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Abstract. Synaptic plasticity depends on the interaction between elec-
trical activity in neurons and the synaptic proteome, the collection of
over 1000 proteins in the post-synaptic density (PSD) of synapses. To
construct models of synaptic plasticity with realistic numbers of pro-
teins, we aim to combine rule-based models of molecular interactions
in the synaptic proteome with compartmental models of the electrical
activity of neurons. Rule-based models allow interactions between the
combinatorially large number of protein complexes in the postsynaptic
proteome to be expressed straightforwardly. Simulations of rule-based
models are stochastic and thus can deal with the small copy numbers
of proteins and complexes in the PSD. Compartmental models of neu-
rons are expressed as systems of coupled ordinary differential equations
and solved deterministically. We present an algorithm which incorporates
stochastic rule-based models into deterministic compartmental models
and demonstrate an implementation (“KappaNEURON”) of this hybrid
system using the SpatialKappa and NEURON simulators.

Keywords: Hybrid stochastic-deterministic simulations, hybrid spatial-
nonspatial simulations, multiscale simulation, rule-based models, com-
partmental models, computational neuroscience

1 Introduction

The experimental phenomena of long term potentiation (LTP) and long term
depression (LTD) show that synapses can transduce patterns of electrical ac-
tivity on a timescale of milliseconds in the neurons they connect into long-
lasting changes in the expression levels of neurotransmitter receptor proteins.
This synaptic plasticity plays a crucial role in the development of a functional

? The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nos.
241498 (EUROSPIN project), 242167 (SynSys-project) and 604102 (Human Brain
Project). We thank Anatoly Sorokin for his help with SpatialKappa and comments
on an earlier version of the manuscript, and Vincent Danos for thought-provoking
discussions.
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nervous system and in encoding semantic memories (e.g. motor patterns) and
episodic memories (experiences), converting stimuli lasting for seconds into mem-
ories that last a lifetime [16].

There are a number of computational models of how synaptic plasticity arises
from patterns of pre- and postsynaptic electrical activity, the dynamics of α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and
N -methyl-D-aspartic acid receptors (NMDARs), calcium influx through these
receptors and intracellular signalling in the postsynaptic density (PSD), a dense,
protein-rich structure attached to neurotransmitter receptors [1,22,14,28]. The
level of detail of the molecular component of these models ranges from determin-
istic simulations in one compartment [1] through stochastic models with coarse
granularity [27] and, at the most detailed, particle-based simulations in which
the Brownian motion of individual molecules is modelled [26,28].

The model with the greatest number of molecular species has 75 variables
representing the concentrations of signalling molecules, complexes of signalling
molecules and phosphorylation states [1]. This constitutes a small subset of the
1000 proteins identified in the mouse postsynaptic proteome, the collection of
proteins in the PSD [6]. Even the subset of the postsynaptic proteome con-
taining proteins associated with membrane-bound neurotransmitter receptors
contains over 100 members [20]. As these proteins are particularly associated
with synaptic plasticity, it would be desirable to increase the number of proteins
and complexes it is possible to describe in simulations.

As each protein has a number of binding sites, a combinatorially large number
of complexes can arise, meaning that a correspondingly large number of reactions
are needed to describe the dynamics of all possible complexes. By specifying rules
whose elements are fragments of complexes, rule-based languages and simulators
[5], such as Kappa [7] or BioNetGen [9], obviate the need to specify reactions
for all possible complexes. These rules are simulated using a method similar to
Gillespie’s stochastic simulation method for reactions [7]. Kappa has been used
to predict the sizes of clusters of proteins in the postsynaptic proteome [23].

Compartmental models of electrical activity in neurons split the neuronal
morphology into a number (ranging from 1 to around 1000) of compartments,
and specify the dynamics of the membrane potential in each compartment in
terms of coupled ordinary differential equations (ODEs) [12,25]. Quantities be-
yond the membrane potential can also be modelled, e.g. intracellular calcium
concentration and concentrations of a few other molecules such as buffers and
pumps. Various packages can generate and solve the equations underlying com-
partmental models from various model description languages, for example NEU-
RON [3], MOOSE [21] and PSICS [2].

