331 research outputs found

    Frequent fires prime plant developmental responses to burning

    Get PDF
    Coping with temporal variation in fire requires plants to have plasticity in traits that promote persistence, but how plastic responses to current conditions are affected by past fire exposure remains unknown. We investigate phenotypic divergence between populations of four resprouting grasses exposed to differing experimental fire regimes (annually burnt or unburnt for greater than 35 years) and test whether divergence persists after plants are grown in a common environment for 1 year. Traits relating to flowering and biomass allocation were measured before plants were experimentally burnt, and their regrowth was tracked. Genetic differentiation between populations was investigated for a subset of individuals. Historic fire frequency influenced traits relating to flowering and below-ground investment. Previously burnt plants produced more inflorescences and invested proportionally more biomass below ground, suggesting a greater capacity for recruitment and resprouting than unburnt individuals. Tiller-scale regrowth rate did not differ between treatments, but prior fire exposure enhanced total regrown biomass in two species. We found no consistent genetic differences between populations suggesting trait differences arose from developmental plasticity. Grass development is influenced by prior fire exposure, independent of current environmental conditions. This priming response to fire, resulting in adaptive trait changes, may produce communities more resistant to future fire regime changes

    CO2-fertilisation enhances resilience to browsing in the recruitment phase of an encroaching savanna tree

    Get PDF
    CO2-fertilisation is implicated in the widespread and significant woody encroachment of savannas due to CO2-stimulated increases in below-ground reserves that enhance sapling regrowth after fire. However, the effect of CO2 concentration ([CO2]) on tree responses to the other major disturbance in savannas, herbivory, is poorly understood. Herbivory responses cannot be predicted from fire responses, as herbivore effects occur earlier during establishment and are moderated by plant palatability and defence rather than below-ground carbon accumulation. The relationship between herbivory and [CO2] is explored here using a widespread, strongly encroaching savanna tree, Vachellia karroo. Using greenhouse-grown seedlings under past—through to predicted future—[CO2] (180–1000 ppm) and field-grown seedlings under ambient [CO2], we assessed plant survival, growth, defence and palatability. Increasing [CO2] improves the tolerance of greenhouse-grown seedlings to herbivory by stimulating growth and allowing a critical size threshold associated with survival to be reached earlier, thereby decreasing the probability of fatal herbivory during the vulnerable recruitment phase. Elevated [CO2] also decreases the time taken to reach a second size threshold linked to accelerated recovery of field-grown seedlings following herbivory. Seedling growth responses to increasing [CO2] are nonlinear, suggesting that historic growth and survival enhancements are smaller than those predicted for the future. Increasing [CO2] is associated with greater resistance to herbivores (more branched shoot architecture) but not leaf palatability (C:N ratio) or defence (leaf tannins and spine density). Increasing V. karroo densities already constitute a major land management problem in southern African savannas. However, encroachment by this species, and likely other savanna tree species, may be greatly exacerbated under future [CO2], as tolerance to herbivory at the recruitment stage is further enhanced

    Life-history characteristics and climate correlates of dioecious plant species in central southern Australia

    Get PDF
    First published online: 27 April 2023 OnlinePublContext. The proportion of dioecious species can vary considerably among climates and habitats. However, studies often involve isolated communities or large diverse areas and fail to capture how proportions vary across diverse landscapes. Aims. To identify (1) life-history associations of terrestrial dioecious plant species in central southern Australia, (2) whether proportion of dioecy varies spatially across central southern Australia, and (3) whether proportion of dioecy is correlated with life-history and/or climate factors. Methods. Species growth form, pollination mechanisms and seed-dispersal features were extracted from herbarium databases to determine potential dioecy-linked traits. Distribution data for native terrestrial species in 66 Interim Biogeographical Regionalisation of Australia subregions were extracted from the Australasian Virtual Herbarium to calculate the proportion of total native species richness that are dioecious. Climate data for each subregion were also obtained from Terrestrial Ecology Research Network databases to investigate relationships among climate, life-history traits and dioecy. Key results. Woodiness, abiotic pollination and endozoochory were more prevalent in dioecious than non-dioecious taxa. Proportion of dioecy ranged from 1.7% to 8.5% among subregions and correlated negatively with annual temperature range, January to March rainfall and precipitation seasonality and with average annual daily mean, minimum, maximum and average annual minimum temperature. The highest-ranked models of dioecy incorporated the additive effects of the relative proportion of woody species and either annual temperature ranges, January to March rainfall or average annual daily maximum temperature. Conclusions. Dioecy was associated with woodiness, abiotic pollination and endozoochory, in line with studies of other flora, with the model of stable temperature range and woodiness being the highest-ranked model of dioecy. Implications. Areas with higher proportions of dioecy can be targeted for future investigations into dioecious plant ecology to aid conservation and ecosystem management.J. T. Draper, S. Delean, J. G. Conran, P. Weinstein and B. S. Simpso

