64 research outputs found

    Divergence exists in the subcellular distribution of intramuscular triglyceride in human skeletal muscle dependent on the choice of lipid dye.

    Get PDF
    Despite over 50 years of research, a comprehensive understanding of how intramuscular triglyceride (IMTG) is stored in skeletal muscle and its contribution as a fuel during exercise is lacking. Immunohistochemical techniques provide information on IMTG content and lipid droplet (LD) morphology on a fibre type and subcellular-specific basis, and the lipid dye Oil Red O (ORO) is commonly used to achieve this. BODIPY 493/503 (BODIPY) is an alternative lipid dye with lower background staining and narrower emission spectra. Here we provide the first quantitative comparison of BODIPY and ORO for investigating exercise-induced changes in IMTG content and LD morphology on a fibre type and subcellular-specific basis. Estimates of IMTG content were greater when using BODIPY, which was predominantly due to BODIPY detecting a larger number of LDs, compared to ORO. The subcellular distribution of intramuscular lipid was also dependent on the lipid dye used; ORO detects a greater proportion of IMTG in the periphery (5 μm below cell membrane) of the fibre, whereas IMTG content was higher in the central region using BODIPY. In response to 60 min moderate-intensity cycling exercise, IMTG content was reduced in both the peripheral (- 24%) and central region (- 29%) of type I fibres (P < 0.05) using BODIPY, whereas using ORO, IMTG content was only reduced in the peripheral region of type I fibres (- 31%; P < 0.05). As well as highlighting some methodological considerations herein, our investigation demonstrates that important differences exist between BODIPY and ORO for detecting and quantifying IMTG on a fibre type and subcellular-specific basis

    Extensive Crosstalk between O-GlcNAcylation and Phosphorylation Regulates Akt Signaling

    Get PDF
    O-linked N-acetylglucosamine glycosylations (O-GlcNAc) and O-linked phosphorylations (O-phosphate), as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling

    Interactome Analyses Identify Ties of PrPC and Its Mammalian Paralogs to Oligomannosidic N-Glycans and Endoplasmic Reticulum-Derived Chaperones

    Get PDF
    The physiological environment which hosts the conformational conversion of the cellular prion protein (PrPC) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrPC interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrPC paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrPC and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrPC with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrPSc. A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrPC organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins

    Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Get PDF
    Background: The ‘exposome’ represents the accumulation of all environmental exposures across a lifetime. Topdown strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual’s metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods: High-resolution 1H NMR spectroscopy (metabonomics) was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results: Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4- deoxy-erythronic acid) or one-carbon metabolism (dimethylglycine, creatinine, creatine), were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels) was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions: This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental concentrations, paving the way for exposome research. Keywords: metabonomics, cadmium, environmental health, exposome, metabolomics, molecular epidemiolog

    Transforming Growth Factor: β Signaling Is Essential for Limb Regeneration in Axolotls

    Get PDF
    Axolotls (urodele amphibians) have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-β). In the present study, the full length sequence of the axolotl TGF-β1 cDNA was isolated. The spatio-temporal expression pattern of TGF-β1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-β signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-β type I receptor, SB-431542, we show that TGF-β signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-β signaling are down-regulated. These data directly implicate TGF-β signaling in the initiation and control of the regeneration process in axolotls

    What determines cell size?

    Get PDF
    AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it
    corecore