We present an algorithm which integrates rule-based models and compart-
mental models of neurons. To be sure of understanding a simple, yet interesting,
case, we limit ourselves to considering isolated postsynaptic proteomes in a neu-
ron of arbitrary morphology. Although of interest, we do not consider diffusion
of molecules within the neuron. We implement the algorithm by incorporating
the SpatialKappa rule-based simulator [24] into the NEURON simulator [3].
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Fig. 1. The system to be simulated depicted on the scale of a whole neuron (left), a
spine (middle) and the postsynapse (right). Scale bars are approximate. In the postsy-
napse, the rectangular boxes represent intracellular molecules: SG – stargazin; CaM –
calmodulin; CaMKII – Ca2+/calmodulin-dependent protein kinase II.

We validate the combined simulator (“KappaNEURON”) against stand-alone
NEURON, and demonstrate how the system can be used to simulate complex
models.

2 Simulation Method

2.1 The System to Be Simulated

An example of the type of system to be simulated is shown in Fig. 1. There is
a hippocampal CA1 pyramidal neuron (left) upon which are located a number
of synapses. Excitatory synapses are generally located on synaptic spines, small
protuberances from the neuron whose narrow necks limit, to an extent, diffu-
sion of ions and molecules between the spine head and the rest of the neuron
(middle). The synapse contains a postsynaptic proteome of arbitrary complexity
(right). Firing in the presynaptic neuron causes release of neurotransmitter from
the presynaptic bouton, which, after diffusing across the synaptic cleft, binds
to AMPARs and NMDARs. The AMPARs open and close on a sub-millisecond
timescale, allowing sodium ions to flow into the cell. These ions charge the mem-
brane locally and flow to other parts of the neuron, where they also charge the
membrane (middle, Fig. 1). The NMDARs open and close with slower dynam-
ics, and allow calcium ions to flow into the spine. Inside the spine, the calcium
ions bind to various proteins such as calmodulin and the resulting calcium-
calmodulin complex may then bind to Ca2+/calmodulin-dependent protein ki-
nase II (CaMKII), initiating signalling known to be critical for the induction of
LTP and LTD.

We will first give the general set of equations that constitute a deterministic
description of this type of system, then apply the general equations to a specific
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example, and next describe how the equations are solved. Finally we will show
how we incorporate rule-based models and simulate the hybrid system.

2.2 Deterministic Description of Electrical and Chemical Activity
in a Neuron

To describe electrical activity in the neuron, the neuron is split into compart-
ments, each of which should be small enough to be approximately isopotential.
Apart from the root compartment, which is located in the soma, each com-
partment has a parent, and a compartment may have one or more children. The
equation for the membrane potential Vi in compartment i derives from Kirchoff’s
current law:

Ci
dVi
dt

=
∑
j∈N i

dij(Vj − Vi)
4Ral2ij

−
∑
S

(
IchanS,i + Ipump

S,i

)
− Ichanns,i . (1)

The left hand side is the current per unit membrane area charging or discharg-
ing the membrane; Ci is the specific membrane capacitance in compartment
i. The first term on the right hand side describes current flow into compart-
ment i from its neighbours j ∈ Ni; Ra is the intracellular resistivity, lij is the
path length between the midpoints of i and each of its neighbours j, and dij
is the mean diameter of the path. The second term on the right hand side is
the total transmembrane current per unit area (referred to as current density)
in compartment i carried by various species of ion S via ion channels (IchanS,i )
and membrane pumps (Ipump

S,i ), which act to maintain concentration differences
between the intracellular and extracellular space. To represent “non-specific” ion
currents whose concentration is not accounted for, there is final term Ichanns,i . Here
the minus sign reflects the conventions that inward current is negative and the
extracellular space is regarded as electrical ground.

The current density carried by species S through types k of ion channel is:

IchanS,i =
∑
k

gik(Oik, t)fS,k(Vi, [S]i, [S]o) , (2)

where gik is the conductance of ion channel type k in compartment i, which may
be a function of time or a state variable Oik, and fS,k and is a function describing
the I–V characteristic of current flow of ions of type S through channel k, which
may depend on [S]i, the intracellular concentration of S in compartment i, and
[S]o, the extracellular concentration of S, which is assumed to be constant. A
normalised Goldmann-Hodgkin-Katz (GHK) current equation [25] can be used
for fS,k. For channels through which calcium flows, the typically large ratio be-
tween intracellular and extracellular calcium concentrations means this function
depends quite strongly on the intracellular calcium concentration [Ca2+], but
in channels not permeable to calcium it is usual to use a linear approximation
Vi − Ek, where Ek is the reversal potential for that channel. By removing the
dependence on intracellular concentrations [S]i, this approximation allows cur-
rents carried by ions other than calcium to lumped together in a nonspecific ion
category.
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The state variable Oik is the number of type k ion channels in compartment
i which are in an open conformation. It is modelled as the occupancy of a state
of a Markov process with membrane potential-dependent transition rates. For
small number of channels the Markov process is simulated stochastically, but
with large numbers of channels the system is practically deterministic and the
master equation of the Markov process is simulated using ODEs.

