96 research outputs found

    Electrophysiological evidence of enhanced performance monitoring in recently abstinent alcoholic men

    Get PDF
    RATIONALE: Chronic alcoholism is associated with mild to moderate cognitive impairment. Under certain conditions, impairment can be ameliorated by invoking compensatory processes. OBJECTIVE: To identify electrophysiological mechanisms of such compensation that would be required to resolve response conflict. METHODS: 14 abstinent alcoholic men and 14 similarly aged control men performed a variation of the Eriksen flanker task during an electroencephalography (EEG) recording to examine whether alcoholics could achieve and maintain control-level performance and whether EEG markers could identify evidence for the action of compensatory processes in the alcoholics. Monitoring processes engaged following a response were indexed by the correct related negativity (CRN) and error related negativity (ERN), two medial-frontal negative event-related potentials. RESULTS: The alcoholics were able to perform at control levels on accuracy and reaction time (RT). Alcoholics generated larger ERN amplitudes following incorrect responses and larger CRNs following correct responses than controls. Both groups showed evidence of post-error slowing. Larger CRN amplitudes in the alcoholics were related to longer RTs. Also observed in the alcoholics was an association between smaller CRN amplitudes and length of sobriety, suggesting a normalization of monitoring activity with extended abstinence. CONCLUSIONS: To the extent that greater amplitude of these electrophysiological markers of performance monitoring indexes greater resource allocation and performance compensation, the larger amplitudes observed in the alcoholic than control group support the view that elevated performance monitoring enables abstinent alcoholics to overcome response conflict, as was evident in their control-level performance

    Novelty Enhances Visual Perception

    Get PDF
    The effects of novelty on low-level visual perception were investigated in two experiments using a two-alternative forced-choice tilt detection task. A target, consisting of a Gabor patch, was preceded by a cue that was either a novel or a familiar fractal image. Participants had to indicate whether the Gabor stimulus was vertically oriented or slightly tilted. In the first experiment tilt angle was manipulated; in the second contrast of the Gabor patch was varied. In the first, we found that sensitivity was enhanced after a novel compared to a familiar cue, and in the second we found sensitivity to be enhanced for novel cues in later experimental blocks when participants became more and more familiarized with the familiar cue. These effects were not caused by a shift in the response criterion. This shows for the first time that novel stimuli affect low-level characteristics of perception. We suggest that novelty can elicit a transient attentional response, thereby enhancing perception

    Deficits in Inhibitory Control in Smokers During a Go/NoGo Task: An Investigation Using Event-Related Brain Potentials

    Get PDF
    Contains fulltext : 119553.pdf (publisher's version ) (Open Access)Introduction: The role of inhibitory control in addictive behaviors is highlighted in several models of addictive behaviors. Although reduced inhibitory control has been observed in addictive behaviors, it is inconclusive whether this is evident in smokers. Furthermore, it has been proposed that drug abuse individuals with poor response inhibition may experience greater difficulties not consuming substances in the presence of drug cues. The major aim of the current study was to provide electrophysiological evidence for reduced inhibitory control in smokers and to investigate whether this is more pronounced during smoking cue exposure. Methods: Participants (19 smokers and 20 non-smoking controls) performed a smoking Go/NoGo task. Behavioral accuracy and amplitudes of the N2 and P3 event-related potential (ERP), both reflecting aspects of response inhibition, were the main variables of interest. Results: Reduced NoGo N2 amplitudes in smokers relative to controls were accompanied by decreased task performance, whereas no differences between groups were found in P3 amplitudes. This was found to represent a general lack of inhibition in smokers, and not dependent on the presence of smoking cues. Conclusions: The current results suggest that smokers have difficulties with response inhibition, which is an important finding that eventually can be implemented in smoking cessation programs. More research is needed to clarify the exact role of cue exposure on response inhibition.7 p

    Integration of rule-based models and compartmental models of neurons

    Get PDF
    Synaptic plasticity depends on the interaction between electrical activity in neurons and the synaptic proteome, the collection of over 1000 proteins in the post-synaptic density (PSD) of synapses. To construct models of synaptic plasticity with realistic numbers of proteins, we aim to combine rule-based models of molecular interactions in the synaptic proteome with compartmental models of the electrical activity of neurons. Rule-based models allow interactions between the combinatorially large number of protein complexes in the postsynaptic proteome to be expressed straightforwardly. Simulations of rule-based models are stochastic and thus can deal with the small copy numbers of proteins and complexes in the PSD. Compartmental models of neurons are expressed as systems of coupled ordinary differential equations and solved deterministically. We present an algorithm which incorporates stochastic rule-based models into deterministic compartmental models and demonstrate an implementation ("KappaNEURON") of this hybrid system using the SpatialKappa and NEURON simulators.Comment: Presented to the Third International Workshop on Hybrid Systems Biology Vienna, Austria, July 23-24, 2014 at the International Conference on Computer-Aided Verification 201

