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Abstract
Determining the processes responsible for phenotypic variation is one of the central tasks of evolutionary biology. While the
importance of acoustic traits for foraging and communication in echolocating mammals suggests adaptation, the seldom-
tested null hypothesis to explain trait divergence is genetic drift. Here we derive FST values from multi-locus coalescent
isolation-with-migration models, and couple them with estimates of quantitative trait divergence, or PST, to test drift as the
evolutionary process responsible for phenotypic divergence in island populations of the Pteronotus parnellii species
complex. Compared to traditional comparisons of PST to FST, the migration-based estimates of FST are unidirectional instead
of bidirectional, simultaneously integrate variation among loci and individuals, and posterior densities of PST and FST can be
compared directly. We found the evolution of higher call frequencies is inconsistent with genetic drift for the Hispaniolan
population, despite many generations of isolation from its Puerto Rican counterpart. While the Hispaniolan population
displays dimorphism in call frequencies, the higher frequency of the females is incompatible with sexual selection. Instead,
cultural drift toward higher frequencies among Hispaniolan females might explain the divergence. By integrating Bayesian
coalescent and trait analyses, this study demonstrates a powerful approach to testing genetic drift as the default evolutionary
mechanism of trait differentiation between populations.

Introduction

Determining the evolutionary processes shaping phenotypes
has been a central task of genetics since its inception
(Wright 1931). While traits such as body size or structure of
acoustic calls have obvious implications for fitness
(Brommer et al. 2014; Campbell et al. 2010; Kingston and
Rossiter 2004; Puechmaille et al. 2014), genetic drift must
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first be tested as a potential primary evolutionary mechan-
ism operating within and between populations. Echolocat-
ing mammals use acoustic calls for spatial orientation,
foraging, and communication (Knörnschild et al. 2012),
hence, acoustic traits should be subject to strong selection.
Thus, the relative contributions of genetic isolation and
resulting drift vs. adaptive, social, or sexual selection to
acoustic traits becomes a central question in the evolu-
tionary ecology of echolocating organisms.

In the absence of selection, traits—including acoustic
traits—will evolve through neutral processes, reflecting
population genetic structure and effective population size
(Armstrong and Coles 2007; Chen et al. 2009; Odendaal
et al. 2014). Very few studies of acoustic traits, however,
directly evaluate predictions from drift models of trait
evolution (e.g., Campbell et al. (2010)). Instead of modeling
the amount of trait divergence attributable to neutral pro-
cesses, given the evolutionary history of the lineage in
question, qualitative assessments of genetic divergence
compared to call frequency tend to be interpreted as
reflecting some combination of neutral and selective pro-
cesses (Clare et al. 2013). Additionally, constraints on
acoustic traits arising from body size must be considered
when analyzing the evolution of calls. Other things being
equal, smaller bats will emit calls at higher frequencies than
larger bats, in a pattern resulting from the acoustic proper-
ties of any physical object (Jones 1996). It is therefore
important to include other correlated traits, such as body
size, in analyses of mammalian echolocation traits.

Among bats, new phylogenies coupled with comparative
analyses reveal ecological convergence in echolocation
traits, including the evolution of highly sophisticated
constant-frequency echolocation (Davies et al. 2012).
Instead of emitting calls sweeping across multiple fre-
quencies—or frequency modulated (FM) echolocation—,
bats that use constant-frequency (CF) echolocation emit a
pure tone at a constant frequency, ending with a FM sweep.
Constant frequency calls are both simple and highly con-
strained (Kingston et al. 2001), and therefore easy to
characterize by their dominant frequency.

In the New World, only the noctilionoid Pteronotus
parnellii species complex has evolved constant frequency
echolocation with Doppler-shift compensation (Clare et al.
2013). Recent research on the call frequencies of different
populations in this species complex has focused on their
correspondence with systematics (Clare et al. 2013; López-
Baucells et al. 2017; Pavan et al. 2018; Pavan and Marroig
2016), but not on the evolutionary processes responsible for
shaping these traits. Here we integrate population and
quantitative genetic models to test drift as the primary driver
of acoustic divergence in sister populations in the P. par-
nellii species complex. As island populations originating
through over-water dispersal (Dávalos 2006; Pavan and

Marroig 2017), the two focal populations have likely been
subject to random genetic drift for at least part of their
evolutionary history. We couple the isolation-with-
migration model (Hey and Nielsen 2007) with quantitative
analyses of phenotypic divergence codified by Spitze
(1993) based on Lande’s (1992) interpretation of Wright’s
(1951) island model, and extended to account for uncer-
tainty in trait heritability and scaling by Leinonen et al.
(2006). The methods presented here can be easily extended
to test drift as an evolutionary mechanism across popula-
tions with known isolation-with-migration parameters
(Muscarella et al. 2011; Russell et al. 2008).

