18 research outputs found

    An overview on the small heat shock proteins

    Get PDF
    In the last 25 years, a huge amount of literature has been accumulated describing the cell’s response to different kinds of environmental stress conditions, such as high temperatures, altered pH, exposure of the cell to toxins, starvation, oxygen, and water deprivation, among others. Heat shock proteins (HSPs) are one of the main expressed products of the cell in response to stresses. HSPs can be classified into six structurally conserved classes according to their molecular weight namely, HSP100, HSP90, HSP70, HSP60, small heat shock proteins (sHSPs) and ubiquitin (8.5 kDa). In eukaryotes, different heat shock genes are expressed uncoordinatedly, whereas in prokaryote, heat shock genes form a regulon and appear simultaneously. sHSPs are associated with nuclei, cytoskeleton and membranes. They bind partially to denatured proteins, preventing irreversible protein aggregation during stress. In animals, only one sHSP gene has been located in yeast cells, ten in mammalian, two in birds and four genes have been found in Drosophila. However, in plants more than 20 sHSPs have been reported and they can be divided into 6 classes, of which, 3 classes (CI, CII and CIII) are in the cytosole or in the nucleus and the other three (CIV, CV and CVI) in the plastids, endoplasmic reticulum and mitochondria. Mitochondrial and chloroplast sHSPs protect electron transport chain. During development in animals, sHSP genes are normally regulated at late neurula and early tailbud stage and in plants during pollen development, seed maturation, seed imbibition and germination. Transcriptional regulation of sHSPs depends on particular activation of heat shock factors (HSF) which recognize the highly conserved heat-shock elements (HSEs). After the heat stress has been released, the sHSPs are quite stable, suggesting that sHSPs may be important for recovery as well

    Comparative analysis of regulatory elements in different germin-like protein gene promoters

    Get PDF
    Germin and germin-like proteins (GLPs) the members of cupin superfamily of proteins, which are functionally most diverse proteins. Germin and GLPs have some unique features as they are highly resistant to proteases and to degradation by heat, high pH and detergents like Sodium dodecylSulphate (SDS). They are water soluble extracellular enzymatic protein that may also have Oxalate Oxidase (OxO), Superoxide dismutase (SOD) or ADP-glucose pyrophosphate or phosphodiestrase (AGPPase) activities. At the moment seven GLP gene promoter from different organisms have been studied and published. These all promoter sequences have been analyzed in this study. It was observed that these promoters have important regulatory elements, which are involved in various important functions. These elements have been compared on the basis of location, copy number, and distributed on positive and negative strands. It was also observed that some of these elements are common and remained conserved among all GLP promoters during evolution. Such regulatory elements are commonly observed in seed storage proteins, dehydration in response to light, senescence observed on exposure to dark and in elements specific for expression in pollen. Moreover, these commonelements are reported to be expressed under environmental stresses (salt and pathogen attack) and to growth regulators

    Identification of Maize Genes Associated with Host Plant Resistance or Susceptibility to Aspergillus flavus Infection and Aflatoxin Accumulation

    Get PDF
    infection and aflatoxin accumulation. inoculation were compared in two resistant maize inbred lines (Mp313E and Mp04∶86) in contrast to two susceptible maize inbred lines (Va35 and B73) by microarray analysis. Principal component analysis (PCA) was used to find genes contributing to the larger variances associated with the resistant or susceptible maize inbred lines. The significance levels of gene expression were determined by using SAS and LIMMA programs. Fifty candidate genes were selected and further investigated by quantitative RT-PCR (qRT-PCR) in a time-course study on Mp313E and Va35. Sixteen of the candidate genes were found to be highly expressed in Mp313E and fifteen in Va35. Out of the 31 highly expressed genes, eight were mapped to seven previously identified quantitative trait locus (QTL) regions. A gene encoding glycine-rich RNA binding protein 2 was found to be associated with the host hypersensitivity and susceptibility in Va35. A nuclear pore complex protein YUP85-like gene was found to be involved in the host resistance in Mp313E. infection and aflatoxin accumulation. These findings will be important in identification of DNA markers for breeding maize lines resistant to aflatoxin accumulation

    Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019

    Get PDF
    Background Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990–2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73·7% (68·3 to 77·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0·50 (0·44 to 0·58) per 100 000 population, and 15 900 (97·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0·13 (0·12 to 0·14) per 100 000 population in the high SDI quintile, 0·60 (0·51 to 0·70) per 100 000 population in the low-middle SDI quintile, and 0·71 (0·60 to 0·86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r2=0·62). From 1990 to 2019, age-standardised death rates decreased globally by 17·0% (−28·4 to −2·9) for all diabetes, and by 21·0% (–33·0 to −5·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (−13·6% [–28·4 to 3·4]) and for type 1 diabetes (−13·6% [–29·3 to 8·9]). Interpretation Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations.publishedVersio

    Photosystem II and cellular membrane stability evaluation in hexaploid wheat seedlings under salt stress conditions

    No full text
    Salinity limits crop production in large areas of the world. The application of in vitro Photosystem II (PS-II) activity measurements to screen hexaploid wheat (Triticum aestivum, L.) genotypes for NaCl tolerance has been investigated by comparing their responses under stress and control (no added NaCl) conditions. One of the four cultivars used in the study was 'Kharchia' known for its high salt tolerance. Wheat seedlings were grown hydroponically in environmental chambers and treated with a range of NaCl concentrations (0.034 M, 0.17 M, 0.68 M, or 3.42 M) over a 1, 3, and 5-day period. The salt treatments were started in the appropriate time so that they were all ten-day-old during harvest. Cellular membrane stability (CMS) as measured by a conductivity method and PS-LT. activity values were affected adversely by NaCl concentration and duration of treatment. Both methods clearly distinguish between salt-sensitive and salt-tolerant genotypes. Statistical analysis showed that PS-II activity and CMS measurements are well correlated (r=0.7589) suggesting that PS-II activity would be used as an additional screening method besides CMS to evaluate salt tolerance of wheat
    corecore