The dynamics of the intracellular concentrations of ions can be modelled
using further ODEs. The rate of change of [S]i depends on IchanS,i , the channel
transmembrane current density carried by S, and consumption and release by
intracellular reactions:

d[S]i
dt

= − ai
zSFvi

IchanS,i +
∑
r

JS,r,i , (3)

where ai is the surface area of the compartment, vi is the volume of the compart-
ment, zS is the valency of ion S, and F is Faraday’s constant. The term

∑
r JS,r,i

describes the net flux of S due to intracellular reactions r. It arises from treating
the intracellular reactions in compartment i as a set of kinetic schemes:

r : S + T
kr←−→
k−r

S ·T . (4)

The flux of S arising from this reaction would be:

JS,r,i = −kr[S]i[T ]i + k−r[S ·T ]i . (5)

The pump current Ipump
S,i may be defined in terms of the flux of a reaction r, for

example:

Ipump
S,i =

zSFvi
ai

JS,r,i , (6)

where the prefactor converts from flux to current. Thus the whole electrical and
molecular system is defined by a system of ODEs.

2.3 Example Deterministic Description

To help understand the formalism above, we provide an example of a simple
one-compartment system; this will also be used as the validation example in Sec-
tion 4.1. There is a single compartment whose membrane contains passive (leak)
channels, calcium channels, and a transmembrane calcium pump, described by
the kinetic scheme:

Ca binding: P + Ca
k1−→ P ·Ca

Ca release: P ·Ca
k2−→ P ,

(7)

where Ca represents intracellular calcium, P represents a pump molecule in the
membrane, P ·Ca is the pump molecule bound by calcium and k1 and k2 are
rate coefficients.
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We substitute zCa = 2 and the flux of the “Ca release” reaction into Equa-
tion (6) to obtain the pump current:

Ipump
Ca = k2

2Fv

a
[P ·Ca] = k2

2Fv

a
([P]0 − [P]) , (8)

where we have used the fact that the total concentration of the pump molecule
[P]0 is the sum of the concentrations [P] and [P ·Ca] of unbound and bound
pump molecule. Since there is only a single compartment, we have dropped
subscripts. The calcium channel current IchanCa flowing into the compartment is
determined by Equation (2) with a constant conductance of magnitude gCa,
and the nonspecific current is used for the passive channels so that Ichanns =
gpas(V − Epas), where Epas is the passive reversal potential.

To construct the ODEs corresponding the kinetic scheme (7) and the ex-
pression for the pump current (8), Equation (5) is applied to the scheme to give
fluxes, which, along with IchanCa , Ipump

Ca and Ichanns , are substituted in Equations (1)
and (3) to give:

C
dV

dt
= −gCafCa(V, [Ca], [Ca]o)− k2

2Fv

a
([P]0 − [P])− gpas(V − Epas) (9)

d[Ca]

dt
= − a

2Fv
gCaf(V, [Ca], [Ca]o)− k1[Ca][P] (10)

d[P]

dt
= −k1[Ca][P] + k2([P]0 − [P]) . (11)

The notional volume v may describe the volume of a thin submembrane shell
rather than the volume of the whole compartment. We assume that v is the
volume of the whole cylindrical compartment so that a/v = 4/d, where d is the
diameter of the compartment.

