101 research outputs found

    Response of Estrogen Receptor-Positive Breast Cancer Tumorspheres to Antiestrogen Treatments

    Get PDF
    Estrogen signaling plays a critical role in the pathogenesis of breast cancer. Because the majority of breast carcinomas express the estrogen receptor ERα, endocrine therapy that impedes estrogen-ER signaling reduces breast cancer mortality and has become a mainstay of breast cancer treatment. However, patients remain at continued risk of relapse for many years after endocrine treatment. It has been proposed that cancer recurrence may be attributed to cancer stem cells (CSCs)/tumor-initiating cells (TICs). Previous studies in breast cancer have shown that such cells can be enriched and propagated in vitro by culturing the cells in suspension as mammospheres/tumorspheres. Here we established tumorspheres from ERα-positive human breast cancer cell line MCF7 and investigated their response to antiestrogens Tamoxifen and Fulvestrant. The tumorsphere cells express lower levels of ERα and are more tumorigenic in xenograft assays than the parental cells. Both 4-hydroxytamoxifen (4-OHT) and Fulvestrant attenuate tumorsphere cell proliferation, but only 4-OHT at high concentrations interferes with sphere formation. However, treated tumorsphere cells retain the self-renewal capacity. Upon withdrawal of antiestrogens, the treated cells resume tumorsphere formation and their tumorigenic potential remains undamaged. Depletion of ERα shows that ERα is dispensable for tumorsphere formation and xenograft tumor growth in mice. Surprisingly, ERα-depleted tumorspheres display heightened sensitivity to 4-OHT and their sphere-forming capacity is diminished after the drug is removed. These results imply that 4-OHT may inhibit cellular targets besides ERα that are essential for tumorsphere growth, and provide a potential strategy to sensitize tumorspheres to endocrine treatment

    Is alcohol consumption a risk factor for prostate cancer? A systematic review and meta-analysis.

    Get PDF
    Background: Research on a possible causal association between alcohol consumption and risk of prostate cancer is inconclusive. Recent studies on associations between alcohol consumption and other health outcomes suggest these are influenced by drinker misclassification errors and other study quality characteristics. The influence of these factors on estimates of the relationship between alcohol consumption and prostate cancer has not been previously investigated. Methods: PubMed and Web of Science searches were made for case–control and cohort studies of alcohol consumption and prostate cancer morbidity and mortality (ICD–10: C61) up to December 2014. Studies were coded for drinker misclassification errors, quality of alcohol measures, extent of control for confounding and other study characteristics. Mixed models were used to estimate relative risk (RR) of morbidity or mortality from prostate cancer due to alcohol consumption with study level controls for selection bias and confounding. Results: A total of 340 studies were identified of which 27 satisfied inclusion criteria providing 126 estimates for different alcohol exposures. Adjusted RR estimates indicated a significantly increased risk of prostate cancer among low (RR = 1.08, P 1.3, <24 g per day). This relationship is stronger in the relatively few studies free of former drinker misclassification error. Given the high prevalence of prostate cancer in the developed world, the public health implications of these findings are significant. Prostate cancer may need to be incorporated into future estimates of the burden of disease alongside other cancers (e.g. breast, oesophagus, colon, liver) and be integrated into public health strategies for reducing alcohol related disease

    Apoptosis of t(14;18)-positive lymphoma cells by a Bcl-2 interacting small molecule

