199 research outputs found

    Genes Associated with Honey Bee Behavioral Maturation Affect Clock-Dependent and -Independent Aspects of Daily Rhythmic Activity in Fruit Flies

    Get PDF
    BACKGROUND: In the honey bee, the age-related and socially regulated transition of workers from in-hive task performance (e.g., caring for young) to foraging (provisioning the hive) is associated with changes in many behaviors including the 24-hour pattern of rhythmic activity. We have previously shown that the hive-bee to forager transition is associated with extensive changes in brain gene expression. In this study, we test the possible function of a subset of these genes in daily rhythmic activity pattern using neural-targeted RNA interference (RNAi) of an orthologous gene set in Drosophila melanogaster. PRINCIPAL FINDINGS: Of 10 genes tested, knockdown of six affected some aspect of locomotor activity under a 12 h:h light:dark regime (LD). Inos affected anticipatory activity preceding lights-off, suggesting a possible clock-dependent function. BM-40-SPARC, U2af50 and fax affected peak activity at dawn without affecting anticipation or overall inactivity (proportion of 15-min intervals without activity), suggesting that these effects may depend on the day-night light cycle. CAH1 affected overall inactivity. The remaining gene, abl, affected peak activity levels but was not clearly time-of-day-specific. No gene tested affected length of period or strength of rhythmicity in constant dark (DD), suggesting that these genes do not act in the core clock. SIGNIFICANCE: Taking advantage of Drosophila molecular genetic tools, our study provides an important step in understanding the large set of gene expression changes that occur in the honey bee transition from hive bee to forager. We show that orthologs of many of these genes influence locomotor activity in Drosophila, possibly through both clock-dependent and -independent pathways. Our results support the importance of both circadian clock and direct environmental stimuli (apart from entrainment) in shaping the bee's 24-hour pattern of activity. Our study also outlines a new approach to dissecting complex behavior in a social animal

    TLR2/MyD88/NF-κB Pathway, Reactive Oxygen Species, Potassium Efflux Activates NLRP3/ASC Inflammasome during Respiratory Syncytial Virus Infection

    Get PDF
    Human respiratory syncytial virus (RSV) constitute highly pathogenic virus that cause severe respiratory diseases in newborn, children, elderly and immuno-compromised individuals. Airway inflammation is a critical regulator of disease outcome in RSV infected hosts. Although “controlled” inflammation is required for virus clearance, aberrant and exaggerated inflammation during RSV infection results in development of inflammatory diseases like pneumonia and bronchiolitis. Interleukin-1β (IL-1β) plays an important role in inflammation by orchestrating the pro-inflammatory response. IL-1β is synthesized as an immature pro-IL-1β form. It is cleaved by activated caspase-1 to yield mature IL-1β that is secreted extracellularly. Activation of caspase-1 is mediated by a multi-protein complex known as the inflammasome. Although RSV infection results in IL-1β release, the mechanism is unknown. Here in, we have characterized the mechanism of IL-1β secretion following RSV infection. Our study revealed that NLRP3/ASC inflammasome activation is crucial for IL-1β production during RSV infection. Further studies illustrated that prior to inflammasome formation; the “first signal” constitutes activation of toll-like receptor-2 (TLR2)/MyD88/NF-κB pathway. TLR2/MyD88/NF-κB signaling is required for pro-IL-1β and NLRP3 gene expression during RSV infection. Following expression of these genes, two “second signals” are essential for triggering inflammasome activation. Intracellular reactive oxygen species (ROS) and potassium (K+) efflux due to stimulation of ATP-sensitive ion channel promote inflammasome activation following RSV infection. Thus, our studies have underscored the requirement of TLR2/MyD88/NF-κB pathway (first signal) and ROS/potassium efflux (second signal) for NLRP3/ASC inflammasome formation, leading to caspase-1 activation and subsequent IL-1β release during RSV infection

    Comparative analysis of involvement of UGT1 and UGT2 splice variants of UDP-galactose transporter in glycosylation of macromolecules in MDCK and CHO cell lines

    Get PDF
    Nucleotide sugar transporters deliver nucleotide sugars into the Golgi apparatus and endoplasmic reticulum. This study aimed to further characterize mammalian UDP-galactose transporter (UGT) in MDCK and CHO cell lines. MDCK-RCAr and CHO-Lec8 mutant cell lines are defective in UGT transporter, although they exhibit some level of galactosylation. Previously, only single forms of UGT were identified in both cell lines, UGT1 in MDCK cells and UGT2 in CHO cells. We have identified the second UGT splice variants in CHO (UGT1) and MDCK (UGT2) cells. Compared to UGT1, UGT2 is more abundant in nearly all examined mammalian tissues and cell lines, but MDCK cells exhibit different relative distribution of both splice variants. Complementation analysis demonstrated that both UGT splice variants are necessary for N- and O-glycosylation of proteins. Both mutant cell lines produce chondroitin-4-sulfate at only a slightly lower level compared to wild-type cells. This defect is corrected by overexpression of both UGT splice variants. MDCK-RCAr mutant cells do not produce keratan sulfate and this effect is not corrected by either UGT splice variant, overexpressed either singly or in combination. Here we demonstrate that both UGT splice variants are important for glycosylation of proteins. In contrast to MDCK cells, MDCK-RCAr mutant cells may possess an additional defect within the keratan sulfate biosynthesis pathway

