we show that baby name dynamics is governed almost solely by deterministic forces, even though the emerging abundance statistics resembles the one obtained from a pure drift model. Exogenous events are shown to affect the name dynamics very rarely, and most of the year-to-year fluctuations around the deterministic trend may be attributed solely to demographic noise. We suggest that the rise and fall of a name reflect an “infection” process with delay and memory. The symmetry between adoption and abandonment speed emerges from our model without further assumptions

    Accurate and exact CNV identification from targeted high-throughput sequence data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Massively parallel sequencing of barcoded DNA samples significantly increases screening efficiency for clinically important genes. Short read aligners are well suited to single nucleotide and indel detection. However, methods for CNV detection from targeted enrichment are lacking. We present a method combining coverage with map information for the identification of deletions and duplications in targeted sequence data.</p> <p>Results</p> <p>Sequencing data is first scanned for gains and losses using a comparison of normalized coverage data between samples. CNV calls are confirmed by testing for a signature of sequences that span the CNV breakpoint. With our method, CNVs can be identified regardless of whether breakpoints are within regions targeted for sequencing. For CNVs where at least one breakpoint is within targeted sequence, exact CNV breakpoints can be identified. In a test data set of 96 subjects sequenced across ~1 Mb genomic sequence using multiplexing technology, our method detected mutations as small as 31 bp, predicted quantitative copy count, and had a low false-positive rate.</p> <p>Conclusions</p> <p>Application of this method allows for identification of gains and losses in targeted sequence data, providing comprehensive mutation screening when combined with a short read aligner.</p

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    To be or not to be a pseudogene: a molecular epidemiological approach to the mclx genes and its impact in tuberculosis

    Get PDF
    Tuberculosis presents a myriad of symptoms, progression routes and propagation patterns not yet fully understood. Whereas for a long time research has focused solely on the patient immunity and overall susceptibility, it is nowadays widely accepted that the genetic diversity of its causative agent, Mycobacterium tuberculosis, plays a key role in this dynamic. This study focuses on a particular family of genes, the mclxs (Mycobacterium cyclase/LuxR-like genes), which codify for a particular and nearly mycobacterial-exclusive combination of protein domains. mclxs genes were found to be pseudogenized by frameshift-causing insertion(s)/deletion(s) in a considerable number of M. tuberculosis complex strains and clinical isolates. To discern the functional implications of the pseudogenization, we have analysed the pattern of frameshift-causing mutations in a group of M. tuberculosis isolates while taking into account their microbial-, patient- and disease-related traits. Our logistic regression-based analyses have revealed disparate effects associated with the transcriptional inactivation of two mclx genes. In fact, mclx2 (Rv1358) pseudogenization appears to be primarily driven by the microbial phylogenetic background, being mainly related to the Euro-American (EAm) lineage; on the other hand, mclx3 (Rv2488c) presents a higher tendency for pseudogenization among isolates from patients born on the Western Pacific area, and from isolates causing extra-pulmonary infections. These results contribute to the overall knowledge on the biology of M. tuberculosis infection, whereas at the same time launch the necessary basis for the functional assessment of these so far overlooked genes.This work was supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal, and cofunded by Programa Operacional Regional do Norte (ON.2-O Novo Norte), Quadro de Referencia Estrategico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER), and from Projeto Estrategico - LA 26 - 2013-2014 (PEst-C/SAU/LA0026/2013). H.N.-G. received a personal FCT Grant (SFRH/BD/33902/2209). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Asymmetric division coordinates collective cell migration in angiogenesis