    Get PDF
    Overexpression of Bcl-2 protein occurs via both t(14;18)-dependent and independent mechanisms and contributes to the survival and chemoresistance of non-Hodgkin lymphomas. HA14–1 is a nonpeptidic organic small molecule, which has been shown to inhibit the interaction of Bcl-2 with Bax, thereby interfering with the antiapoptotic function of Bcl-2. In this study, we sought to determine the in vitro efficacy of HA14–1 as a therapeutic agent for non-Hodgkin lymphomas expressing Bcl-2. Assessment of cell viability demonstrated that HA14–1 induced a dose- (IC50 = 10 μM) and time-dependent growth inhibition of a cell line (SudHL-4) derived from a t(14;18)-positive, Bcl-2-positive, non-Hodgkin lymphoma. HA14–1 effectively induced apoptosis via a caspase 3-mediated pathway but did not affect either the p38 MAPK or p44/42 MAPK pathways. Western blot analyses of Bcl-2 family proteins and other cell cycle-associated proteins were performed to determine the molecular sequelae of HA14–1-induced apoptosis. The results show down-regulation of Mcl-1 but up-regulation of p27kip1, Bad, Bcl-xL, and Bcl-2 proteins, without change in Bax levels during HA14–1-mediated apoptosis. Our findings further elucidate the cellular mechanisms accompanying Bcl-2 inhibition and demonstrate the potential of Bcl-2 inhibitors as therapeutic agents for the treatment of non-Hodgkin lymphomas

    TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells

    Get PDF
    Tumour growth is tightly related to new blood vessel formation, tissue remodelling and invasiveness capacity. A number of tissular factors fuel the growth of glioblastoma multiforme, the most aggressive brain neoplasm. In fact, gene array analyses demonstrated that the proapoptotic cytokine tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) inhibited mRNA expression of VEGF, along with those of matrix metalloproteinase-2 (MMP-2), its inhibitor tissue inhibitor of matrix metalloproteinases-2 (TIMP-2), as well as the tumour invasiveness-related gene secreted protein acid rich in cysteine (SPARC) in different human glioblastoma cell lines. Particularly, VEGF mRNA and protein expression and release from glioblastoma cells were also inhibited by TRAIL. The latter also exerted antimitogenic effects on human umbilical vein endothelial cells (HUVECs). With the same cells, TRAIL inhibited new vessel formation in the in vitro matrigel model, as well as it exerted powerful inhibition of blood vessel formation induced by an angiogenic cocktail administered in subcutaneous pellets in vivo in the C57 mouse. Moreover, the expression of MMP-2, its inhibitor TIMP-2 and the tumour invasiveness-related protein SPARC were effectively inhibited by TRAIL in glioblastoma cell lines. In conclusion, our data indicate that TRAIL inhibits the orchestra of factors contributing to glioblastoma biological aggressiveness. Thus, the TRAIL system could be regarded as a molecular target to exploit for innovative therapy of this type of tumour

    Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Subsets of cells with stem-like properties have been previously isolated from human epithelial cancers and their resistance to apoptosis-inducing stimuli has been related to carcinoma recurrence and treatment failure. The aim of this study was to investigate the mechanisms of resistance to apoptosis-inducing agents of cells with stem-like properties in both normal and malignant human epithelia.</p> <p>Methods</p> <p>Cells isolated from fresh human head and neck carcinomas (n = 11), cell lines derived from head and neck, prostate and breast human carcinomas (n = 7), and from normal human oral mucosa (n = 5), were exposed to various apoptosis-inducing stimuli (UV, Tumour Necrosis Factor, Cisplatin, Etoposide, and Neocarzinostatin). Flow cytometry for CD44 and epithelial-specific antigen (ESA) expression, colony morphology, tumour sphere formation and rapid adherence assays were used to identify the subset of cells with stem-like properties. Apoptosis, cell cycle and expression of various cell cycle checkpoint proteins were assessed (Western Blot, qPCR). The role of G2-checkpoint regulators Chk1 and Chk2 was investigated by use of debromohymenialdisine (DBH) and siRNA.</p> <p>Results</p> <p>In both cancer biopsies and carcinoma cell lines a subset of CD44<sup>high </sup>cells showed increased clonogenicity, a significantly lower rate of apoptosis, and a significantly higher proportion of cells in the G2-phase of the cell cycle. An inverse correlation between the percentage of cells in G2-phase and the rate of apoptosis was found. Pulse-chase with iododeoxyuridine (IdU) demonstrated that CD44<sup>high </sup>carcinoma cells spent longer time in G2, even in un-treated controls. These cells expressed higher levels of G2 checkpoint proteins, and their release from G2 with BDH or Chk1 siRNA increased their rate of apoptosis. Low passage cultures of normal keratinocytes were also found to contain a subset of CD44<sup>high </sup>cells showing increased clonogenicity, and a similar pattern of G2-block associated with apoptotic resistance.</p> <p>Conclusions</p> <p>These data indicate that both normal and malignant human epithelial cells with stem-like properties show greater resistance to apoptosis associated with extended G2 cell cycle phase, and that this property is not a consequence of neoplastic transformation. Targeting G2 checkpoint proteins releases these cells from the G2-block and makes them more prone to apoptosis, implying an opportunity for improved therapeutic approaches.</p