    Detection of extended blockages in pressurised pipelines using hydraulic transients with a layer-peeling method

    Get PDF
    Water distribution systems (WDSs) are one of society's most important infrastructure assets. They consist of buried pipes that are often old and their condition is extremely difficult and expensive to determine. This research proposes a non-invasive layer-peeling method using hydraulic transient waves to detect extended blockages in pressurised pipelines. In the numerical study, hydraulic transient pressure waves are injected into a pipeline at a dead-end. Wave reflections caused by multiple extended blockages (uniform and non-uniform) are simulated using the method of characteristics (MOC). The impulse response function (IRF) of the pipeline is then obtained using the simulated pressure response at the dead-end. The original layer-peeling method previously applied to tubular music instruments is further developed by considering the differences between the instruments and pressurised pipelines (boundary conditions, fluid properties). Using the IRF and the modified layer-peeling method, the internal pipe diameter values are estimated section by section from the dead-end to the upstream end of the pipeline. The blocked pipe sections are then accurately identified from the reconstructed pipe wall thickness distribution profile.Wei Zeng, Jinzhe Gong, Martin Lambert, Angus Simpson, Benjamin Cazzolato, Aaron Zecchi

    Systematic Study of Fermion Masses and Mixing Angles in Horizontal SU(2) Gauge Theory

    Full text link
    Despite its great success in explaining the basic interactions of nature, the standard model suffers from an inability to explain the observed masses of the fundamental particles and the weak mixing angles between them. We shall survey a set of possible extensions to the standard model, employing an SU(2) ``horizontal'' gauge symmetry between the particle generations, to see what light they can shed on this problem.Comment: 43 pages, 4 figures (available by postal mail on request), OZ-92/0

    Role of Orbital Degeneracy in Double Exchange Systems

    Full text link
    We investigate the role of orbital degeneracy in the double exchange (DE) model. In the JHJ_{H}\to\infty limit, an effective generalized ``Hubbard'' model incorporating orbital pseudospin degrees of freedom is derived. The model possesses an exact solution in one- and in infinite dimensions. In 1D, the metallic phase off ``half-filling'' is a Luttinger liquid with pseudospin-charge separation. Using the d=d=\infty solution for our effective model, we show how many experimental observations for the well-doped (x0.3x\simeq 0.3) three-dimensional manganites La1xSrxMnO3La_{1-x}Sr_{x}MnO_{3} can be qualitatively explained by invoking the role of orbital degeneracy in the DE model.Comment: 8 pages, 2 figures, submitted to Phys. Rev.

    Weak capture of protons by protons

    Get PDF
    The cross section for the proton weak capture reaction 1H(p,e+νe)2H^1H(p,e^+\nu_e)^2H is calculated with wave functions obtained from a number of modern, realistic high-precision interactions. To minimize the uncertainty in the axial two-body current operator, its matrix element has been adjusted to reproduce the measured Gamow-Teller matrix element of tritium β\beta decay in model calculations using trinucleon wave functions from these interactions. A thorough analysis of the ambiguities that this procedure introduces in evaluating the two-body current contribution to the pp capture is given. Its inherent model dependence is in fact found to be very weak. The overlap integral Λ2(E=0)\Lambda^2(E=0) for the pp capture is predicted to be in the range 7.05--7.06, including the axial two-body current contribution, for all interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure

    Gravity wave analogs of black holes

    Full text link
    It is demonstrated that gravity waves of a flowing fluid in a shallow basin can be used to simulate phenomena around black holes in the laboratory. Since the speed of the gravity waves as well as their high-wavenumber dispersion (subluminal vs. superluminal) can be adjusted easily by varying the height of the fluid (and its surface tension) this scenario has certain advantages over the sonic and dielectric black hole analogs, for example, although its use in testing quantum effects is dubious. It can be used to investigate the various classical instabilities associated with black (and white) holes experimentally, including positive and negative norm mode mixing at horizons. PACS: 04.70.-s, 47.90.+a, 92.60.Dj, 04.80.-y.Comment: 14 pages RevTeX, 5 figures, section VI modifie

    A selective ATP-binding cassette subfamily G member 2 efflux inhibitor revealed via high-throughput flow cytometry

    Get PDF
    Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)-driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented
    corecore