2.4 Simulation of Deterministic Variables

Simulators of deterministic electrical and chemical activity in neurons, such as
NEURON [3], solve the coupled ODEs by gathering the variables Vi, [S]i and
other state variables into one state vector x and solving the ODE system:

dx

dt
= G(x) + b(t) , (12)

where G(x) is the rate of change of each state variable and b(t) is a time de-
pendent forcing input. In principle G(x) depends on all variables, though the
structure of compartmental models means each element of G(x) depends on only
a few elements of x. These equations can be solved by implicit Euler integra-
tion, which, although not providing the second-order accuracy of more advanced
schemes, does give guarantees about numerical stability and is used by default
in NEURON [18]. In implicit Euler the derivative is evaluated at t+∆t, the end
of the time step:

x(t+∆t)− x(t)

∆t
= G(x(t+∆t)) + b(t+∆t) . (13)
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Taylor expanding the right hand side of (13) in ∆t and rearranging gives the
equation for one update step:

x(t+∆t) = x(t) +

(
I − ∂G

∂x
∆t

)−1
(G(x(t)) + b(t))∆t , (14)

where ∂G/∂x is the Jacobian matrix at time t, which can be computed numer-
ically, or analytically for efficiency. To optimise simulation speed, the time step
∆t may vary depending on the rate of change of the variables; but whatever the
value of ∆t, all variables are updated simultaneously.

2.5 Modifications to Accommodate Rule-Based Simulation

To combine fixed-step simulation of continuous variables described by ODEs
with discrete variables described by stochastic, rule-based models, we use prin-
ciples akin to those used in hybrid simulations of systems of chemical reactions
[13]. The state variables (elements of x) are partitioned into continuous vari-
ables, which are updated at fixed intervals of ∆t by an ODE solver, and discrete
variables, which are updated asynchronously by the rule-based solver, as out-
lined in Appendix A.1. Some “bridge” variables are referred to by both solvers.
The combined simulation algorithm must ensure that the two solvers are syn-
chronised appropriately and that conversions between continuous and discrete
quantities are made.

For simulations combining molecular and electrical activity (e.g. Fig. 1) the
membrane potential would be a continuous variable, intracellular molecules such
as calmodulin and CaMKII would be stochastic variables, and the intracellular
calcium in the spine would be a stochastic bridge variable.

Conversions In deterministic simulations of biochemical reactions in neurons
(e.g. [1]) a molecular species or ion S is represented by an intensive quantity –
its concentration [S]; whereas in stochastic simulations it is represented by an
extensive quantity – the number of molecules |S| in the volume v in which S ex-
ists. Thus to compare the deterministic (ODE) and stochastic (rule-based) parts
of the simulation, intensive and extensive quantities need to be interconverted
using Avogadro’s constant NA:

|S| = NAv[S] . (15)

Rate coefficients for reactions based on concentrations must also be converted to
ones appropriate for species number for use in the rule-based simulator’s rules.
To derive the conversion formula, consider a bimolecular kinetic scheme in which

k is the rate coefficient, i.e. S + T
k−→ S ·T. Typical units for k are M−1s−1. The

kinetic scheme can be expressed as an ODE d[S .T ]/dt = k[S][T ]. Converting the
concentrations according to (15) yields an equivalent ODE whose variables are
numbers of molecules: d|S .T |/dt = γ|S||T |, where γ = k/NAv is the converted
rate coefficient and has units s−1. In general for an equation with n reactants, the
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t t+Δt

Rule-based
simulator

ODE simulator

gCa1

2

3

4

ICa
pump ICa

chan+
[Ca]

Fig. 2. The update and synchronisation method. See text for explanation.

relation between rate coefficients for numbers of molecules and concentrations is
γ = (NAv)−n+1k. State variables (for example the state of channels) may also
be controlled by the rule-based simulator, and here other conversion formulae
apply.

Creation and Destruction Rules for Bridging Variables To simulate the channel
currents in the rule-based solver we need to write creation or destruction rules
that are equivalent to IchanS,i in Equation (3). These rules are:

−aiĨ
chan
S,i NA/zSF

−−−−−−−−−−−→ S if ĨchanS,i < 0 (16)

S
aiĨ

chan
S,i NA/zSF

−−−−−−−−−−→ if ĨchanS,i > 0. (17)

Here ĨchanS,i can be an expression that references continuous or discrete variables.

Update and Synchronisation The procedure for updating the time from t to
t+∆t (Fig. 2) is:

1. Pass all relevant continuous variables, e.g. conductances and voltages needed
to compute IchanS,i in the rule-based simulator.

2. Run the rule-based simulator from t to t+∆t.

3. Compute the net change ∆Stot
i in the total number of each bridging species

S (including in any complexes) in compartment i over the time step and
convert each change back to a current: IchanS,i + Ipump

S,i = −∆Stot
i zSF/aiNA.

For each membrane potential Vi, set the corresponding element of b(t) equal
to −(1/Ci)

∑
S(IchanS,i + Ipump

S,i ) (see second term on right of Equation 1).

