2,806 research outputs found

    Intensive somatosensory stimulation to improve upper limb recovery and reduce unilateral neglect after stroke

    Get PDF
    Case description: A 64-year-old male with sub-acute right anterior circulation stroke resulting in severe upper limb (UL) dysfunction and left unilateral neglect (UN). Method/design: Single system (n=1) study (A-B-A). Intervention: Daily intensive mobilisation and tactile stimulation (MTS) involving massage, sensory stimulation, and joint and soft tissue mobilisation techniques for 6 weeks. Outcome measures: Action Research Arm Test (ARAT), Motricity Index (MI arm), and Semmes–Weinstein Monofilaments (SWM) measured function, muscle weakness and sensation daily. Data analysis: Visual analysis of plotted data. Findings: Immediate improvements in MI and SWM after just one MTS treatment session; ARAT improved after three sessions. UN behaviour also improved immediately after one MTS session. Discussion: In addition to improving UL recovery, MTS appeared to immediately reduce UN behaviour in this participant. Massage and sensory stimulation components of MTS could potentially be delivered by nurses and carers. Conclusion: The optimum way of delivering MTS and its potential to reduce unilateral neglect warrants further study

    Expanding the anaerobic digestion map: A review of intermediates in the digestion of food waste

    Get PDF
    Anaerobic digestion is a promising technology as a renewable source of energy products, but these products have low economic value and process control is challenging. Identifying intermediates formed throughout the process could enhance understanding and offer opportunities for improved monitoring, control, and valorisation. In this review, intermediates present in the anaerobic digestion process are identified and discussed, including the following: volatile fatty acids, carboxylic acid, amino acids, furans, terpenes and phytochemicals. The key limitations associated with exploiting these intermediates are also addressed including challenging mixed cultures of microbiology, complex feedstocks, and difficult extraction and separation techniques

    The mutual benefit of patient and public involvement in research: an example from a feasibility study (MoTaStim-Foot)

    Get PDF
    Patient and public involvement (PPI) in research has increased steadily over the last two decades and is now both expected and appropriately resourced by many funding bodies, including the National Institute for Health Research (NIHR). However, PPI in research occurs in many different capacities and numerous frameworks exist for reporting or appraising patient involvement activities. The aim of this article is to describe processes involving PPI contributions to an NIHR-funded mixed-methods feasibility study (MoTaStim-Foot). Details of PPI advisors’ input, from initial identification and prioritisation of research ideas, to research delivery and dissemination, are discussed

    Indirect interaction between two native thistles mediated by an invasive exotic floral herbivore

    Get PDF
    Spatial and temporal variation in insect floral herbivory is common and often important. Yet, the determinants of such variation remain incompletely understood. Using 12 years of flowering data and 4 years of biweekly insect counts, we evaluated four hypotheses to explain variation in damage by the Eurasian flower head weevil, Rhinocyllus conicus, to the native North American wavyleaf thistle, Cirsium undulatum. The four factors hypothesized to influence weevil impact were variations in climate, weevil abundance, phenological synchrony, and number of flower heads available, either on wavyleaf thistle or on the other co-occurring, acquired native host plant (Platte thistle, Cirsium canescens), or on both. Climate did not contribute significantly to an explanation of variation in R. conicus damage to wavyleaf thistle. However, climate did influence weevil synchrony with wavyleaf flower head initiation, and phenological synchrony was important in determining R. conicus oviposition levels on wavyleaf thistle. The earlier R. conicus was active, the less it oviposited on wavyleaf thistle, even when weevils were abundant. Neither weevil abundance nor availability of wavyleaf flower heads predicted R. conicus egg load. Instead, the strongest predictor of R. conicus egg load on wavyleaf thistle was the availability of flower heads on Platte thistle, the more common, earlier flowering native thistle in the sand prairie. Egg load on wavyleaf thistle decreased as the number of Platte thistle flower heads at a site increased. Thus, wavyleaf thistle experienced associational defense in the presence of flowering by its now declining native congener, Platte thistle. These results demonstrate that prediction of damage to a native plant by an exotic insect may require knowledge of both likely phenological synchrony and total resource availability to the herbivore, including resources provided by other nontarget native species