Methods

Study sites, capture, and sampling methods

A total of 61 Pteronotus pusillus and P. portoricensis
individuals were captured using a harp trap at the entrance
of 6 caves distributed throughout the Dominican Republic
on the island of Hispaniola (P. pusillus) and Puerto Rico (P.
portoricensis, Supplementary Tables 1 and 2) (Núñez-
Novas et al. 2016; Pavan and Marroig 2016). For ease in
communication, we refer to individuals from both popula-
tions as Pteronotus parnellii species complex or sensu lato
(s.l.). Within minutes of capture, skin tissue was sampled
using an Acu-Punch sterile, disposable 2-mm skin biopsy
punch (Acuderm, Inc.). Punctures were transferred to ~0.7 g
indicator silica for desiccation and transport (Corthals et al.
2015). Bats were released at the site of capture within
60 min of being caught.

Morphological and echolocation data collection

After sexing, standard mammalian measurements were
collected comprising length of body, tail, ear, foot, and
forearm, and body mass. We recorded biosonar vocaliza-
tions from bats in a wire mesh cage (approximately 15 ×
15 × 35 cm). Recordings were made with a Larson Davis
6.25 mm instrumentation microphone (model no. 2520) and
Larson Davis preamplifier (model no. PRM 422), and
amplified with a PCB Piezotronics Signal Conditioner
(model no. 480E09). Calls were recorded onto a laptop
computer using a National Instruments A–D card (DAQ-
Card-6062E), recording at 356 kHz using BatSound Pro
v3.31 (Pettersson Elektronik). We placed bats into the cage
and allowed them to calm briefly. With the microphone held
~10 cm from the bat’s head, we recorded three to five files
of 5 s in duration.

We analysed the vocalizations using the callViewer-18
script compiled with Matlab by Mark Skowronski. The
spectrogram parameters of the program were set at a
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window length of 3 ms and an FFT size of 16,384 points
resulting in a resolution of 22 Hz. Automated detection
parameters set a frame rate of 10,000 frames per second
(resulting in a frame duration of 0.1 ms), a bandpass filter
between 20 and 130 kHz, and a minimum energy of 45 dB.
We focused frequency analysis on the constant frequency
(CF) portion of the second harmonic of the calls, as this is
known to be the highest amplitude and most consistent
component of the biosonar calls of this species, and relates
directly to the best frequency of the cochlea, auditory nerve,
and central nervous system (Huffman and Henson 1990).

Calls were selected for analysis based on the best
available signal-to-noise ratio. Approximately 65 individual
calls were identified for each bat and targeted for frequency
analysis in callViewer-18. The resulting tables assigned a
number to each call, the time to the centre of each analysis
frame, and the frequency of that frame and its slope (kHz/
ms), among other parameters. Segments of calls were
included in analysis when their slopes were zero for a
minimum of 1 ms (10 consecutive frames). Within a single
call, variations in the frequency of the CF component were
accepted if they shifted within one increment of resolution,
provided that the shift persisted for a minimum of 1 ms.
These variations correspond to Doppler-shifts induced by
motion of the bat in the cage. All frames of a call deemed to
be of constant frequency were averaged and this value was
taken as the frequency of the CF portion of the call.

Molecular data collection

DNA was extracted from the desiccated skin samples using
QIAmp or DNeasy extraction kits (Qiagen, Inc.), and fol-
lowing the manufacturer’s protocol for animal tissues
(Corthals et al. 2015). Extracted DNA was used as a tem-
plate in PCR amplifications using Taq polymerase and
primers for the entire mitochondrial cytochrome b (cytb)
gene, and partial sequences from four nuclear loci: stat5a,
plcb4, rag2, and atp7a. Primers and amplification condi-
tions for each locus have been described in detail elsewhere
(Dávalos et al. 2014).

Population genetic analyses

Aligned datasets for each locus were edited by eye to
remove sites violating the infinite sites model (i.e., sites
with >2 character states). The remaining data were then
filtered using the Perl script IMgc (Woerner et al. 2007) to
yield the longest non-recombining fragment for each locus.
The filtered data included 1,121 bp for cytb (nDR= 26, nPR
= 6), 472 bp for rag2 (nDR= 34, nPR= 28), 307 bp for
plcb4 (nDR= 26, nPR= 24), 429 bp for stat5a (nDR= 10,
nPR= 12), and 637 bp for atp7a (nDR= 2, nPR= 8). Sample
sizes for the nuclear loci are given as numbers of sequenced

chromosomes. McDonald and Kreitman (1991) tests were
conducted on all coding regions (cytb, atp7a, and rag2); in
no case did we find evidence of selection (Supplementary
Table 3).