4. Update the continuous variables according to the update step (14).

When running the rule-based model, it will not stop precisely on the boundary
of the time step since the update times are generated stochastically. To deal with
this problem, the time of the next event in the rule-based component is computed
before updating the variables. As soon as the next event time is after the end of
the deterministic step, that event is thrown away, as justified in Appendix A.2.



Integration of rule-based models and compartmental models of neurons 9

## File caPump.ka - Simple calcium pump

## Agent declarations, showing the agent names and binding sites

%agent: ca(x) # Calcium with binding site

%agent: P(x) # Pump molecule with binding site

## Variable declarations

%var: ’vol’ 1 # Volume in um3

%var: ’NA’ 6.02205E23 # Avagadro’s constant

# Concentration of one agent in the volume in mM

%var: ’agconc’ 1E18/(’NA’ * ’vol’)

# Rate constants in /mM-ms or /ms, depending on the number of

# complexes on LHS of rule

%var: ’k1’ 0.001 # /mM-ms

%var: ’k2’ 1 # /ms

## Rules

# Note the scaling of the rate constant of the bimolecular reaction

’ca binding’ ca(x), P(x) -> ca(x!1), P(x!1) @ ’k1’ * ’agconc’

’ca release’ ca(x!1), P(x!1) -> P(x) @ ’k2’

## Initialisation of agent numbers

# Overwritten by NEURON but needed for SpatialKappa parser

%init: 1000 ca(x)

%init: 10000 P(x)

## Observations

%obs: ’ca’ ca(x) # Free Ca

%obs: ’P-Ca’ ca(x!1), P(x!1) # Bound Ca-P

%obs: ’P’ P(x) # Free P

Fig. 3. Example of a Kappa file for a simple calcium pump (7) simulated in a volume
of 1µm3. Note the conversion of the forward rate coefficient from units of mM−1 ms−1

to ms−1. For an introduction to the Kappa language, see the short description at
http://www.kappalanguage.org/syntax.html.

http://www.kappalanguage.org/syntax.html
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from neuron import *

import KappaNEURON

## Create a compartment

sh = h.Section()

sh.insert(’pas’) # Passive channel

sh.insert(’capulse’) # Code to give Ca pulse

# This setting of parameters gives a calcium influx and pump

# activation that is scale-independent

sh.gcalbar_capulse = gcalbar*sh.diam

## Define region where the dynamics will occur (’i’ means intracellular)

r = rxd.Region([sh], nrn_region=’i’)

## Define the species, the ca ion (already built-in to NEURON), and the

## pump molecule. These names must correspond to the agent names in

## the Kappa file.

ca = rxd.Species(r, name=’ca’, charge=2, initial=0.0)

P = rxd.Species(r, name=’P’, charge=0, initial=0.2)

## Create the link between the Kappa model and the species just defined

kappa = KappaNEURON.Kappa(membrane_species=[ca], species=[P],

kappa_file=’caPump.ka’, regions=[r])

## Transfer variable settings to the kappa model

vol = sh.L*numpy.pi*(sh.diam/2)**2

kappa.setVariable(’k1’, 47.3)

kappa.setVariable(’k2’, gamma2)

kappa.setVariable(’vol’, vol)

## Run

init()

run(30)

Fig. 4. Extract of Python code to link the Kappa file shown in Fig. 3 into a compart-
ment in NEURON.
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3 Implementation

We have implemented the algorithm described in the previous section by linking
the Java-based SpatialKappa implementation of the Kappa language [24] to
version 7.4 of NEURON, which allows reaction-diffusion equations to be specified
in Python [18]. Our implementation (“KappaNEURON”) is available at http://
github.com/davidcsterratt/KappaNEURON. We have used the py4j1 package to
extend the SpatialKappa simulator so its Java objects can be accessed in Python.
The wrapper system in NEURON 7.4 allows us to override NEURON’s built-in
fixed solve callback function with one that calls the SpatialKappa simulator at
each time step, as described in the previous section.

In order to specify a model the Kappa component is specified in a separate
file. Fig. 3 shows an example of a simple calcium pump specified in Kappa.
This file is then linked into the NEURON simulation as demonstrated in the
Python code in Fig. 4. The mechanisms specified in the Kappa file take over all
of NEURON’s handling of molecules in the cytoplasm of chosen sections.

