125 research outputs found

    Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor

    Get PDF
    derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2 under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2

    Co-Morbidity between Early-Onset Leukemia and Type 1 Diabetes – Suggestive of a Shared Viral Etiology?

    Get PDF
    Background: Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) are common early-onset malignancies. Their causes are largely unknown but infectious etiology has been implicated. Type 1 diabetes (T1D) is an autoimmune disease for which infectious triggers of disease onset have been sought and increasing pointing to enteroviruses. Based on our previous results on co-morbidity between leukemia and T1D, we updated the Swedish dataset and focused on early onset leukemias in patients who had been hospitalized for T1D, comparing to those not hospitalized for T1D. Methods and Findings: Standardized incidence ratios (SIRs) were calculated for leukemia in 24,052 patients hospitalized for T1D covering years 1964 through 2008. T1D patients were included if hospitalized before age 21 years. Practically all Swedish children and adolescents with T1D are hospitalized at the start of insulin treatment. SIR for ALL was 8.30 (N = 18, 95% confidence interval 4.91-13.14) when diagnosed at age 10 to 20 years after hospitalization for T1D and it was 3.51 (13, 1.86-6.02) before hospitalization for T1D. The SIR for ALL was 19.85 (N = 33, 13.74-27.76) and that for AML was 25.28 (8, 10.80-50.06) when the leukemias were diagnosed within the year of T1D hospitalization. The SIRs increased to 38.97 (26, 25.43-57.18) and 40.11 (8, 17.13-79.42) when T1D was diagnosed between ages 10 to 20 years. No consistent time-dependent changes were found in leukemia risk. Conclusion: A shared infectious etiology could be a plausible explanation to the observed co-morbidity. Other possible contributing factors could be insulin therapy or T1D related metabolic disturbances

    Generic Insect Repellent Detector from the Fruit Fly Drosophila melanogaster

    Get PDF
    Background: Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests. Methodology: Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have ‘‘generic repellent detector(s),’ ’ which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the ‘‘empty neuron’ ’ and showed to be sensitive to the three insect repellents. Conclusions: For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have als

    Fermi Large Area Telescope observations of PSR J1836+5925

    Full text link
    The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1×1034\times10^{34} erg s1^{-1}, and a large off-peak emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the off-peak emission indicate it is likely magnetospheric. Analysis of recent XMM observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa

    Fermi Gamma-ray Imaging of a Radio Galaxy

    Get PDF
    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton scattered relic radiation from the cosmic microwave background (CMB), with additional contribution at higher energies from the infrared-to-optical extragalactic background light (EBL). These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, and a promising method to probe the cosmic relic photon fields.Comment: 27 pages, includes Supplementary Online Material; corresponding authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar

    Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi

    Full text link
    We report the detection of high-energy gamma-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with gamma-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter

    Decolorization and partial mineralization of a polyazo dye by Bacillus firmus immobilized within tubular polymeric gel

    Get PDF
    The degradation of C.I. Direct red 80, a polyazo dye, was investigated using Bacillus firmus immobilized by entrapment in tubular polymeric gel. This bacterial strain was able to completely decolorize 50 mg/L of C.I. Direct red 80 under anoxic conditions within 12 h and also degrade the reaction intermediates (aromatic amines) during the subsequent 12 h under aerobic conditions. The tubular gel harboring the immobilized cells consisted of anoxic and aerobic regions integrated in a single unit which was ideal for azo dye degradation studies. Results obtained show that effective dye decolorization (97.8%), chemical oxygen demand (COD) reduction (91.7%) and total aromatic amines removal were obtained in 15 h with the immobilized bacterial cell system whereas for the free cells, a hydraulic residence time of 24 h was required for an equivalent performance in a sequential anoxic and aerobic process. Repeated-batch experiments indicate the immobilized cells could decolorize C.I. Direct red 80 and reduce medium COD in five successive batch runs with enhanced activity obtained after each consecutive run, thus suggesting its stability and potential for repeated use in wastewater treatment. UV–visible spectrophotometry and HPLC analysis were used to confirm the partial mineralization of the dye. Data from this study could be used as a reference for the development of effective industrial scale biotechnological process for the removal of dyes and their metabolites in textile wastewater

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk

    The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation

    Get PDF
    Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation
    corecore