Previous analyses indicated the two populations are
completely discontinuous (Pavan and Marroig 2016), and
our own analyses failed to show consistent differentiation
among sampling sites within islands. The historical demo-
graphy of these populations was therefore estimated using
the two-population model of IMa2 v.8.27.12 (Hey and
Nielsen 2004). As implemented here, this model estimated
six parameters: θ (=4Neμ) for each of the populations from
Hispaniola, Puerto Rico, and the most recent common
ancestor, m (=Mi/μ, where Mi is the rate of migration into
population i) in each direction, and τ (=tμ, where t is the
time since population splitting). Priors were set to uniform
distributions (U) (0,50) for θ and migration parameters, and
U(0,5) for τ. Five independent runs were allowed to burn-in
for ~5 million steps each, after which each Markov chain
Monte Carlo (MCMC) search was allowed to continue for
~10 million steps. Each run consisted of 30 heated chains
with heating parameters ha= 0.975 and hb= 0.75. Relative
substitution rates for each locus were estimated in IMa2 and
converted to substitutions/site/year based on a cytb rate of
2.99 × 10−8 substitutions/site/year from a fossil-calibrated
phylogenetic analysis of Noctilionoidea including P. par-
nellii s.l. (Rojas et al. 2016). Coalescent-scaled parameters
(θ, m, and τ) were converted to natural parameters (Ne, Mi,
and t, in order) as described above using the geometric
mean of locus-specific substitution rates (=5.67 × 10−7

substitutions/locus/year) and a generation time of 2 years.
After verifying that all runs converged on similar posterior
distributions, we used IMa2 to calculate the joint posterior
densities for each parameter based on the 47,983 coalescent
genealogies resulting from all five separate runs.

We estimated fixation index, or FST values (Wright
1965), based on the posterior densities of directional
effective number of migrants (Nem or Nm) from IMa2
(Supplementary Figure 1). The transformation to obtain FST

values was based on Wright’s (1965) island model with
Takahata’s (1983) correction for a finite number (d) of
populations, in which:

FST ¼ 1

1þ 4Nem d2

d�1ð Þ2
� � : ð1Þ

While attempts to estimate Nm from FST values have long
been criticized as overly simplistic (Whitlock and McCau-
ley 1999), here we instead use this relationship to transform
a posterior distribution of Nm into a posterior distribution of
FST values. This transformation accounts for the variance in
FST arising from stochastic errors as well as differences
between loci, which are overlooked when transforming FST
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into migration rates. In addition, by estimating directional
values of Nm using a non-equilibrium coalescent-based
method, we avoid the assumptions of equal Ne and m for all
populations, as well as the condition of mutation-drift-
migration equilibrium for the entire system.

In addition to obtaining FST distributions from coalescent
posterior distributions of Nm, we estimated global G′ST
(equivalent to FST) from the multi-locus sequence data,
including a correction for finite number of subpopulations
(Hedrick 2005), and then bootstrapped to obtain a dis-
tribution around that value using the R package mmod v.
1.3.3 (Winter 2012). This provided a direct comparison
between our coalescent-based method and previous meth-
ods of characterizing neutral variation within the genome.

Quantitative trait comparisons

All statistical analyses were conducted in the R statistical
language v.3.4.4. We estimated the summary statistics of
Hispaniolan and Puerto Rican populations for call fre-
quency, body mass, and forearm length phenotypes.
Bayesian estimates of differences between populations were
obtained using the BEST R package (Kruschke 2013).

Models of echolocation frequency as a function of
morphological data

The frequency of the CF portion of the second harmonic of
a set of biosonar calls was analyzed for each bat, as
described above. The median of these values was used to
represent its CF in frequentist statistical analyses. Principal
component analysis of morphological measurements was
used to obtain orthogonal variables summarizing the var-
iation in body size among individuals. We used linear
models of CF call frequency as a function of principal
components or body measurements to test whether variation
in call frequency was explained by body size (Jones 1996).

