92 research outputs found

    Monitoring regional crustal deformation with horizontal geodetic data

    Get PDF
    The National Ocean Survey is developing an automated system to derive parameters of horizontal crustal motion from existing geodetic data by the process of least squares estimation. The estimated parameter will describe crustal motion as a function of geographic position. The system will first be tested in the Imperial Valley region of southern California, using data from 8 individual field projects spanning four decades of time

    A New Paradigm for Large Earthquakes in Stable Continental Plate Interiors

    Get PDF
    Large earthquakes within stable continental regions (SCR) show that significant amounts of elastic strain can be released on geological structures far from plate boundary faults, where the vast majority of the Earth's seismic activity takes place. SCR earthquakes show spatial and temporal patterns that differ from those at plate boundaries and occur in regions where tectonic loading rates are negligible. However, in the absence of a more appropriate model, they are traditionally viewed as analogous to their plate boundary counterparts, occuring when the accrual of tectonic stress localized at long-lived active faults reaches failure threshold. Here we argue that SCR earthquakes are better explained by transient perturbations of local stress or fault strength that release elastic energy from a pre-stressed lithosphere. As a result, SCR earthquakes can occur in regions with no previous seismicity and no surface evidence for strain accumulation. They need not repeat, since the tectonic loading rate is close to zero. Therefore, concepts of recurrence time or fault slip rate do not apply. As a consequence, seismic hazard in SCRs is likely more spatially distributed than indicated by paleoearthquakes, current seismicity, or geodetic strain rates

    Robustness analysis of geodetic networks in the case of correlated observations

    Get PDF
    GPS (or GNSS) networks are invaluable tools for monitoring natural hazards such as earthquakes. However, blunders in GPS observations may be mistakenly interpreted as deformation. Therefore, robust networks are needed in deformation monitoring using GPS networks. Robustness analysis is a natural merger of reliability and strain and defined as the ability to resist deformations caused by the maximum undetecle errors as determined from internal reliability analysis. However, to obtain rigorously correct results; the correlations among the observations must be considered while computing maximum undetectable errors. Therefore, we propose to use the normalized reliability numbers instead of redundancy numbers (Baarda's approach) in robustness analysis of a GPS network. A simple mathematical relation showing the ratio between uncorrelated and correlated cases for maximum undetectable error is derived. The same ratio is also valid for the displacements. Numerical results show that if correlations among observations are ignored, dramatically different displacements can be obtained depending on the size of multiple correlation coefficients. Furthermore, when normalized reliability numbers are small, displacements get large, i.e., observations with low reliability numbers cause bigger displacements compared to observations with high reliability numbers

    The Ccr4-Not Complex Interacts with the mRNA Export Machinery

    Get PDF
    The Ccr4-Not complex is a key eukaryotic regulator of gene transcription and cytoplasmic mRNA degradation. Whether this complex also affects aspects of post-transcriptional gene regulation, such as mRNA export, remains largely unexplored. Human Caf1 (hCaf1), a Ccr4-Not complex member, interacts with and regulates the arginine methyltransferase PRMT1, whose targets include RNA binding proteins involved in mRNA export. However, the functional significance of this regulation is poorly understood.Here we demonstrate using co-immunoprecipitation approaches that Ccr4-Not subunits interact with Hmt1, the budding yeast ortholog of PRMT1. Furthermore, using genetic and biochemical approaches, we demonstrate that Ccr4-Not physically and functionally interacts with the heterogenous nuclear ribonucleoproteins (hnRNPs) Nab2 and Hrp1, and that the physical association depends on Hmt1 methyltransferase activity. Using mass spectrometry, co-immunoprecipitation and genetic approaches, we also uncover physical and functional interactions between Ccr4-Not subunits and components of the nuclear pore complex (NPC) and we provide evidence that these interactions impact mRNA export.Taken together, our findings suggest that Ccr4-Not has previously unrealized functional connections to the mRNA processing/export pathway that are likely important for its role in gene expression. These results shed further insight into the biological functions of Ccr4-Not and suggest that this complex is involved in all aspects of mRNA biogenesis, from the regulation of transcription to mRNA export and turnover

    OPUS versus Russian online GNSS data processing service

    No full text

    GPS Solut DOI 10.1007/s10291-012-0255-y ORIGINAL ARTICLE

    No full text
    the National Oceanic and Atmospheric Administration, recently released version 3.1 of the Horizontal Time-Dependent Positioning (HTDP) utility for transforming coordinates across time and between spatial reference frames. HTDP 3.1 introduces improved crustal velocity models for both the contiguous United States and Alaska. The new HTDP version also introduces a model for estimating displacements associated with the magnitude 7.2 El Mayor–Cucapah earthquake of April 4, 2010. In addition, HTDP 3.1 enables its users to transform coordinates between the newly adopted International Terrestrial Reference Frame of 2008 (ITRF2008) and IGS08 reference frames and other popular reference frames, including current realizations of NAD 83 and WGS84. A more convenient format to enter a list of coordinates to be transformed has been added. Users can now also enter dates in the decimal year format as well as the month-day-year format. The new HTDP utility, explanatory material and instructions are available a
    • …
    corecore