    The Detectability of Earth's Biosignatures Across Time

    Full text link
    Over the past two decades, enormous advances in the detection of exoplanets have taken place. Currently, we have discovered hundreds of earth-sized planets, several of them within the habitable zone of their star. In the coming years, the efforts will concentrate in the characterization of these planets and their atmospheres to try to detect the presence of biosignatures. However, even if we discovered a second Earth, it is very unlikely that it would present a stage of evolution similar to the present-day Earth. Our planet has been far from static since its formation about 4.5 Ga ago; on the contrary, during this time, it has undergone multiple changes in it's atmospheric composition, it's temperature structure, it's continental distribution, and even changes in the forms of life that inhabit it. All these changes have affected the global properties of Earth as seen from an astronomical distance. Thus, it is of interest not only to characterize the observables of the Earth as it is today, but also at different epochs. Here we review the detectability of the Earth's globally-averaged properties over time. This includes atmospheric composition and biosignatures, and surface properties that can be interpreted as sings of habitability (bioclues). The resulting picture is that truly unambiguous biosignatures are only detectable for about 1/4 of the Earth's history. The rest of the time we rely on detectable bioclues that can only establish an statistical likelihood for the presence of life on a given planet.Comment: To appear in "Handbook of Exoplanets", eds. Deeg, H.J. & Belmonte, J.A, Springer (2018). arXiv admin note: text overlap with arXiv:astro-ph/0609398 by other author

    Thermal niche evolution and geographical range expansion in a species complex of western Mediterranean diving beetles

    Get PDF
    [Background] Species thermal requirements are one of the principal determinants of their ecology and biogeography, although our understanding of the interplay between these factors is limited by the paucity of integrative empirical studies. Here we use empirically collected thermal tolerance data in combination with molecular phylogenetics/phylogeography and ecological niche modelling to study the evolution of a clade of three western Mediterranean diving beetles, the Agabus brunneus complex.[Results] The preferred mitochondrial DNA topology recovered A. ramblae (North Africa, east Iberia and Balearic islands) as paraphyletic, with A. brunneus (widespread in the southwestern Mediterranean) and A. rufulus (Corsica and Sardinia) nested within it, with an estimated origin between 0.60-0.25 Ma. All three species were, however, recovered as monophyletic using nuclear DNA markers. A Bayesian skyline plot suggested demographic expansion in the clade at the onset of the last glacial cycle. The species thermal tolerances differ significantly, with A. brunneus able to tolerate lower temperatures than the other taxa. The climatic niche of the three species also differs, with A. ramblae occupying more arid and seasonal areas, with a higher minimum temperature in the coldest month. The estimated potential distribution for both A. brunneus and A. ramblae was most restricted in the last interglacial, becoming increasingly wider through the last glacial and the Holocene.[Conclusions] The A. brunneus complex diversified in the late Pleistocene, most likely in south Iberia after colonization from Morocco. Insular forms did not differentiate substantially in morphology or ecology, but A. brunneus evolved a wider tolerance to cold, which appeared to have facilitated its geographic expansion. Both A. brunneus and A. ramblae expanded their ranges during the last glacial, although they have not occupied areas beyond their LGM potential distribution except for isolated populations of A. brunneus in France and England. On the islands and possibly Tunisia secondary contact between A. brunneus and A. ramblae or A. rufulus has resulted in introgression. Our work highlights the complex dynamics of speciation and range expansions within southern areas during the last glacial cycle, and points to the often neglected role of North Africa as a source of European biodiversity.This work was supported by an FPI grant to AH-G and projects CGL2007-61665 and CGL2010-15755 from the Spanish government to IR. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil

    Get PDF
    In addition to the well-studied impacts of defecation and defoliation, large herbivores also affect plant and arthropod communities through trampling, and the associated soil compaction. Soil compaction can be expected to be particularly important on wet, fine-textured soils. Therefore, we established a full factorial experiment of defoliation (monthly mowing) and soil compaction (using a rammer, annually) on a clay-rich salt marsh at the Dutch coast, aiming to disentangle the importance of these two factors. Additionally, we compared the effects on soil physical properties, plants, and arthropods to those at a nearby cattle-grazed marsh under dry and under waterlogged conditions. Soil physical conditions of the compacted plots were similar to the conditions at cattle-grazed plots, showing decreased soil aeration and increased waterlogging. Soil salinity was doubled by defoliation and quadrupled by combined defoliation and compaction. Cover of the dominant tall grass Elytrigia atherica was decreased by 80% in the defoliated plots, but cover of halophytes only increased under combined defoliation and compaction. Effects on soil micro-arthropods were most severe under waterlogging, showing a fourfold decrease in abundance and a smaller mean body size under compaction. Although the combined treatment of defoliation and trampling indeed proved most similar to the grazed marsh, large discrepancies remained for both plant and soil fauna communities, presumably because of colonization time lags. We conclude that soil compaction and defoliation differently affect plant and arthropod communities in grazed ecosystems, and that the magnitude of their effects depends on herbivore density, productivity, and soil physical properties
    • …
    corecore