216 research outputs found

    Rituximab versus cyclophosphamide as first steroid sparing agent in childhood frequently relapsing and steroid dependent nephrotic syndrome

    Get PDF
    Background: Approximately 50% of children with steroid-sensitive nephrotic syndrome (SSNS) will suffer from frequent relapses or steroid dependency, prompting the use of so-called steroid-sparing drugs. In this pilot study, we compare the efficacy and safety of rituximab to oral cyclophosphamide as first-line steroid-sparing medications. Methods: A prospective open-label non-randomized study of children with frequent relapsing or steroid-dependant SSNS. Exclusion criteria were steroid-resistant disease, prescription of immunosuppressive agents other than prednisolone or levamisole, evidence of impaired kidney function, leucopenia, or active infection. The recruited children were allocated either to the oral cyclophosphamide (3 mg/kg/day for 8 weeks) or intravenous rituximab treatment (two doses of 375 mg/m2/dose, 2 weeks apart) and were monitored for relapses and side effects for 12 months. Results: Forty-six subjects were included from two centers; 27 received cyclophosphamide and 19 received rituximab. One-year relapse-free survival was reached in 17 (58.6%) patients treated with cyclophosphamide compared to 16 (84.2%) with rituximab (adjusted HR 0.36; 95% CI 0.09–1.45; p = 0.151). The mean interval to relapse was 6.9 months in the cyclophosphamide group (N = 10) and 6.3 months in the rituximab group (N = 3). Both treatments were associated with a significant (p < 0.001) reduction in prescribed dose of oral alternate-day steroid from 1.02 to 0.36 mg/kg (cyclophosphamide) and 0.86 to 0.08 mg/kg (rituximab). Importantly, a significantly (p = 0.003) higher percentage of patients achieved complete withdrawal of steroid within 3 months of commencing study treatment in the rituximab (73.7%) versus cyclophosphamide (29.6%) group. Transient leucopenia was the most frequent adverse effect observed in the cyclophosphamide group (18.5%) and one patient (3.4%) had acute hepatotoxicity besides severe leucopenia and neutropenia in the 7th week of treatment with complete recovery with the withdrawal of cyclophosphamide and maintenance of remission. A minor infusion-related reaction in the form of a generalized macular skin rash was observed in one patient (5%) in the rituximab group. Conclusions: Rituximab is non-inferior to cyclophosphamide and safe as a first-line steroid-sparing agent in children with SSNS. A larger multicenter study is required to assess superiority over cyclophosphamide

    Retinoic Acid Mediates Regulation of Network Formation by COUP-TFII and VE-Cadherin Expression by TGFΞ² Receptor Kinase in Breast Cancer Cells

    Get PDF
    Tumor development, growth, and metastasis depend on the provision of an adequate vascular supply. This can be due to regulated angiogenesis, recruitment of circulating endothelial progenitors, and/or vascular transdifferentiation. Our previous studies showed that retinoic acid (RA) treatment converts a subset of breast cancer cells into cells with significant endothelial genotypic and phenotypic elements including marked induction of VE-cadherin, which was responsible for some but not all morphological changes. The present study demonstrates that of the endothelial-related genes induced by RA treatment, only a few were affected by knockdown of VE-cadherin, ruling it out as a regulator of the RA-induced endothelial genotypic switch. In contrast, knockdown of the RA-induced gene COUP-TFII prevented the formation of networks in Matrigel but had no effect on VE-cadherin induction or cell fusion. Two pan-kinase inhibitors markedly blocked RA-induced VE-cadherin expression and cell fusion. However, RA treatment resulted in a marked and broad reduction in tyrosine kinase activity. Several genes in the TGFΞ² signaling pathway were induced by RA, and specific inhibition of the TGFΞ² type I receptor blocked both RA-induced VE-cadherin expression and cell fusion. Together these data indicate a role for the TGFΞ² pathway and COUP-TFII in mediating the endothelial transdifferentiating properties of RA

    A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus

    Get PDF
    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection

    RHPS4 G-quadruplex ligand induces anti-proliferative effects in brain tumor cells

    Get PDF
    Background Telomeric 3’ overhangs can fold into a four-stranded DNA structure termed G-quadruplex (G4), a formation which inhibits telomerase. As telomerase activation is crucial for telomere maintenance in most cancer cells, several classes of G4 ligands have been designed to directly disrupt telomeric structure. Methods We exposed brain tumor cells to the G4 ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) and investigated proliferation, cell cycle dynamics, telomere length, telomerase activity and activated c-Myc levels. Results Although all cell lines tested were sensitive to RHPS4, PFSK-1 central nervous system primitive neuroectodermal cells, DAOY medulloblastoma cells and U87 glioblastoma cells exhibited up to 30-fold increased sensitivity compared to KNS42 glioblastoma, C6 glioma and Res196 ependymoma cells. An increased proportion of S-phase cells were observed in medulloblastoma and high grade glioma cells whilst CNS PNET cells showed an increased proportion of G1-phase cells. RHPS4-induced phenotypes were concomitant with telomerase inhibition, manifested in a telomere length-independent manner and not associated with activated c-Myc levels. However, anti-proliferative effects were also observed in normal neural/endothelial cells in vitro and ex vivo. Conclusion This study warrants in vivo validation of RHPS4 and alternative G4 ligands as potential anti-cancer agents for brain tumors but highlights the consideration of dose-limiting tissue toxicities

