38 research outputs found

    Screening for Microsatellite Instability Identifies Frequent 3â€Č-Untranslated Region Mutation of the RB1-Inducible Coiled-Coil 1 Gene in Colon Tumors

    Get PDF
    BACKGROUND: Coding region microsatellite instability (MSI) results in loss of gene products and promotion of microsatellite-unstable (MSI-H) carcinogenesis. Recent studies have indicated that MSI within 3'-untranslated regions (3'UTRs) may post-transcriptionally dysregulate gene products. Within this context, we conducted a broad mutational survey of 42 short 3'UTR microsatellites (MSs) in 45 MSI-H colorectal tumors and their corresponding normal colonic mucosae. METHODOLOGY/PRINCIPAL FINDINGS: In order to estimate the overall susceptibility of MSs to MSI in MSI-H tumors, the observed MSI frequency of each MS was correlated with its length, interspecies sequence conservation level, and distance from some genetic elements (i.e., stop codon, polyA signal, and microRNA binding sites). All MSs were stable in normal colonic mucosae. The MSI frequency at each MS in MSI-H tumors was independent of sequence conservation level and distance from other genetic elements. In contrast, MS length correlated significantly with MSI frequency in MSI-H tumors (r=0.86, p=7.2x10(-13)). 3'UTR MSs demonstrated MSI frequencies in MSI-H tumors higher than the 99% upper limit predicted by MS length for RB1-inducible coiled-coil 1(RB1CC1, mutation frequency 68.4%), NUAK family SNF1-like kinase 1(NUAK1, 31.0%), and Rtf1, Paf1/RNA polymerase II complex component, homolog (RTF1, 25.0%). An in silico prediction of RNA structure alterations was conducted for these MSI events to gauge their likelihood of affecting post-transcriptional regulation. RB1CC1 mutant was predicted to lose a microRNA-accessible loop structure at a putative binding site for the tumor-suppressive microRNA, miR-138. In contrast, the predicted 3'UTR structural change was minimal for NUAK1- and RTF1 mutants. Notably, real-time quantitative RT-PCR analysis revealed significant RB1CC1 mRNA overexpression vs. normal colonic mucosae in MSI-H cancers manifesting RB1CC1 3'UTR MSI (9.0-fold; p = 3.6x10(-4)). CONCLUSIONS: This mutational survey of well-characterized short 3'UTR MSs confirms that MSI incidence in MSI-H colorectal tumors correlates with MS length, but not with sequence conservation level or distance from other genetic elements. This study also identifies RB1CC1 as a novel target of frequent mutation and aberrant upregulation in MSI-H colorectal tumors. The predicted loss of a microRNA-accessible structure in mutant RB1CC1 RNA fits the hypothesis that 3'UTR MSI involves in aberrant RB1CC1 posttranscriptional upregulation. Further direct assessments are indicated to investigate this possibility.Bogdan C. Paun, Yulan Cheng, Barbara A. Leggett, Joanne Young, Stephen J. Meltzer, Yuriko Mor

    CXCL12 inhibits expression of the NMDA receptor's NR2B subunit through a histone deacetylase-dependent pathway contributing to neuronal survival

    Get PDF
    Homeostatic chemokines, such as CXCL12, can affect neuronal activity by the regulation of inhibitory and excitatory neurotransmission, but the mechanisms involved are still undefined. Our previous studies have shown that CXCL12 protects cortical neurons from excitotoxicity by promoting the function of the gene-repressor protein Rb, which is involved in the recruitment of chromatin modifiers (such as histone deacetylases (HDACs)) to gene promoters. In neurons, Rb controls activity-dependent genes essential to neuronal plasticity and survival, such as the N-methyl--aspartic acid (NMDA) receptor's subunit NR2B, the expression of which in the tetrameric ion channel largely affects calcium signaling by glutamate. In this study, we report that CXCL12 differentially modulates intracellular responses after stimulation of synaptic and extrasynaptic NMDA receptors, by a specific regulation of the NR2B gene that involves HDACs. Our results show that CXCL12 selectively inhibits NR2B expression in vitro and in vivo altering NMDA-induced calcium responses associated with neuronal death, while promoting prosurvival pathways that depend on stimulation of synaptic receptors. Along with previous studies, these findings underline the role of CXCL12/CXCR4 in the regulation of crucial components of glutamatergic transmission. These novel effects of CXCL12 may be involved in the physiological function of the chemokine in both developing and mature brains

    An observational study of once-daily modified-release methylphenidate in ADHD: effectiveness on symptoms and impairment, and safety

    Get PDF
    ADHD affects over 5% of children worldwide. It is typically treated with stimulant medications, and methylphenidate (MPH) is the most commonly prescribed. This study investigated the effectiveness, on symptoms and impairment, and safety of Equasym XL¼, a combination of 30% immediate-release and 70% modified-release MPH, in the treatment of ADHD in daily clinical practice. This open-label, observational, post-marketing surveillance study was conducted in 169 centres in Germany. Eligible patients, aged 6–17 years, were diagnosed with ADHD and about to begin treatment with Equasym XL¼. Effectiveness was assessed by physicians using the clinical global impression (CGI) severity and improvement scales; teachers and parents completed questionnaires evaluating ADHD symptoms and behavioural problems (DAYAS, FBB-ADHD and SDQ-P). Assessments were carried out at baseline, after 1–3 and 6–12 weeks of treatment. Of 852 enrolled patients, 822 were evaluable; 25.30% were treatment naïve, 69.84% had previously received different MPH formulations, and 4.87% had received other medications. ADHD symptoms improved from baseline to last visit for the majority of patients for all outcome measures. According to physician ratings of core ADHD symptoms, 75.73% of patients showed improvements on the CGI-Improvement scale, 17.77% had no change, and 6.50% worsened. In teacher and parent ratings, the effectiveness of Equasym XL¼ was rated better than prior therapy at all measured time points across the day, particularly late morning (teachers) and early afternoon (parents). Equasym XL¼ was generally well tolerated; only 3.16% of patients permanently discontinued treatment due to adverse events. Equasym XL¼ is effective and well tolerated in daily clinical practice

    Brain Phenotype of Transgenic Mice Overexpressing Cystathionine ÎČ-Synthase

    Get PDF
    The cystathionine ÎČ-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes.Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∌2-fold increase in total CBS proteins in different brain areas and a ∌1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line.We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS

    Molecular marks for epigenetic identification of developmental and cancer stem cells

    Get PDF
    Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states
    corecore