Using Bayesian models to estimate PST and compare
to FST

The divergence in a quantitative, heritable trait is expressed
as an analogue of the FST called the QST, and given by:

QST ¼ σ2AB

σ2AB
þ 2σ2AW

; ð2Þ

in which σ2AB
is the additive variance for the trait between

populations, and σ2AW
is the additive variance within

populations. Genetic drift as a mechanism behind the
quantitative differentiation is rejected when QST exceeds
FST from neutral loci. For most traits in wild populations,
however, the additive genetic variance is unknown

(Brommer 2011). In this case, the variance terms need to
be scaled by a constant c and the heritability h2, resulting in
the estimate of phenotypic differentiation, or PST:

PST ¼ cσ2B
cσ2B þ 2h2σ2W

¼
c
h2 σ

2
B

c
h2 σ

2
B þ 2σ2W

; ð3Þ

in which c/h2 is the additive genetic contribution to the
proportion of the between-population variance. In most
empirical cases the c/h2 ratio is unknown, but it determines
how robust the PST approximation to the QST is. If the PST

exceeds the neutral expectation—the FST—at c= h2, then it
will also exceed this expectation when c > h2. However,
when c < h2, there is a limit to the extent to which the PST

reflects the QST exceeding the neutral expectation. This
critical value is estimated by calculating c / h2critical (Eq. 13)
for the lower 5% tail of PST and the upper 5% tail of FST

distributions (Brommer 2011):

c

h2critical
¼ 2σ2W0:05FST 0:95

σ2B 0:05ð1� FST 0:95Þ ¼
ð1� PST 0:05ÞFST 0:95

PST 0:05ð1� FST 0:95Þ :

ð4Þ

When c / h2critical is low, there is a large range of c / h2 over
which the phenotypic divergence (QST) will exceed the
neutral genetic divergence (FST), indicating the comparison
is robust, and thus greater confidence in the inference of
quantitative divergence exceeding neutral genetic
divergence.

One advantage of our method emerges from obtaining
FST values from posteriors for directional migration rates
(Supplementary Figure 1). Unlike FST distributions based
on assumptions of normality, the distribution of multi-locus
FST values can be directly compared to the distribution of
trait-specific PST values without assuming a canonical fre-
quency distribution for either. Thus, we can also summarize
the entire parameter-space over which any differences
between PST and FST can be observed in the best-case
scenario of c= h2. We use the frequency distributions of
FST and trait-specific PST to visualize differences and test
genetic drift as the evolutionary mechanism underlying
differentiation in the two populations. The overlap between
distributions was calculated by computing kernel densities
on the same scale and their overlap using the R package
sfsmisc v. 1.1-0 (Maechler 2016).

To calculate trait-specific PST values, we estimated the
phenotypic variance between and within populations using
linear hierarchical (or multilevel) models (Brommer et al.
2014). Multilevel models have the advantage of fitting
parameters specific to clusters of observations (Gelman and
Hill 2007), such as islands, without discarding the variation
in observations of individuals. These models had the
quantitative trait as a response variable, with population as
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an island-specific (or random) effect, and sex as either a
sample-wide (or fixed) or an island-specific effect (includ-
ing a potential interaction between sex and island).
Including sex as an effect accounts for phenotypic variance
between sexes that might otherwise obscure the pattern of
variation between populations. The PST was estimated as a
derived quantity by coding eq. 13 for c= h2, including the
population-specific phenotypic variance σ2B, and the residual
variance σ2W , after factoring out the effects of sex on the
traits. In general, Bayesian analyses of the QST, approxi-
mated here by the PST, increase precision in estimates of the
entire posterior distribution (O’Hara and Merilä 2005).

Hierarchical models were coded in Jags v.3.3.0 (Plum-
mer 2003), and ran in the R package R2jags v.0.04-01 (Su
and Yajima 2012), with a burn-in of 25,000 iterations fol-
lowed by 25,000 additional iterations. Posteriors were
sampled every 25 generations to produce effective sampling
sizes for the posterior of at least 1600, and assessed using
the potential scale reduction factor (PSRF), which approa-
ches 1 at convergence (Gelman and Rubin 1992). All pos-
terior parameter estimates had PSRF ≤ 1.003. The prior for
the population-specific effect was drawn from a normal
distribution, with identical independent priors for between-
and within-population variances set as half-Cauchy dis-
tributions with variance of at least 10,000. These priors are
robust and do not make any assumptions about the relative
contribution of variation from different levels in the hier-
archy (Gelman and Hill 2007). In addition, we used esti-
mates from these models to build posterior predictive
checks, and compared the simulated data to parameters
from the observations using the bayesplot R package

(Gabry 2017). Estimates of PST with their posterior dis-
tribution are shown for the best-case scenario of c= h2.