    Do intoxicated witnesses produce poor facial composite images?

    Get PDF
    The effect of alcohol intoxication on witness memory and performance has been the subject of research for some time, however, whether intoxication affects facial composite construction has not been investigated. Intoxication was predicted to adversely affect facial composite construction. Thirty-two participants were allocated to one of four beverage conditions consisting of factorial combinations of alcohol or placebo at face encoding, and later construction. Participants viewed a video of a target person and constructed a composite of this target the following day. The resulting images were presented as a full face composite, or a part face consisting of either internal or external facial features to a second sample of participants who provided likeness ratings as a measure of facial composite quality. Intoxication at face encoding had a detrimental impact on the quality of facial composites produced the following day, suggesting that alcohol impaired the encoding of the target faces. The common finding that external compared to internal features are more accurately represented was demonstrated, even following alcohol at encoding. This finding was moderated by alcohol and target face gender such that alcohol at face encoding resulted in reduced likeness of external features for male composite faces only. Moderate alcohol intoxication impairs the quality of facial composites, adding to existing literature demonstrating little effect of alcohol on line-up studies. The impact of intoxication on face perception mechanisms, and the apparent narrowing of processing to external face areas such as hair, is discussed in the context of alcohol myopia theory

    The lectin concanavalin-A signals MT1-MMP catalytic independent induction of COX-2 through an IKKγ/NF-κB-dependent pathway

    Get PDF
    The lectin from Canavalia ensiformis (Concanavalin-A, ConA), one of the most abundant lectins known, enables one to mimic biological lectin/carbohydrate interactions that regulate extracellular matrix protein recognition. As such, ConA is known to induce membrane type-1 matrix metalloproteinase (MT1-MMP) which expression is increased in brain cancer. Given that MT1-MMP correlated to high expression of cyclooxygenase (COX)-2 in gliomas with increasing histological grade, we specifically assessed the early proinflammatory cellular signaling processes triggered by ConA in the regulation of COX-2. We found that treatment with ConA or direct overexpression of a recombinant MT1-MMP resulted in the induction of COX-2 expression. This increase in COX-2 was correlated with a concomitant decrease in phosphorylated AKT suggestive of cell death induction, and was independent of MT1-MMP’s catalytic function. ConA- and MT1-MMP-mediated intracellular signaling of COX-2 was also confirmed in wild-type and in Nuclear Factor-kappaB (NF-κB) p65−/− mutant mouse embryonic fibroblasts (MEF), but was abrogated in NF-κB1 (p50)−/− and in I kappaB kinase (IKK) γ−/− mutant MEF cells. Collectively, our results highlight an IKK/NF-κB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of COX-2. That signaling pathway could account for the inflammatory balance responsible for the therapy resistance phenotype of glioblastoma cells, and prompts for the design of new therapeutic strategies that target cell surface carbohydrate structures and MT1-MMP-mediated signaling. Concise summary Concanavalin-A (ConA) mimics biological lectin/carbohydrate interactions that regulate the proinflammatory phenotype of cancer cells through yet undefined signaling. Here we highlight an IKK/NF-κB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of cyclooxygenase-2, and that could be responsible for the therapy resistance phenotype of glioblastoma cells
    corecore