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Summary 10 

•! Coping with temporal variation in fire requires plants to have plasticity in traits that 11 

promote persistence, but how plastic responses to current conditions are affected by 12 

past fire exposure remains unknown. We investigate phenotypic divergence between 13 

populations of four resprouting grasses exposed to differing experimental fire 14 

regimes (annually-burnt or unburnt for >35 years), and test whether divergence 15 

persists after plants are grown in a common environment for one year. 16 

•! Traits relating to flowering and biomass allocation were measured before plants were 17 

experimentally burnt, and their regrowth was tracked. Genetic differentiation 18 

between populations was investigated for a subset of individuals. 19 

•! Historic fire frequency influenced traits relating to flowering and below-ground 20 

investment. Previously burnt plants produced more inflorescences and invested 21 

proportionally more biomass below ground, suggesting greater capacity for 22 

recruitment and resprouting than unburnt individuals. Tiller-scale regrowth rate did 23 

not differ between treatments, but prior fire exposure enhanced total regrown 24 

biomass in two species. We found no consistent genetic differences between 25 

populations suggesting trait differences arose from developmental plasticity.  26 

•! Grass development is influenced by prior fire exposure, independent of current 27 

environmental conditions. This priming response to fire, resulting in adaptive trait 28 

changes, may produce communities more resistant to future fire regime changes. 29 

 30 

Keywords: Flowering, Functional traits, Phenotypic plasticity, Poaceae, Resprouting 31 

  32 
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1.! Introduction 33 

Fire is a major and ancient environmental perturbation that plants have adapted to through 34 

changes to their functional traits (1,2). There is growing evidence of woody plant adaptation 35 

to fire, where different fire regimes create intraspecific trait variation that is genetically 36 

determined and thus subject to natural selection (3,4,5). However, whether exposure to fire 37 

has a priming effect on plastic responses remains unexplored. An expanding body of 38 

evidence shows that plants may respond to extreme climatic events differently depending 39 

upon their previous experiences (6,7,8,9), and these primed responses can have positive 40 

effects on plant performance during environmental perturbations and avoid the costs 41 

associated with maintaining a constant high level of phenotypic plasticity (10). 42 

Fire-prone savanna grasses are an ideal study system for exploring the role of fire on 43 

priming, as these species persist through the most frequent fire regimes on Earth (11) even 44 

though fires usually remove all above-ground biomass and can kill mature grass plants (12). 45 

Grasses use two main mechanisms for persisting through fire: resprouting from protected 46 

organs or recruiting from a fire-resistant seed bank. The majority of grasses that inhabit fire-47 

prone grasslands and savannas are perennial, resprouting species (13,14). For these species, 48 

traits that allow an individual to resprout quickly after fire, such as high specific leaf area 49 

(SLA) and large below-ground reserves, are likely to be favoured (15,16) as they allow 50 

access to the sunlight- and nutrient-rich environment immediately after fires (17,18). Whilst 51 

successful recruitment in many perennial grasslands is infrequent because seedlings must 52 

compete with established plants (19,20), traits that enhance recruitment after fire, such as the 53 

stimulation of flowering and germination (21,22) can help seedlings to access the high post-54 

fire resources.  55 

Here we test the hypothesis that fire causes divergences in recruitment and 56 

regeneration traits that favour persistence in fire-prone savannas. Our work sampled four 57 

savanna grasses from experimental field plots that had been either unburned or annually 58 

burned for >35 years. Cuttings from these plants were grown in a common environment for 59 

one year, after which traits were remeasured to determine whether differences between 60 

populations persisted independently of the current environment. In comparison to unburnt 61 

plants, we predicted that annually burnt plants would have traits advantageous under 62 

recurrent fires, including rapid post-fire resprouting (high investment in below-ground 63 

biomass, high regrowth rate, low SLA) and recruitment (fire-stimulated flowering). To 64 

evaluate whether phenotypic differences had a genetic component or arose from plasticity, 65 

we tested for allelic divergence among populations.  66 
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2.! Material and methods  67 

 68 

(a)!Plant collection and establishment 69 

Plants of four Poaceae species (Cymbopogon pospischilii, Digitaria eriantha, Melica 70 

racemosa and Themeda triandra) were collected on 07/07/15, from experimental burn plots 71 

(based at the University of Fort Hare Research Farm, Eastern Cape, South Africa; 32° 47 ́S, 72 

26° 52’ E) experiencing two contrasting fire frequency treatments: annual burn and no burn. 73 

The latter had not been burned in the 35 years since the plots were created in 1980 (23; see 74 

Table S1 for details about the plots including climate data). Both of these treatments 75 

represent a departure from the natural fire return interval of the semi-arid savanna site 76 

(approximately 15-20 years; W.S.W. Trollope, 2017, pers. comm). Each treatment is 77 

replicated twice with the 100 x 50m plots arranged in a randomised block design alongside 78 

four other fire frequency treatment plots that were not sampled here. The site varied little in 79 

slope and soil chemical and physical properties (24,25). The four species occurred 80 

abundantly in all treatment plots, and are perennial, resprouters from three grass subfamilies 81 

(Table S2). Based on the reported longevity of these species, it is likely that the populations 82 

have undergone several rounds of reproduction and recruitment in the 35 years of treatment 83 