Results

Population genetic analyses of isolation with
migration

We estimated the historical demography of Hispaniolan and
Puerto Rican populations of Pteronotus parnellii s.l. using
the two-population model of IMa2. Five independent runs
of ~10 million steps each converged on similar point esti-
mates and posterior densities for all parameters except
θMRCA (Supplementary Table 4). We focus here on the
parameters of interest for the phenotypic evolution models:
θ for each island population, directional migration rates
(mi), and the splitting time (τ) for the two daughter popu-
lations. The scaled population size parameter for Hispaniola
(θDR= 0.625, 95% high probability density [HPD]= 0.225,
1.975) was consistently estimated to be greater than that for
Puerto Rico (θPR= 0.125, 95% HPD= 0.025, 0.575).
Assuming a mean multilocus substitution rate of 1.13 × 10
−6 substitutions/locus/generation, these θ estimates corre-
spond to modal effective population sizes of ~ 138,000
individuals in the Hispaniolan population (95% HPD=
50k, 435k) and ~28,000 individuals in the Puerto Rican
population (95% HPD= 6k, 127k; Fig. 1a). These results
are consistent with our best knowledge of the biology of
these species, namely, that members of the island P. par-
nellii species complex are of least conservation concern in
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their respective ranges (Schipper et al. 2008), numerous
caves throughout their range are known to harbour thou-
sands to tens of thousands of individuals (Gannon et al.
2005; Núñez-Novas et al. 2016), and the range of P.
pusillus (Hispaniola) is much larger in area than the range of
P. portoricensis (Puerto Rico). These analyses converged
on an estimate of the scaled splitting time parameter τ=
0.703 (95% HPD= 0.258, 4.793); this corresponds to a
splitting time of ~1.24 Ma (95% HPD= 0.45Ma, 8.45Ma;
Fig. 1b). This estimated splitting time corresponds with
recent, independently derived phylogenetic estimates of
divergence of ~1.2 Ma between P. portoricensis and P.
pusillus by Pavan and Marroig (2017). Migration rates were
estimated as mDR (the coalescent-scaled rate of migration
from Puerto Rico into Hispaniola)= 1.875 (95% HPD=
0.475, 15.07) and mPR= 0.025 (95% HPD= 0.025, 30.52).
These estimates correspond to estimates of the effective
number of migrants per generation (Nm) of NmDR= 0.325
(95% HPD= 0.077, 2.336) and NmPR= 0.049 (0.007,
0.907; Supplementary Figure 1).

Relationship between echolocation frequency and
body size

Empirical frequency distributions of echolocation fre-
quencies showed complete separation between Puerto Rican
and Hispaniolan recordings (Fig. 2a). Analyses of covar-
iance (ancova) revealed that call frequencies of Hispaniolan
and Puerto Rican bats were significantly different (F(1,49) ≥
405.6, P value < 2e-16, Fig. 2a), but this variation was not a

linear product of body size as measured by body mass (F

(1,49)= 0.436, P value= 0.512, Fig. 2b), forearm length (F

(1,52)= 2.01, P value= 0.162, Fig. 2c), or the first principal
component of all external body measurements (F(1,44)=
0.258, P value= 0.614, Supplementary Figure 2). The only
variable to show a correlation with call frequencies was
principal component 2, but it still did not explain the
divergence between the two populations (PC2, F(1,44)=
7.39, P value= 0.010, Supplementary Figure 2). The dis-
tributions of external body measurements for Hispaniolan
and Puerto Rican populations overlapped almost completely
(Fig. 2b). Using a Bayesian implementation of the t test
(Kruschke 2013), we found Hispaniolan bats had a mean
forearm length 0.71 mm shorter (HPD=−1.82, 0.422),
confirming those bats are generally smaller but not sig-
nificantly so (Fig. 2b). The first three principal components
of morphological variation were able to discriminate
between the Hispaniolan and Puerto Rican populations
(manova of principal components of morphological mea-
surements F(1,46)= 17.46, P= 1.042e-07; Wilk’s Λ=
0.467, partial η2= 0.53).

Estimates of genotypic and phenotypic
differentiation

The posterior distributions of population-specific migration
rates were used to calculate FST values (Table 1, Fig. 3).
While all Bayesian models for quantitative traits performed
well in posterior predictive checks, modelling the island-
specific effects of sex improved estimates of the variance

Fig. 2 Echolocation call frequency by island by sex and its relation to
body dimensions. a Boxplots of echolocation frequency (summarizing
10 calls/individual). Bayesian 95% high-probability density (HPD) of
the difference in call frequency means between Puerto Rico and His-
paniola was 5.2–6.0 kHz. b Call frequency as a function of body mass.
Analyses of covariance support very different call frequency for island
groups (F(1, 49)= 704.260, P value= 0.000), but no influence of body

mass on the call frequency (F(1, 49)= 0.435, P value= 0.512). The
95% HPD of population differences in means for body mass was
0.89–2.29 g. c Call frequency as a function of forearm length. Ana-
lyses of covariance support little influence of forearm length on the call
frequency (F(1, 52)= 2.851, P value= 0.097). The 95% HPD of
population differences in means for forearm lengths was −1.82,
0.422 mm
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for sexes on different islands (Supplementary Figure 3).
Body size variables showed no sex-specific effects: the
posterior distributions of the coefficients of the effect of
being male had slightly negative means for each trait, but
included zero (Table 1). Compared to females, Hispaniolan
males called at lower frequency (Table 1, Supplementary

Table 5, Fig. 2a). This effect persisted even after including
body mass or forearm length as covariates of call frequency
(Table 2).

