222 research outputs found

    Differential Methylation as a Biomarker of Response to Etanercept in Patients With Rheumatoid Arthritis

    Get PDF
    Objective: Biologic drug therapies represent a huge advance in the treatment of rheumatoid arthritis (RA). However, very good disease control is achieved in only 30% of patients, making identification of biomarkers of response a research priority. We undertook this study to test our hypothesis that differential DNA methylation patterns may provide biomarkers predictive of response to tumor necrosis factor inhibitor (TNFi) therapy in patients with RA. Methods: An epigenome-wide association study was performed on pretreatment whole blood DNA from patients with RA. Patients who displayed good response (n = 36) or no response (n = 36) to etanercept therapy at 3 months were selected. Differentially methylated positions were identified using linear regression. Variance of methylation at differentially methylated positions was assessed for correlation with cis-acting single-nucleotide polymorphisms (SNPs). A replication experiment for prioritized SNPs was performed in an independent cohort of 1,204 RA patients. Results: Five positions that were differentially methylated between responder groups were identified, with a false discovery rate of <5%. The top 2 differentially methylated positions mapped to exon 7 of the LRPAP1 gene on chromosome 4 (cg04857395, P = 1.39 × 10−8 and cg26401028, P = 1.69 × 10−8). The A allele of the SNP rs3468 was correlated with higher levels of methylation for both of the top 2 differentially methylated positions (P = 2.63 × 10−7 and P = 1.05 × 10−6, respectively). Furthermore, the A allele of rs3468 was correlated with European League Against Rheumatism nonresponse in the discovery cohort (P = 0.03; n = 56) and in the independent replication cohort (P = 0.003; n = 1,204). Conclusion: We identify DNA methylation as a potential biomarker of response to TNFi therapy, and we report the association between response and the LRPAP1 gene, which encodes a chaperone of low-density lipoprotein receptor–related protein 1. Additional replication experiments in independent sample collections are now needed

    How and why DNA barcodes underestimate the diversity of microbial eukaryotes

    Get PDF
    Background: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. Principal Findings: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependant. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. Conclusions: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous ''cryptic species'' will become discernable with the future acquisition of genomic and metagenomic sequences

    Insights on the Evolution of Prolyl 3-Hydroxylation Sites from Comparative Analysis of Chicken and Xenopus Fibrillar Collagens

    Get PDF
    Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986), except α1(III), have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl) all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III) from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707). In mammals only α2(I) and α2(V) chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III) had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I). Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues

    Recombination rate and selection strength in HIV intra-patient evolution

    Get PDF
    The evolutionary dynamics of HIV during the chronic phase of infection is driven by the host immune response and by selective pressures exerted through drug treatment. To understand and model the evolution of HIV quantitatively, the parameters governing genetic diversification and the strength of selection need to be known. While mutation rates can be measured in single replication cycles, the relevant effective recombination rate depends on the probability of coinfection of a cell with more than one virus and can only be inferred from population data. However, most population genetic estimators for recombination rates assume absence of selection and are hence of limited applicability to HIV, since positive and purifying selection are important in HIV evolution. Here, we estimate the rate of recombination and the distribution of selection coefficients from time-resolved sequence data tracking the evolution of HIV within single patients. By examining temporal changes in the genetic composition of the population, we estimate the effective recombination to be r=1.4e-5 recombinations per site and generation. Furthermore, we provide evidence that selection coefficients of at least 15% of the observed non-synonymous polymorphisms exceed 0.8% per generation. These results provide a basis for a more detailed understanding of the evolution of HIV. A particularly interesting case is evolution in response to drug treatment, where recombination can facilitate the rapid acquisition of multiple resistance mutations. With the methods developed here, more precise and more detailed studies will be possible, as soon as data with higher time resolution and greater sample sizes is available.Comment: to appear in PLoS Computational Biolog

    Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    Get PDF
    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(−9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(−9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA

    Effects of Attractiveness and Social Status on Dating Desire in Heterosexual Adolescents: An Experimental Study

    Get PDF
    The present study examined to what extent adolescent dating desire is based on attractiveness and social status of a potential short-term partner. Further, we tested whether self-perceived mate value moderated the relationship between dating desire and attractiveness of a potential partner. Data were used from a sample of 1,913 adolescents aged 13–18. Participants rated the importance of various characteristics of a potential partner and also participated in an experimental vignette study in which dating desire was measured with either low or high attractive potential partners having either a high or low social status. The results showed that boys rated attractiveness as more important than girls, while social status was rated as relatively unimportant by both sexes. In addition, in the experimental vignette study, it was found that attractiveness was the primary factor for boys’ dating desire. Only when a potential partner was attractive, social status became important for boys’ dating desire. For girls, on the other hand, it appeared that both attractiveness and social status of a potential partner were important for their dating desire. Finally, boys and girls who perceived themselves as having a high mate value showed more dating desire toward an attractive potential partner compared to adolescents who perceived themselves as having a low mate value. The present results extend previous research by showing that attractiveness of a potential partner is important to both adolescent boys and girls, but social status does not strongly affect dating desire during this particular age period