    Get PDF
    The asymmetric division of stem or progenitor cells generates daughters with distinct fates and regulates cell diversity during tissue morphogenesis. However, roles for asymmetric division in other more dynamic morphogenetic processes, such as cell migration, have not previously been described. Here we combine zebrafish in vivo experimental and computational approaches to reveal that heterogeneity introduced by asymmetric division generates multicellular polarity that drives coordinated collective cell migration in angiogenesis. We find that asymmetric positioning of the mitotic spindle during endothelial tip cell division generates daughters of distinct size with discrete ‘tip’ or ‘stalk’ thresholds of pro-migratory Vegfr signalling. Consequently, post-mitotic Vegfr asymmetry drives Dll4/Notch-independent self-organization of daughters into leading tip or trailing stalk cells, and disruption of asymmetry randomizes daughter tip/stalk selection. Thus, asymmetric division seamlessly integrates cell proliferation with collective migration, and, as such, may facilitate growth of other collectively migrating tissues during development, regeneration and cancer invasion

    Gel-type autologous chondrocyte (Chondron™) implantation for treatment of articular cartilage defects of the knee

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gel-type autologous chondrocyte (Chondron™) implantations have been used for several years without using periosteum or membrane. This study involves evaluations of the clinical results of Chondron™ at many clinical centers at various time points during the postoperative patient follow-up.</p> <p>Methods</p> <p>Data from 98 patients with articular cartilage injury of the knee joint and who underwent Chondron™ implantation at ten Korean hospitals between January 2005 and November 2008, were included and were divided into two groups based on the patient follow-up period, i.e. 13~24-month follow-up and greater than 25-month follow-up. The telephone Knee Society Score obtained during telephone interviews with patients, was used as the evaluation tool.</p> <p>Results</p> <p>On the tKSS-A (telephone Knee Society Score-A), the score improved from 43.52 ± 20.20 to 89.71 ± 13.69 (P < 0.05), and on the tKSS-B (telephone Knee Society Score-B), the score improved from 50.66 ± 20.05 to 89.38 ± 15.76 (P < 0.05). The total improvement was from 94.18 ± 31.43 to 179.10 ± 24.69 (P < 0.05).</p> <p>Conclusion</p> <p>Gel-type autologous chondrocyte implantation for chondral knee defects appears to be a safe and effective method for both decreasing pain and improving knee function.</p

    The VicGeneration study - a birth cohort to examine the environmental, behavioural and biological predictors of early childhood caries: background, aims and methods

    Get PDF
    Background Dental caries (decay) during childhood is largely preventable however it remains a significant and costly public health concern, identified as the most prevalent chronic disease of childhood. Caries in children aged less than five years (early childhood caries) is a rapid and progressive disease that can be painful and debilitating, and significantly increases the likelihood of poor child growth, development and social outcomes. Early childhood caries may also result in a substantial social burden on families and significant costs to the public health system. A disproportionate burden of disease is also experienced by disadvantaged populations. Methods/Design This study involves the establishment of a birth cohort in disadvantaged communities in Victoria, Australia. Children will be followed for at least 18 months and the data gathered will explore longitudinal relationships and generate new evidence on the natural history of early childhood caries, the prevalence of the disease and relative contributions of risk and protective biological, environmental and behavioural factors. Specifically, the study aims to: 1. Describe the natural history of early childhood caries (at ages 1, 6, 12 and 18 months), tracking pathways from early bacterial colonisation, through non-cavitated enamel white spot lesions to cavitated lesions extending into dentine. 2. Enumerate oral bacterial species in the saliva of infants and their primary care giver. 3. Identify the strength of concurrent associations between early childhood caries and putative risk and protective factors, including biological (eg microbiota, saliva), environmental (fluoride exposure) and socio-behavioural factors (proximal factors such as: feeding practices and oral hygiene; and distal factors such as parental health behaviours, physical health, coping and broader socio-economic conditions). 4. Quantify the longitudinal relationships between these factors and the development and progression of early childhood caries from age 1-18 months. Discussion There is currently a lack of research describing the natural history of early childhood caries in very young children, or exploring the interactions between risk and protective factors that extend to include contemporary measures of socio-behavioural factors. This study will generate knowledge about pathways, prevalence and preventive opportunities for early childhood caries, the most prevalent child health inequality
    corecore