Estimates of trait-specific PST at c= h2 showed the
greatest differentiation in echolocation call frequency, with
lower estimates for body mass and forearm length (Table 1).
The call frequency PST for Hispaniola also had low c/h2cri-
tical (0.014 with island-specific sex effect, 0.022 with
sample-wide sex effect), while the c / h2critical values of
almost all other comparisons were several times larger, and
even >1 for the body size data from Puerto Rico. Com-
parisons of the distributions of PST and FST show overlap in
distributions ≥4.9% for body size variables and Puerto Rico,
while the lowest overlap corresponded to PST call frequency
and FST Hispaniola (0.02% with island-specific sex effect,
Fig. 3, and 0.06% with sample-wide sex effect, Supple-
mentary Figure 4). This indicates phenotypic differentiation
was significantly greater than neutral genetic differentiation
for call frequency trait in the Hispaniolan population.

Discussion

We tested genetic drift as the evolutionary process under-
lying acoustic differentiation by integrating phenotypic and
genotypic models, rejecting this evolutionary mechanism
as a probable explanation for the divergent call in the
Hispaniolan population. To this end, we integrated
coalescent-based models and well-established methods for
estimating FST (Wright 1965) to directly compare measures
of differentiation. This approach accounts for variation in
FST estimates in comparisons with PST, allows the esti-
mation of different FST distributions corresponding to
directional rates of migration, and enables measuring
overlap to quantify the correspondence between genotypic
and phenotypic divergence. In addition, compared to a

Table 1 Posterior estimates of
FST into each island, G’ST
(normalized multi-locus FST),
trait-specific PST with sample-
wide effects of sex for each trait,
and island-specific effects of sex
in the case of call frequency

Variable His. c/
h2critical

P.R. c/
h2critical

Mean 2.5%
HPD

Median 97.5%
HPD

Multi-locus FST Hispaniola — — 0.072 0.013 0.051 0.259

Multi-locus FST Puerto Rico — — 0.215 0.033 0.162 0.684

Multi-locus bidirectional G’ST (confidence
interval)

— 0.215 0.116 0.215 0.314

Body mass PST 0.342 >1 0.893 0.302 0.987 1.000

Body mass sex effect — — −0.621 −1.290 −0.618 0.038

Call frequency PST 0.014 0.080 0.990 0.915 0.999 1.000

Call frequency sex effect Hispaniola — — −0.736 −1.211 −0.736 −0.263

Call frequency sex effect Puerto Rico — — −0.138 −0.752 −0.142 0.495

Correlation of variance between sex and island — — −0.043 −0.981 −0.053 0.964

Forearm PST 0.901 >1 0.835 0.135 0.979 1.000

Forearm sex effect — — −0.220 −1.002 −0.218 0.550

The sex effect is coded with females as the baseline, the effect shown is for males. c / h2critical, critical value of
the proportion of heritability ascribable to the additive genetic variance for the PST vs. FST comparison

His. Hispaniola, HPD high probability density, P.R. Puerto Rico
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Fig. 3 Densities of Bayesian posteriors for FST based on between-
population migration rates, and PST for relevant phenotypic variables
(Brommer et al. 2014). The lines show the 95th percentile for the
corresponding FST, and the 5% percentile for the PST. The overlap
between PST body mass and FST Hispaniola was 0.023, for FST Puerto
Rico it was 0.084; between PST call frequency and FST Hispaniola was
< 0.001, for FST Puerto Rico it was 0.003; and between PST forearm
length and FST Hispaniola was 0.049, for FST Puerto Rico it was 0.125
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bootstrapped distribution around a point estimate of global
FST, the distributions of FST derived from Bayesian pos-
terior estimates of Nm more realistically reflect the infor-
mation content in the data.