    Effects of oestradiol and tamoxifen on VEGF, soluble VEGFR-1, and VEGFR-2 in breast cancer and endothelial cells

    Get PDF
    Angiogenesis is regulated by the balance between pro- and antiangiogenic factors. Vascular endothelial growth factor (VEGF), acting via the receptors VEGFR-1 and VEGFR-2, is a key mediator of tumour angiogenesis. The soluble form of the VEGF receptor-1 (sVEGFR-1) is an important negative regulator of VEGF-mediated angiogenesis. The majority of breast cancers are oestrogen dependent, but it is not fully understood how oestrogen and the antioestrogen, tamoxifen, affect the balance of angiogenic factors. Angiogenesis is a result of the interplay between cancer and endothelial cells, and sex steroids may exert effects on both cell types. In this study we show that oestradiol decreased secreted sVEGFR-1, increased secreted VEGF, and decreased the ratio of sVEGFR-1/VEGF in MCF-7 human breast cancer cells. The addition of tamoxifen opposed these effects. Moreover, human umbilical vein endothelial cells (HUVEC) incubated with supernatants from oestradiol-treated MCF-7 cells exhibited higher VEGFR-2 levels than controls. In vivo, MCF-7 tumours from oestradiol+tamoxifen-treated nude mice exhibited decreased tumour vasculature. Our results suggest that tamoxifen and oestradiol exert dual effects on the angiogenic environment in breast cancer by regulating cancer cell-secreted angiogenic ligands such as VEGF and sVEGFR-1 and by affecting VEGFR-2 expression of endothelial cells

    In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I’yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Methods Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against Ξ±-amylase, Ξ±-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Results Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of Ξ±-amylase with IC50 values of 166.50 ± 5.50 ΞΌg/mL and 160.20 ± 27.92 ΞΌg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of Ξ±-glucosidase with an IC50 of 167.83 ± 23.82 ΞΌg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC50 values of 34.49 ± 4.31 ΞΌg/mL and 47.72 ± 1.65 ΞΌg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on Ξ±-amylase, Ξ±-glucosidase and the antiglycation potential of the extracts did not correlate with the total phenolic, total flavonoid, FRAP or DPPH. For ACE inhibition, IC50 values ranged between 266.27 ± 6.91 to 695.17 ± 15.38 ΞΌg/mL. Conclusions The tested Australian medicinal plant extracts inhibit glucose-induced fluorescent AGEs, Ξ±-amylase, Ξ±-glucosidase and ACE with extracts of Petalostigma species showing the most promising activity. These medicinal plants could potentially be further developed as therapeutic agents in the treatment of hyperglycaemia and hypertension

    Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome

    Get PDF
    BACKGROUND: Cerebral ischaemia initiates an inflammatory response in the brain and periphery. We assessed the relationship between peak values of plasma interleukin-6 (IL-6) in the first week after ischaemic stroke, with measures of stroke severity and outcome. METHODS: Thirty-seven patients with ischaemic stroke were prospectively recruited. Plasma IL-6, and other markers of peripheral inflammation, were measured at pre-determined timepoints in the first week after stroke onset. Primary analyses were the association between peak plasma IL-6 concentration with both modified Rankin score (mRS) at 3 months and computed tomography (CT) brain infarct volume. RESULTS: Peak plasma IL-6 concentration correlated significantly (p < 0.001) with CT brain infarct volume (r = 0.75) and mRS at 3 months (r = 0.72). It correlated similarly with clinical outcome at 12 months or stroke severity. Strong associations were also noted between either peak plasma C-reactive protein (CRP) concentration or white blood cell (WBC) count, and all outcome measures. CONCLUSIONS: These data provide evidence that the magnitude of the peripheral inflammatory response is related to the severity of acute ischaemic stroke, and clinical outcome

    Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro

    Get PDF
    Inappropriate signalling through the EGFR and ErbB2/HER2 members of the epidermal growth factor family of receptor tyrosine kinases is well recognised as being causally linked to a variety of cancers. Consequently, monoclonal antibodies specific for these receptors have become increasingly important components of effective treatment strategies for cancer. Increasing evidence suggests that ErbB3 plays a critical role in cancer progression and resistance to therapy. We hypothesised that co-targeting the preferred ErbB2/ErbB3 heterodimer with a bispecific single-chain Fv (bs-scFv) antibody would promote increased targeting selectivity over antibodies specific for a single tumour-associated antigen (TAA). In addition, we hypothesised that targeting this important heterodimer could induce a therapeutic effect. Here, we describe the construction and evaluation of the A5-linker-ML3.9 bs-scFv (ALM), an anti-ErbB3/ErbB2 bs-scFv. The A5-linker-ML3.9 bs-scFv exhibits selective targeting of tumour cells in vitro and in vivo that co-express the two target antigens over tumour cells that express only one target antigen or normal cells that express low levels of both antigens. The A5-linker-ML3.9 bs-scFv also exhibits significantly greater in vivo targeting of ErbB2β€˜+'/ErbB3β€˜+' tumours than derivative molecules that contain only one functional arm targeting ErbB2 or ErbB3. Binding of ALM to ErbB2β€˜+'/ErbB3β€˜+' cells mediates inhibition of tumour cell growth in vitro by effectively targeting the therapeutic anti-ErbB3 A5 scFv. This suggests both that ALM could provide the basis for an effective therapeutic agent and that engineered antibodies selected to co-target critical functional pairs of TAAs can enhance the targeting specificity and efficacy of antibody-based cancer therapeutics
    • …
    corecore