392 research outputs found

    Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations

    Full text link
    While the investors' responses to price changes and their price forecasts are well accepted major factors contributing to large price fluctuations in financial markets, our study shows that investors' heterogeneous and dynamic risk aversion (DRA) preferences may play a more critical role in the dynamics of asset price fluctuations. We propose and study a model of an artificial stock market consisting of heterogeneous agents with DRA, and we find that DRA is the main driving force for excess price fluctuations and the associated volatility clustering. We employ a popular power utility function, U(c,γ)=c1γ11γU(c,\gamma)=\frac{c^{1-\gamma}-1}{1-\gamma} with agent specific and time-dependent risk aversion index, γi(t)\gamma_i(t), and we derive an approximate formula for the demand function and aggregate price setting equation. The dynamics of each agent's risk aversion index, γi(t)\gamma_i(t) (i=1,2,...,N), is modeled by a bounded random walk with a constant variance δ2\delta^2. We show numerically that our model reproduces most of the ``stylized'' facts observed in the real data, suggesting that dynamic risk aversion is a key mechanism for the emergence of these stylized facts.Comment: 17 pages, 7 figure

    Emergent complex neural dynamics

    Full text link
    A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain

    Hidden Markov Model Variants and their Application

    Get PDF
    Markov statistical methods may make it possible to develop an unsupervised learning process that can automatically identify genomic structure in prokaryotes in a comprehensive way. This approach is based on mutual information, probabilistic measures, hidden Markov models, and other purely statistical inputs. This approach also provides a uniquely common ground for comparative prokaryotic genomics. The approach is an on-going effort by its nature, as a multi-pass learning process, where each round is more informed than the last, and thereby allows a shift to the more powerful methods available for supervised learning at each iteration. It is envisaged that this "bootstrap" learning process will also be useful as a knowledge discovery tool. For such an ab initio prokaryotic gene-finder to work, however, it needs a mechanism to identify critical motif structure, such as those around the start of coding or start of transcription (and then, hopefully more). For eukaryotes, even with better start-of-coding identification, parsing of eukaryotic coding regions by the HMM is still limited by the HMM's single gene assumption, as evidenced by the poor performance in alternatively spliced regions. To address these complications an approach is described to expand the states in a eukaryotic gene-predictor HMM, to operate with two layers of DNA parsing. This extension from the single layer gene prediction parse is indicated after preliminary analysis of the C. elegans alt-splice statistics. State profiles have made use of a novel hash-interpolating MM (hIMM) method. A new implementation for an HMM-with-Duration is also described, with far-reaching application to gene-structure identification and analysis of channel current blockade data

    FTLD-TDP with motor neuron disease, visuospatial impairment and a progressive supranuclear palsy-like syndrome: broadening the clinical phenotype of TDP-43 proteinopathies. A report of three cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Frontotemporal lobar degeneration with ubiquitin and TDP-43 positive neuronal inclusions represents a novel entity (FTLD-TDP) that may be associated with motor neuron disease (FTLD-MND); involvement of extrapyramidal and other systems has also been reported.</p> <p>Case presentation</p> <p>We present three cases with similar clinical symptoms, including Parkinsonism, supranuclear gaze palsy, visuospatial impairment and a behavioral variant of frontotemporal dementia, associated with either clinically possible or definite MND. Neuropathological examination revealed hallmarks of FTLD-TDP with major involvement of subcortical and, in particular, mesencephalic structures. These cases differed in onset and progression of clinical manifestations as well as distribution of histopathological changes in the brain and spinal cord. Two cases were sporadic, whereas the third case had a pathological variation in the progranulin gene 102 delC.</p> <p>Conclusions</p> <p>Association of a "progressive supranuclear palsy-like" syndrome with marked visuospatial impairment, motor neuron disease and early behavioral disturbances may represent a clinically distinct phenotype of FTLD-TDP. Our observations further support the concept that TDP-43 proteinopathies represent a spectrum of disorders, where preferential localization of pathogenetic inclusions and neuronal cell loss defines clinical phenotypes ranging from frontotemporal dementia with or without motor neuron disease, to corticobasal syndrome and to a progressive supranuclear palsy-like syndrome.</p