Comparisons of FST and PST

Our comparisons differ from traditional comparisons of
genotypic and phenotypic differentiation in two ways. First,
calculating FST values from estimates of the number of
migrants (Nm) overcomes the limitations of traditional
approximations by integrating both stochastic variation
from individual sampling and variance across loci and by
allowing for asymmetric rates of gene flow (Muir et al.
2012; Sundqvist et al. 2016). Importantly, because Nm is a
compound parameter (4Nm ¼ 4Neμ � M

μ
), these estimates

are independent from the highly variable mutation rate. This
approach, then, can test the genetic drift hypothesis for each
population, with potential applications for testing the evo-
lutionary processes behind differentiation in continuous
traits across many populations in the West Indies and
beyond (Muscarella et al. 2011; Russell et al. 2008). Sec-
ond, FST values were derived from a Bayesian posterior of
Nm, and the resulting distribution of FST was then compared
against the posterior of phenotypic differentiation (Fig. 3).
Therefore, the frequency distribution of FST does not need
to be generated by bootstrapping, or some other means of
introducing variation around a single point estimate. The
difference between the frequency distributions of FST and
PST can then be calculated as a derived quantity in Bayesian
analyses or, in the case of overlap, as an estimate of the
overlapping portion of the frequency distributions (Fig. 3).
When estimates of neutral genetic and trait differentiation
clearly overlap, as for body size variables for Puerto Rico
(Fig. 3), the c / h2critical value becomes irrelevant because the
overlap between trait-specific PST values and estimates of
genetic differentiation occurs under the best-case scenario
of c ≥ h2. In cases in which the frequency distributions
differ, as for call frequency and perhaps body mass (Fig. 3),
the c / h2critical value can be estimated with greater

confidence on the upper tail of the FST than has been fea-
sible before.

An analysis using the traditional method of estimating a
distribution of genetic differentiation illustrates some ben-
efits of the proposed approach. We estimated global G′ST
(equivalent to FST) from the sequence data (Hedrick 2005),
and bootstrapped to obtain a distribution around that value.
With a mean G’ST= 0.215 (normalized 95% CI: 0.116-
0.314), and like the transformed Bayesian posterior dis-
tribution of Nm for Hispaniola, the global G′ST shows no
overlap with PST for the call frequency, but does overlap
with PST for both body mass and forearm length. Unlike our
approach using transformed posterior distributions, the tra-
ditional approach assumes an equilibrium model with gene
flow being equal in both directions, and so would lead to
rejection of genetic drift for the Puerto Rican population
with a c / h2critical value of 0.03. In contrast, the method
presented here accounts for directional differences in FST

that lead to a sixfold higher c / h2critical for the Puerto Rican
(0.080) compared to the Hispaniolan population (0.014),
resulting in much greater robustness for the rejection of drift
for the latter.

Our method of deriving FST distributions from Bayesian
posterior distributions of Nm may be practically imple-
mented in future studies. Here, we chose the IMa2 software
package to estimate distributions of Nm because the
underlying demographic model is directly applicable to the
sampled populations of P. portoricensis and P. pusillus, two
sister species with no genetic structure within islands and
DNA sequence data well described by the infinite sites
model. In other applications, more complex demographic
scenarios and/or different data types may apply different
methods to estimate the Nm posterior (e.g., approximate
Bayesian methods). Regardless of the specific method used
to estimate these posterior distributions, we urge that the
data be tested for neutrality, that appropriate demographic
models be used, and that appropriate substitution models be
specified in the analysis. In addition, we expect that,
regardless of the method used, Bayesian estimates of the
Nm composite parameter will yield more precise posteriors

Table 2 Summary of posterior
estimates of echolocation call
frequency PST for analyses
correcting for body size through
island-specific effects of sex,
and sample-wide effect of body
mass (BM), or forearm length
(FA)

Model Variable Mean 2.5% HPD Median 97.5% HPD

Both PST 0.989 0.907 0.999 1.000

BM Sex effect Hispaniola −0.777 −1.279 −0.781 −0.249

BM Sex effect Puerto Rico −0.127 −0.736 −0.130 0.509

BM Coefficient on body mass −0.034 −0.190 −0.034 0.125

BM Correlation of variance between sex and island −0.050 −0.982 −0.083 0.961

FA Sex effect Hispaniola −0.685 −1.151 −0.682 −0.228

FA Sex effect Puerto Rico −0.285 −0.879 −0.297 −0.351

FA Coefficient on forearm length −0.102 −0.238 −0.102 0.034

FA Correlation of variance between sex and island −0.051 −0.980 −0.030 0.968

The sex effect is coded with females as the baseline, i.e., the effect shown is for males

HPD high probability density
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with larger datasets, particularly with an increase in the
number of variable markers rather than an increase in the
number of sampled individuals (Knowles and Carstens
2007; Leaché et al. 2013).