4 Results

4.1 Validation

We validated our implementation by comparing the results of simulating ODE
and rule-based versions of the model described in Section 2.3 using standard
NEURON and KappaNEURON respectively. Fig. 5A shows the deterministic
solution of the system of ODEs (9)–(11) (blue) and a sample rule-based so-
lution using the Kappa rules in Fig. 3 (red) from a single compartment with
diameter 1µm and length 1µm, giving a volume within the range 0.01–1µm3

typical of spine heads in the vertebrate central nervous system [11]. The cal-
cium conductance gCa is zero apart from during a pulse lasting from 5–10ms
when an inward calcium current begins to flow (IchanCa is negative). This causes
a sharp rise in intracellular calcium concentration [Ca], which, because of the
GHK current equation, reduces the calcium current slightly, accounting for the
initially larger magnitude of the calcium current. As the calcium concentration
increases, it starts binding to the pump molecules, depleting the amount of the
free pump molecules [P]. Once the calcium channels close (gCa = 0), the calcium
influx stops, and the remaining free calcium is taken up quickly by the pumps.
The pump-calcium complex dissociates at a slower rate, leading to a positive
(outwards) calcium current. The stochastic traces (red) are very similar to their
deterministic counterparts (blue) apart from some random fluctuations, particu-
larly in the trace of calcium. This agreement, along with a suite of simpler tests
included with the source code, indicates that the implementation is correct.

Fig. 5B shows deterministic (blue) and stochastic (red) simulations in a spine
with a diameter of 0.2µm (i.e. 1/25 of the volume of the simulation in Fig. 5A).
The shape of the traces differs due to the change in surface area to volume

1 http://py4j.sourceforge.net/

http://github.com/davidcsterratt/KappaNEURON
http://github.com/davidcsterratt/KappaNEURON
http://py4j.sourceforge.net/
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Fig. 5. Reference simulations. A, Traces generated by NEURON with NMODL (blue)
and KappaNEURON (red) when the diameter is 1µm. B, The same simulations but
with a diameter of 0.2µm. There is more noise evident in the combined simulation due
to the smaller number of ions involved.

ratio. Due to the smaller volume and hence smaller numbers of ions involved,
the fluctuations are relatively bigger.

4.2 Demonstration Simulation

To demonstrate the utility of integrated electrical and rule-based neuronal mod-
els, we constructed a model of a subset of the synaptic proteome, with a focus
on the signal processing at the early stages of the CaM-CaMKII pathway. We
encoded in Kappa published models of: the dynamics of NMDARs [27]; bind-
ing of calcium with calmodulin and binding of calmodulin-calcium complexes to
CaMKII [19]; and binding of calcium to a calbindin buffer [8]. We embedded
these linked models into a simple model of a synaptic spine, comprising head
and neck compartments, connected to a dendrite. As well as the NMDARs,
modelled in Kappa, there were AMPARs in the spine head, and backpropagat-
ing spikes were modelled by inserting standard Hodgkin-Huxley ion channels [12]
in the dendritic membrane. To emulate spike-timing dependent synaptic plastic-
ity protocols [15], a train of 10 excitatory postsynaptic potentials (EPSPs) were
induced in the synapse in the spine head at 20Hz, each of which was followed by
an action potential. There were also 50 other synaptic inputs onto the dendrite,
though these did not contain the rule-based model.

Fig. 6 shows results from one simulation at short (0.6s) and long (6s) time
scales. The first stimulation of the detailed synapse paired with action potential
initiation occurs at 0.1s, as can be seen by the voltage trace. The stimulation
releases glutamate, which binds to AMPARs (which remain open for a few mil-
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Fig. 6. Demonstration simulations. A, The first 600ms of the simulation. B, The first
6000ms of the simulation. Labels: Ca, free calcium; CaCB, calcium bound to calbindin;
CaCaMN, calcium bound to the N lobe of calmodulin; CaCaMC, calcium bound to the
C lobe of calmodulin; KCaCaM2C, CaMKII bound to calmodulin with two calcium
ions on its C lobe; and CaMKIIp, phosphorylated CaMKII.

liseconds) and NMDARs (which remain open for 100s of milliseconds). Due to
the backpropagating action potentials releasing the voltage-dependent block of
NMDARs, there are peaks in the calcium current (ICa) at the same time as
the action potentials. The calcium entering through the NMDARs binds to the
calbindin and calmodulin (CaM) buffers. The CaM-Ca2+ complex can bind to
CaMKII, the rate depending on which of the C and N lobes of CaM the Ca2+

are bound to. This CaMKII-CaM-Ca2+ complex can then be phosphorylated,
leading to a long lasting elevation in its level. This will then to phosphorylate
stargazin, which will help to anchor AMPARs in the membrane, thus contribut-
ing to LTP.