    Functional strength training versus movement performance therapy for upper limb motor recovery early after stroke: a RCT

    Get PDF
    BACKGROUND: Not all stroke survivors respond to the same form of physical therapy in the same way early after stroke. The response is variable and a detailed understanding of the interaction between specific physical therapies and neural structure and function is needed. OBJECTIVES: To determine if upper limb recovery is enhanced more by functional strength training (FST) than by movement performance therapy (MPT), to identify the differences in the neural correlates of response to (1) FST and (2) MPT and to determine whether or not pretreatment neural characteristics can predict recovery in response to (1) FST and (2) MPT. DESIGN: Randomised, controlled, observer-blind, multicentre trial with embedded explanatory investigations. An independent facility used computer-generated randomisation for participants’ group allocation. SETTING: In-patient rehabilitation, participants’ homes, university movement analysis facilities and NHS or university neuroimaging departments in the UK. PARTICIPANTS: People who were between 2 and 60 days after stroke in the territory of the anterior cerebral circulation, with some voluntary muscle contraction in the more affected upper limb but not full function. INTERVENTIONS: Routine rehabilitation [conventional physical therapy (CPT)] plus either MPT or FST in equal doses during a 6-week intervention phase. FST was progressive resistive exercise provided during training of functional tasks. MPT was therapist ‘hands-on’ sensory input and guidance for production of smooth and accurate movement. MAIN OUTCOMES: Action Research Arm Test (ARAT) score for clinical efficacy. Neural measures were made of corticocortical [fractional anisotropy (FA) from corpus callosum midline], corticospinal connectivity (asymmetry of corticospinal tracts FA) and resting motor threshold of paretic biceps brachii (pBB) and extensor carpi radialis muscles (derived from transcranial magnetic stimulation). ANALYSIS: Change in ARAT scores were analysed using analysis of covariance models adjusted for baseline variables and randomisation strata. Correlation coefficients were calculated between change in neural measures and change in ARAT score per group and for the whole sample. An interaction term was calculated for each baseline neural measure and ARAT score change from baseline to outcome. RESULTS: A total of 288 participants were randomised [mean age 72.2 (standard deviation 12.5) years; mean ARAT score of 25.5 (18.2); n = 283]. For the 240 participants with ARAT measurements at baseline and outcome, the mean change scores were FST + CPT = 9.70 (11.72) and MPT + CPT = 7.90 (9.18). The group difference did not reach statistical significance (least squares mean difference 1.35, 95% confidence interval –1.20 to 3.90; p = 0.298). Correlations between ARAT change scores and baseline neural values ranged from –0.147 (p = 0.385) for whole-sample corticospinal connectivity (n = 37) to 0.199 (p = 0.320) for MPT + CPT resting motor threshold pBB (n = 27). No statistically significant interaction effects were found between baseline neural variables and change in ARAT score. There were no differences between groups in adverse events. LIMITATIONS: The number of participants in the embedded explanatory investigation was lower than expected. CONCLUSIONS: The small difference in upper limb improvement in response to FST and MPT did not reach statistical significance. Baseline neural measures neither correlated with upper limb recovery nor predicted therapy response. FUTURE WORK: Needs to continue investigation of the variability of response to specific physical therapies in people early after stroke. TRIAL REGISTRATION: Current Controlled Trials ISRCTN19090862 and National Research Ethics Service reference number 11/EE/0524. FUNDING: This project was funded by the Efficacy and Mechanism Evaluation programme, a Medical Research Council and National Institute for Health Research partnership

    A novel approach to simulate gene-environment interactions in complex diseases

    Get PDF
    Background: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study
    corecore