    Rare coding SNP in DZIP1 gene associated with late-onset sporadic Parkinson's disease

    Get PDF
    We present the first application of the hypothesis-rich mathematical theory to genome-wide association data. The Hamza et al. late-onset sporadic Parkinson's disease genome-wide association study dataset was analyzed. We found a rare, coding, non-synonymous SNP variant in the gene DZIP1 that confers increased susceptibility to Parkinson's disease. The association of DZIP1 with Parkinson's disease is consistent with a Parkinson's disease stem-cell ageing theory.Comment: 14 page

    Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest

    Get PDF
    Growing evidence has shown that brain activity at rest slowly wanders through a repertoire of different states, where whole-brain functional connectivity (FC) temporarily settles into distinct FC patterns. Nevertheless, the functional role of resting-state activity remains unclear. Here, we investigate how the switching behavior of resting-state FC relates with cognitive performance in healthy older adults. We analyse resting-state fMRI data from 98 healthy adults previously categorized as being among the best or among the worst performers in a cohort study of >1000 subjects aged 50+ who underwent neuropsychological assessment. We use a novel approach focusing on the dominant FC pattern captured by the leading eigenvector of dynamic FC matrices. Recurrent FC patterns - or states - are detected and characterized in terms of lifetime, probability of occurrence and switching profiles. We find that poorer cognitive performance is associated with weaker FC temporal similarity together with altered switching between FC states. These results provide new evidence linking the switching dynamics of FC during rest with cognitive performance in later life, reinforcing the functional role of resting-state activity for effective cognitive processing.This project was financed by the Fundação Calouste Gulbenkian (Portugal) (Contract grant number: P-139977; project “Better mental health during ageing based on temporal prediction of individual brain ageing trajectories (TEMPO)”), co-financed by Portuguese North Regional Operational Program (ON.2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER) as well as the Projecto Estratégico co-funded by FCT (PEst-C/SAU/LA0026-/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) and under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020) under the Portugal 2020 Partnership Agreement through the European Regional Development Fundinfo:eu-repo/semantics/publishedVersio

    The General Age of Leadership: Older-Looking Presidential Candidates Win Elections during War

    Get PDF
    As nation-state leaders age they increasingly engage in inter-state militarized disputes yet in industrialized societies a steady decrease in testosterone associated with aging is observed – which suggests a decrease in dominance behavior. The current paper points out that from modern societies to Old World monkeys increasing both in age and social status encourages dominant strategies to maintain acquired rank. Moreover, it is argued this consistency has shaped an implicit prototype causing followers to associate older age with dominance leadership. It is shown that (i) faces of older leaders are preferred during intergroup conflict and (ii) morphing U.S. Presidential candidates to appear older or younger has an overriding effect on actual election outcomes. This indicates that democratic voting can be systematically adjusted by activating innate biases. These findings appear to create a new line of research regarding the biology of leadership and contextual cues of age

    The development of a novel model of direct fracture healing in the rat

    Get PDF
    OBJECTIVES: Small animal models of fracture repair primarily investigate indirect fracture healing via external callus formation. We present the first described rat model of direct fracture healing. METHODS: A rat tibial osteotomy was created and fixed with compression plating similar to that used in patients. The procedure was evaluated in 15 cadaver rats and then in vivo in ten Sprague-Dawley rats. Controls had osteotomies stabilised with a uniaxial external fixator that used the same surgical approach and relied on the same number and diameter of screw holes in bone. RESULTS: Fracture healing occurred without evidence of external callus on plain radiographs. At six weeks after fracture fixation, the mean stress at failure in a four-point bending test was 24.65 N/mm(2) (sd 6.15). Histology revealed ‘cutting-cones’ traversing the fracture site. In controls where a uniaxial external fixator was used, bone healing occurred via external callus formation. CONCLUSIONS: A simple, reproducible model of direct fracture healing in rat tibia that mimics clinical practice has been developed for use in future studies of direct fracture healing
    corecore