Acoustic divergence despite similar body size

Previous analyses had shown genetic differentiation
between the Hispaniolan (Pteronotus pusillus) and Puerto
Rican (P. portoricensis) populations in the P. parnellii
species complex (Dávalos 2006; Pavan and Marroig 2016).
We confirmed two independent, allopatric populations
characterized by divergent acoustic signals. Acoustic dif-
ferentiation cannot be explained by the subtle differences in
body size that characterize the two populations. Linear
combinations of morphological measurements of the skull
or body can discriminate between species (Pavan and
Marroig 2016), but if the two populations were sympatric
they could not be easily distinguished using external mea-
surements (Fig. 2b), and would be considered cryptic
(Kingston et al. 2001). In contrast, differences in call fre-
quency were large and consistently explained by population
membership, but not by size (Fig. 2, Supplementary Figure
2). These observations raise the question of how the two
sister populations evolved divergent call frequencies.

Pteronotus pusillus and P. portoricensis are allopatric,
insular populations with a long history of isolation for
approximately 1.2 million years (Fig. 1b). This long isola-
tion coupled with little subsequent migration makes genetic
drift an obvious mechanism for acoustic divergence (Sup-
plementary Figure 1). Multiple adaptive, social, and sex-
driven evolutionary causes have been invoked to explain
variation in call frequency between populations and
between species, including habitat physical features
(Odendaal et al. 2014), ambient humidity (Guillén et al.
2000), acoustic environment (Gillam and McCracken
2007), ecological segregation (Kingston et al. 2001; King-
ston and Rossiter 2004), female choice (Puechmaille et al.
2014), and cultural drift (Yoshino et al. 2008). Crucially,
the genetic drift model is seldom tested in a way that con-
siders more than simple pairwise genetic distances (e.g.,
Odendaal et al. 2014; Puechmaille et al. 2011; Yoshino
et al. 2008). Here, the genetic drift hypothesis is rejected for
Hispaniola over ~98% of the range of c / h2 < 1or additive
proportion of heritability (Table 1, Fig. 3). This finding,
along with sexual dimorphism in the Hispaniolan but not
Puerto Rican population, detected even after accounting for
body size, suggests sexual or social mechanisms could
explain trait differentiation in these island populations.

As high-frequency calls are an honest signal of body
condition, females seem to select for higher-frequency
males in at least one constant-frequency echolocating bat
species (Puechmaille et al. 2014). If that were the case here,

female choice would lead to the higher frequency of Pter-
onotus pusillus. Male calls, however, were significantly
lower in this population even after accounting for their
somewhat smaller body size (Table 2). If this dimorphism is
the result of female choice, then it runs counter to the
direction of divergence that needs to be explained. The
alternative is for females to drive the change in call fre-
quency, not through sexual selection, but through cultural
drift (Yoshino et al. 2008). In this case, the maternal
transmission of culturally distinct higher-frequency calls
coupled with female philopatry leads to long-term diver-
gence in acoustic calls even after males disperse. Over the
time of estimated isolation even subtle cultural differences
together with overwater barriers could explain the diver-
gence found. Although ecological factors cannot be entirely
ruled out without additional data, the cultural drift hypoth-
esis has the advantage of explaining sexual dimorphism as
well. Future studies can explore the implications of these
initial findings, including the extent of sex-biased dispersal
between the two isolated populations (Pavan and Marroig
2016).

In conclusion, we have introduced a Bayesian
coalescent-based approach to estimate FST and thereby test
genetic drift as an evolutionary mechanism to explain
phenotypic divergence across multiple traits. This approach
directly calculates the extent of overlap between posterior
distributions of FST and PST. Coalescent-based analyses
revealed isolated populations with minimal subsequent
migration, leading to high FST values, while trait analyses
showed acoustic divergence and sexual dimorphism in call
frequency. Comparisons between FST and PST rejected
genetic drift as a probable evolutionary mechanism behind
acoustic divergence in Pteronotus pusillus, and somewhat
less robustly in P. portoricensis. The significantly higher
calls of the Hispaniolan population, together with lower
calls of males make female choice an unlikely evolutionary
mechanism, and instead leave open the possibility of
female-mediated cultural drift. By integrating Bayesian
coalescent and trait analyses, this study demonstrates a
powerful approach to testing genetic drift as the key evo-
lutionary process in trait differentiation.

Data archiving

We have deposited the primary data underlying these ana-
lyses as follows:

Sampling locations, morphological data, R scripts and
Bayesian models available from Dryad: https://doi.org/
10.5061/dryad.fg53g0j.
DNA sequences: Genbank accessions cytb: KX787941-
KX787953, KX787967-KX787994, stat5a: KY077747-
KY077757, plcb4: KY077790-KY077814, rag2:
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KY077758-KY077789, and atp7a: KY077742-
KY077746.
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