5 Discussion

We have presented a method for integrating a stochastically simulated rule-based
model of proteins in a micron-sized region of a neuron into a compartmental
model of electrical activity in the whole neuron. The rule-based component allows
the biochemical interactions between binding sites on proteins to be specified
using a tractable number of rules, with the simulator taking on the work of
tracking which complexes are present at any point during the simulation.

Our approach is similar to that of Kiehl et al. [13] who simulated chemical
reactions with a hybrid scheme. However their integration scheme synchronised
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at every discrete event, whereas in ours, synchronisation is driven only by the
time step of the continuous simulator. This principle is appropriate for neural
systems, in which we can expect many discrete events per time step.

Recently Mattioni and Le Novère [17] have integrated the ECell simulator
with NEURON. Our approach is similar to theirs, though with two differences.
Firstly we have integrated a rule-based simulator. This has the advantage that
the interactions between the combinatorially large numbers of complexes present
in the PSD can be specified using a tractable number of rules, though this
limits the simulation method to the sequential style of Gillespie’s stochastic
simulation algorithm, and does not allow for any of the approximations that
increase the algorithm’s efficiency. Secondly Mattioni and Le Novère get the
ODE-based solver to handle calcium, whereas we handle it in the rule-based
solver. Our approach is less efficient computationally, but it ensures that all
biochemical quantities are consistent and avoids having to make any assumptions
about the relative speeds of processes.

Our approach allows us to model at a considerable level of detail. For example
the conformation of NMDARs may be part of the biochemical model, allowing
proteins in the PSD (e.g. calmodulin bound to calcium) to modulate the state
of the channel [27]. We can also use one rule-based scheme to model both the
presynapse and the postsynapse, which could help to understand transynaptic
signalling via molecules such as endocannabinoids [4].

Our implementation of our algorithm is publicly available (KappaNEURON;
http://github.com/davidcsterratt/KappaNEURON) and under development.
The next major feature planned is making available to NEURON SpatialKappa’s
capability of simulating rule-based models with voxel-based diffusion.

A Appendix

A.1 Kappa Simulation Method

To understand the asynchronous nature of the Kappa simulation method, we
first illustrate Gillespie’s direct method [10] by applying it to the kinetic scheme
description of a calcium pump shown in Fig. 3A. Here Ca represents intracellular
calcium, P represents a pump molecule in the membrane, P ·Ca is the pump
molecule bound by calcium and k1 and k2 are rate coefficients, which are rescaled
to the variables γ1 and γ2 as explained in Section 2.5. To apply the Gillespie
method to this scheme:

1. Compute the propensities of the reactions a1 = γ1|Ca||P| and a2 = γ2|Ca ·P|
2. The total propensity is A = a1 + a2
3. Pick reaction Ri with probability ai/A
4. Pick time to reaction T = −(ln r)/A, where r is a random number drawn

uniformly from the interval (0, 1).
5. Goto 1

Kappa uses an analogous method, but applied to rules that are currently active.
Both methods are event-based rather than time-step based.

http://github.com/davidcsterratt/KappaNEURON
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A.2 Justification for Throwing Away Events

To justify throwing away events occurring after a time step ending at t+∆t, we
need to show that the distribution of event times (measured from t) is the same
in two cases:

1. The event time T is drawn from an exponential distribution A exp(−AT )
(for T > 0), where A is the propensity.

2. An event time T0 is drawn as above. If T0 < ∆t, accept T = T0 as the event
time. If T0 ≥ ∆t, throw away this event time and sample a new interval T1
from an exponential distribution with a time constant of A, i.e. A exp(−AT1).
Set the event time to T = ∆t+ T1.

In the second case, the overall distribution is:

P (event at T < ∆t) = A exp(−AT )

P (event at T ≥ ∆t) = P (survival to ∆t)P (event at T1)

= exp(−A∆t)A exp(−A(T −∆t))
= A exp(−AT )

(18)

Here we have used T1 = T − ∆t. Thus the distributions are the same in both
cases.
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