    Secretion of MCP-1 and other paracrine factors in a novel tumor-bone coculture model

    Get PDF
    BackgroundThe bone-tumor microenvironment encompasses unique interactions between the normal cells of the bone and marrow cavity and the malignant cells from a primary or metastasized cancer. A multitude of paracrine factors within this microenvironment such as the growth factor, TGF-beta, and the chemokine, MCP-1, are secreted by many of these cell types. These factors can act in concert to modulate normal and malignant cell proliferation, malignant cell migration and invasion and, often, mediate bone cancer pain. Although many valuable in vitro and in vivo models exist, identifying the relevant paracrine factors and deciphering their interactions is still a challenge. The aim of our study is to test an ex vivo coculture model that will allow monitoring of the expression, release and regulation of paracrine factors during interactions of an intact femur explant and tumor cells.MethodsIntact or marrow-depleted neonatal mouse femurs and select murine and human sarcoma or carcinoma cell lines were incubated singly or in coculture in specialized well plates. Viability of the bone and cells was determined by immunohistochemical stains, microscopy and marrow cytopreps. Secretion and mRNA expression of paracrine factors was quantitated by ELISA and real-time RT-PCR.ResultsCompartments of the bone were optimally viable for up to 48 h in culture and tumor cells for up to 4 days. Bone was the major contributor of TGF-beta and MMP2 whereas both bone and sarcoma cells secreted the chemokine MCP-1 in cocultures. Synergistic interaction between the femur and sarcoma resulted in enhanced MCP-1 secretion and expression in cocultures and was dependent on the presence of the hematopoietic component of the bone as well as other bone cells. In contrast, coculturing with breast carcinoma cells resulted in reduction of TGF-beta and MCP-1 secretion from the bone.ConclusionThese studies illustrate the feasibility of this model to examine paracrine interactions between intact bone and tumor cells. Further study of unique regulation of MCP-1 secretion and signaling between these cell types in different types of cancer will be possible using this simulated microenvironment

    Cross-National Analysis of the Associations between Traumatic Events and Suicidal Behavior: Findings from the WHO World Mental Health Surveys

    Get PDF
    Background Community and clinical data have suggested there is an association between trauma exposure and suicidal behavior (i.e., suicide ideation, plans and attempts). However, few studies have assessed which traumas are uniquely predictive of: the first onset of suicidal behavior, the progression from suicide ideation to plans and attempts, or the persistence of each form of suicidal behavior over time. Moreover, few data are available on such associations in developing countries. The current study addresses each of these issues.Methodology/Principal Findings Data on trauma exposure and subsequent first onset of suicidal behavior were collected via structured interviews conducted in the households of 102,245 (age 18+) respondents from 21 countries participating in the WHO World Mental Health Surveys. Bivariate and multivariate survival models tested the relationship between the type and number of traumatic events and subsequent suicidal behavior. A range of traumatic events are associated with suicidal behavior, with sexual and interpersonal violence consistently showing the strongest effects. There is a dose-response relationship between the number of traumatic events and suicide ideation/attempt; however, there is decay in the strength of the association with more events. Although a range of traumatic events are associated with the onset of suicide ideation, fewer events predict which people with suicide ideation progress to suicide plan and attempt, or the persistence of suicidal behavior over time. Associations generally are consistent across high-, middle-, and low-income countries.Conclusions/Significance This study provides more detailed information than previously available on the relationship between traumatic events and suicidal behavior and indicates that this association is fairly consistent across developed and developing countries. These data reinforce the importance of psychological trauma as a major public health problem, and highlight the significance of screening for the presence and accumulation of traumatic exposures as a risk factor for suicide ideation and attempt.African and African American StudiesPsycholog

    Babesia spp. in ticks and wildlife in different habitat types of Slovakia

    Get PDF
    Background: Babesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized. Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp. prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum were investigated. Results: Babesia spp. were detected in 1.5 % and 6.6 % of questing I. ricinus and H. concinna, respectively. Prevalence of Babesia-infected I. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis showed that Babesia spp. from I. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached I. ricinus (accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1 (Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from Europe. Less than 1.0 % of Babesia-positive ticks and rodents carried Candidatus N. mikurensis or A. phagocytophilum.Inst. de PatobiologíaFil: Hamsikova, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Kazimirová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Harustiakova, Danka. Masaryk University. Faculty of Medicine and Faculty of Science, Institute of Biostatistics and Analyses; República ChecaFil: Mahrikova, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Slovak, Mirko. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Berthova, Lenka. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Kocianova, Elena. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore