2,037 research outputs found

    Health and safety of the older worker

    Get PDF
    This is the author's pre-copyedited accepted manuscript. The final published article is available from the link below. Copyright @ 2012 The Authors.Background - In the UK, increasing numbers of paid employees are over 60 years with further increases expected as the state pension age rises. Some concern surrounds possible increased work-related illness and accidents for people working beyond the age of 60. Aims - To identify the available evidence for health and safety risks of workers over age 60 years with respect to factors associated with injuries and accidents. Methods - Databases searched included PUBMED, OSHUpdate, National Institute for Occupational Safety and Health (NIOSHTIC-2), SafetyLit, the UK The Health and Safety Executive (HSELINE) and the Canadian Centre for Occupational Health and Safety until December 2009. Inclusion criteria were workers aged over 60 years. Findings were grouped into occupational accidents and injuries and individual and workplace factors that may have influenced risk of injury to the over-60s. Results - Very little direct evidence was found concerning safety practices and health risks of workers over age 60. Some safety risks were associated with specific physical declines such as age-related hearing loss. Overall, these workers had fewer accidents and injuries but these were more likely to be serious or fatal when they occurred. There was no strong evidence that work patterns, including shift work or overtime, affected safety. Protective, compensatory strategies or experience may maintain safe working practices. Conclusions - Implications for health and safety risks cannot be assessed without longitudinal research on workforces with substantial numbers of workers over age 60 in order to address the healthy worker effect.Institution of Occupational Health and Safet

    Pain assessment for people with dementia: a systematic review of systematic reviews of pain assessment tools.

    Get PDF
    BACKGROUND: There is evidence of under-detection and poor management of pain in patients with dementia, in both long-term and acute care. Accurate assessment of pain in people with dementia is challenging and pain assessment tools have received considerable attention over the years, with an increasing number of tools made available. Systematic reviews on the evidence of their validity and utility mostly compare different sets of tools. This review of systematic reviews analyses and summarises evidence concerning the psychometric properties and clinical utility of pain assessment tools in adults with dementia or cognitive impairment. METHODS: We searched for systematic reviews of pain assessment tools providing evidence of reliability, validity and clinical utility. Two reviewers independently assessed each review and extracted data from them, with a third reviewer mediating when consensus was not reached. Analysis of the data was carried out collaboratively. The reviews were synthesised using a narrative synthesis approach. RESULTS: We retrieved 441 potentially eligible reviews, 23 met the criteria for inclusion and 8 provided data for extraction. Each review evaluated between 8 and 13 tools, in aggregate providing evidence on a total of 28 tools. The quality of the reviews varied and the reporting often lacked sufficient methodological detail for quality assessment. The 28 tools appear to have been studied in a variety of settings and with varied types of patients. The reviews identified several methodological limitations across the original studies. The lack of a 'gold standard' significantly hinders the evaluation of tools' validity. Most importantly, the samples were small providing limited evidence for use of any of the tools across settings or populations. CONCLUSIONS: There are a considerable number of pain assessment tools available for use with the elderly cognitive impaired population. However there is limited evidence about their reliability, validity and clinical utility. On the basis of this review no one tool can be recommended given the existing evidence

    A database of microRNA expression patterns in Xenopus laevis

    Get PDF
    MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase

    Differential Effects of Painful and Non-Painful Stimulation on Tactile Processing in Fibromyalgia Syndrome and Subjects with Masochistic Behaviour

    Get PDF
    BACKGROUND: In healthy subjects repeated tactile stimulation in a conditioning test stimulation paradigm yields attenuation of primary (S1) and secondary (S2) somatosensory cortical activation, whereas a preceding painful stimulus results in facilitation. METHODOLOGY/PRINCIPAL FINDINGS: Since previous data suggest that cognitive processes might affect somatosensory processing in S1, the present study aims at investigating to what extent cortical reactivity is altered by the subjective estimation of pain. To this end, the effect of painful and tactile stimulation on processing of subsequently applied tactile stimuli was investigated in patients with fibromyalgia syndrome (FMS) and in subjects with masochistic behaviour (MB) by means of a 122-channel whole-head magnetoencephalography (MEG) system. Ten patients fulfilling the criteria for the diagnosis of FMS, 10 subjects with MB and 20 control subjects matched with respect to age, gender and handedness participated in the present study. Tactile or brief painful cutaneous laser stimuli were applied as conditioning stimulus (CS) followed by a tactile test stimulus (TS) 500 ms later. While in FMS patients significant attenuation following conditioning tactile stimulation was evident, no facilitation following painful stimulation was found. By contrast, in subjects with MB no attenuation but significant facilitation occurred. Attenuation as well as facilitation applied to cortical responses occurring at about 70 ms but not to early S1 or S2 responses. Additionally, in FMS patients the amount of attenuation was inversely correlated with catastrophizing tendency. CONCLUSION: The present results imply altered cortical reactivity of the primary somatosensory cortex in FMS patients and MB possibly reflecting differences of individual pain experience

    The evolutionary origins of ritualized acoustic signals in caterpillars

    Get PDF
    Animal communication signals can be highly elaborate, and researchers have long sought explanations for their evolutionary origins. For example, how did signals such as the tail-fan display of a peacock, a firefly flash or a wolf howl evolve? Animal communication theory holds that many signals evolved from non-signalling behaviours through the process of ritualization. Empirical evidence for ritualization is limited, as it is necessary to examine living relatives with varying degrees of signal evolution within a phylogenetic framework. We examine the origins of vibratory territorial signals in caterpillars using comparative and molecular phylogenetic methods. We show that a highly ritualized vibratory signal—anal scraping—originated from a locomotory behaviour—walking. Furthermore, comparative behavioural analysis supports the hypothesis that ritualized vibratory signals derive from physical fighting behaviours. Thus, contestants signal their opponents to avoid the cost of fighting. Our study provides experimental evidence for the origins of a complex communication signal, through the process of ritualization

    Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.

    Get PDF
    BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    Human Young Children as well as Adults Demonstrate ‘Superior’ Rapid Snake Detection When Typical Striking Posture Is Displayed by the Snake

    Get PDF
    Humans as well as some nonhuman primates have an evolved predisposition to associate snakes with fear by detecting their presence as fear-relevant stimuli more rapidly than fear-irrelevant ones. In the present experiment, a total of 74 of 3- to 4-year-old children and adults were asked to find a single target black-and-white photo of a snake among an array of eight black-and-white photos of flowers as distracters. As target stimuli, we prepared two groups of snake photos, one in which a typical striking posture was displayed by a snake and the other in which a resting snake was shown. When reaction time to find the snake photo was compared between these two types of the stimuli, its mean value was found to be significantly smaller for the photos of snakes displaying striking posture than for the photos of resting snakes in both the adults and children. These findings suggest the possibility that the human perceptual bias for snakes per se could be differentiated according to the difference of the degree to which their presence acts as a fear-relevant stimulus

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures
    corecore