    Impaired dermal wound healing in discoidin domain receptor 2-deficient mice associated with defective extracellular matrix remodeling

    Get PDF
    Background The wounding response relies on tightly regulated crosstalk between recruited fibroblasts and the collagenous extracellular matrix (ECM). Discoidin domain receptor 2 (DDR2) is a tyrosine kinase receptor for fibrillar collagen expressed during pathologic scarring, for example wound healing, arthritis and cancer. We have previously shown that DDR2 phosphorylation drives key wounding responses in skin fibroblasts including proliferation, chemotactic migration and secretion of both metalloproteinases and fibrillar collagen. In this study we compared healing of cutaneous wounds in DDR2+/+ and DDR2-/- mice and analyzed specific fibroblast responses. Results Cutaneous wound healing was significantly delayed in DDR2-/- mice compared with DDR2+/+ animals. Reduced α-smooth muscle actin (αSMA) expression and matrix metalloproteinase 2 (MMP2) activity in the DDR2-/- wound extracts indicated defective recruitment of skin fibroblasts. DDR2-/- wounds showed decreased tensile strength during healing, which correlated with a significant reduction in collagen content and defective collagen crosslinking. Non-wounded skin in DDR2-/- mice expressed less mRNA of the crosslinking enzymes lysyl oxidase (LOX), lysyl hydroxylase1 (LH1) and matricellular 'secreted protein, acidic and rich in cysteine' (SPARC; also known as osteonectin). Skin fibroblasts isolated from DDR2-/- mice displayed altered mRNA expression of a cluster of collagens, proteoglycans, integrins and MMPs that have been previously correlated with DDR2 expression, and reduced LOX, LH1 and SPARC mRNA levels and proteins. Stable reconstitution of wild-type DDR2 by retroviral infection restored LOX, LH1 and SPARC mRNA and protein levels in DDR2-/- fibroblasts. Contraction of collagen gels was reduced in DDR2-/- fibroblasts, accompanied by significantly reduced phosphorylated SrcY418. Inhibition of either LOX activity by β-aminoproprionitrile or MMP activity by N-[(2R)-2-(hydroxamido carbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (GM6001) reduced collagen gel contraction by skin fibroblasts after DDR2 induction with soluble collagen type I. Conclusions DDR2 contributes to skin fibroblast responses during tissue injury. Defective synthesis of collagen type I, crosslinking molecules and MMP2 predispose DDR2-/- mice to defective dermal wounding

    Selection in Coastal Synechococcus (Cyanobacteria) Populations Evaluated from Environmental Metagenomes

    Get PDF
    Environmental metagenomics provides snippets of genomic sequences from all organisms in an environmental sample and are an unprecedented resource of information for investigating microbial population genetics. Current analytical methods, however, are poorly equipped to handle metagenomic data, particularly of short, unlinked sequences. A custom analytical pipeline was developed to calculate dN/dS ratios, a common metric to evaluate the role of selection in the evolution of a gene, from environmental metagenomes sequenced using 454 technology of flow-sorted populations of marine Synechococcus, the dominant cyanobacteria in coastal environments. The large majority of genes (98%) have evolved under purifying selection (dN/dS<1). The metagenome sequence coverage of the reference genomes was not uniform and genes that were highly represented in the environment (i.e. high read coverage) tended to be more evolutionarily conserved. Of the genes that may have evolved under positive selection (dN/dS>1), 77 out of 83 (93%) were hypothetical. Notable among annotated genes, ribosomal protein L35 appears to be under positive selection in one Synechococcus population. Other annotated genes, in particular a possible porin, a large-conductance mechanosensitive channel, an ATP binding component of an ABC transporter, and a homologue of a pilus retraction protein had regions of the gene with elevated dN/dS. With the increasing use of next-generation sequencing in metagenomic investigations of microbial diversity and ecology, analytical methods need to accommodate the peculiarities of these data streams. By developing a means to analyze population diversity data from these environmental metagenomes, we have provided the first insight into the role of selection in the evolution of Synechococcus, a globally significant primary producer
    corecore