73 research outputs found

    The Silvics of Some East European and Siberian Boreal Forest Tree Species

    Get PDF
    In recent years, the boreal forest has received increased scientific attention in light of projected climatic warming to boreal regions from increased concentrations of atmospheric carbon dioxide. The ecological consequences of such a warming could be significant. However, before the consequences of climatic change can be properly investigated, the ecology of boreal forest tree species must be adequately understood. Though the life-histories of many North American boreal forest tree species are well known, little comparable information has been compiled in English for the major boreal forest tree species of the Soviet Union. In this paper, we present a preliminary description of the silvics of seven of these species -- their ranges, optimum climatic and soil conditions, regeneration characteristics, tree growth features, responses to suboptimal site conditions, and reaction to fire. We hope that this information will provide a useful data base for use in modeling the ecology of these species

    The age and hydrological history of Blue Lake, South Australia

    Full text link
    Three sediment cores from the Blue Lake, a groundwater fed lake of volcanic origin in South Australia, have been investigated using a range of chemical and isotopic parameters. The C-14 activity of both the inorganic and organic carbon fractions of the sediment decreases monotonically with depth. The rate of change with depth is greater for near-surface samples with an apparent hiatus in sedimentation rate at about 7000 yr B.P. Estimates of age for the precipitated authigenic carbonate, after correction for dilution with dead carbon from the groundwater, agree well with calculated ages from the organic carbon fraction of the sediment. We suggest the lake is much older than previously proposed using other dating techniques. Variations in the delta(13)C and delta(18)O composition of the authigenic carbonate reflect different residence times of dissolved inorganic carbon and water in the lake caused by changes in the lake level. During periods of hydrologic steady-state, it is suggested that relative changes in the temperature of the lake can be seen in delta(18)O changes in authigenic carbonate. Blue Lake has been undergoing sedimentation for at least 28,000 years, including two lengthy periods of hydrologic steady state. The lake, for a large proportion of its existence, was much shallower while for the last 7000 years has maintained a level close to the present one. The influence of pumping from the lake for urban water supply during this century is reflected in the isotopic composition of carbonate in the sediment

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Plasma Sources in Planetary Magnetospheres: Mercury

    Full text link
    • …
    corecore