(26). Thirty-five mature individuals of each species were dug up from open areas of 84 

grassland, minimizing root damage, from across the two replicate plots (n=17 or 18 from 85 

each plot). Within 48 hours of collection, a clump of 5 tillers was removed from each 86 

individual. The roots were washed carefully to remove soil, and limit the effects of any soil 87 

nutrient differences on plant growth. The clumps were subsequently planted into 10L pots 88 

containing locally sourced topsoil. A͒voucher specimen of each species was created (see 89 

Table S2 for specimen details). 90 

 To determine whether there were differences in plant traits between annual-burn and 91 

no-burn populations at the time of sampling from the experimental burn plots, traits were 92 

measured on 14 plants per treatment per species (n=7 from each plot). For this, the remainder 93 

of biomass (after the five-tiller clump had been removed) from each plant was used to 94 

measure plant height and above-ground dry biomass (after drying for 48 hours at 70°C). 95 

 The plants were grown for 12 months (July 2015 – July 2016) in a common 96 

environment (a naturally lit polytunnel at Rhodes University, South Africa) in a fully 97 

randomized block design, and were weeded and watered regularly. In the polytunnel, average 98 

monthly temperatures ranged from 14°C (July) to 26°C (January) and average relative 99 
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humidity was 68% (as recorded by thermochron data loggers: i-buttons, model DS1923, 100 

Maxim Integrated Products, California, USA). A 12-month growth period was chosen so that 101 

plants could become well-established in the pots and to minimise any environmental effects 102 

carrying over from the different field treatments. Thirty-seven of the 280 plants died during 103 

this period, but mortality was not associated with a particular species, treatment or plot 104 

(ANOVA: P>0.05). Watering was reduced and eventually stopped two weeks prior to 105 

burning to imitate the winter dry season and to force the plants into a phenological stage most 106 

relevant to burning. 107 

 108 

(b)!Pre-fire traits 109 

On the day prior to the experimental burns, the number of flowering tillers was recorded and 110 

a sample of above-ground biomass (~1/4 of the total biomass) was removed for all plants. 111 

The harvested biomass was dried (for 48 hours at 70°C) and measured. For each species, 112 

eight annual-burn and no-burn plants were also randomly chosen, destructively harvested and 113 

used to measure above- and below-ground dry biomass. Roots were carefully washed over a 114 

fine sieve and then dried at 70°C for 7 days. Root dry mass was measured and expressed as a 115 

proportion of the total dry plant biomass. 116 

 117 

(c) Experimental burn and post-fire regrowth 118 

Plants were burned in a random order on a warm day with little wind (04/07/16). An area of 119 

land was cleared of vegetation and series of holes were dug. Each plant was carefully 120 

removed from its pot and lowered into a hole, the depth of which was adjusted to ensure 121 

plants sat flush with the soil surface and thus burning was even. Each plant was burned 122 

sequentially in a controlled way (see Fig. S1 for diagram of the set-up). After burning, plants 123 

were returned to their pots (with any ash on the soil surface removed to standardize any 124 

fertilizing effect) and were returned to the polytunnel in a randomized block design and 125 

watered. 126 

 Most plants had initiated regrowth six days after the burns. For each individual, the 127 

length of five regrowing leaves was measured using digital callipers six days after the burn 128 

and on a further four occasions (each being 5-7 days apart), with the final measurement taken 129 

30 days after the burn. Daily average temperatures were slightly higher (2.7°C on average) in 130 

the polytunnel than outside (see Fig. S3), thus the plants experienced conditions similar to 131 

early spring without late season frosts. Ten of 47 M. racemosa and six of 44 T. triandra 132 
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failed to resprout within 30 days, but mortality was not associated with treatment (ANOVA: 133 

P>0.05). 134 

After the last measurement was taken, all regrown biomass was removed from each 135 

plant and stored in sealed plastic bags containing moist tissue paper. Total regrown leaf area 136 

was then measured within 72 hours using digital images and the program WinDIAS (Delta-T 137 

Devices, Cambridge, U.K.). The regrown material was subsequently dried at 70°C for 48 138 

hours and the dry mass was determined. Specific leaf area (SLA) was calculated by dividing 139 

the regrown leaf area by the regrown dry mass. 140 

A regrowth rate was calculated using the leaf length and air temperature data. Daily 141 

minimum and maximum temperature values were used to calculate growing degree-days 142 

(GDD, °C-day) for each time period between measurements using the equation: 143 

 144 

��� = ∃%&∋()%&∗+
, − − �0123   145 

 146 

Where �415 and �467 are daily maximum and minimum air temperature respectively. 10°C 147 

was selected for �0123  (the base temperature for growth), which represents an intermediate 148 

value of published temperate and tropical grass �0123  values (27,28,29). Individual average 149 

rates of leaf length regrowth were calculated by fitting linear models to the cumulative leaf 150 

length and GDD data. 151 

To convert the rate of leaf length regrowth to a rate of leaf biomass regrowth, the 152 

fresh length and dry mass of three leaves of each individual were measured. The relationship 153 

between leaf length and dry mass was determined for each species by fitting linear models to 154 

the log-transformed data. The fit of the models to the data was good (R2 values >0.87 for all 155 

species; Fig. S2), and the slopes of these relationships were used to convert leaf length 156 

regrowth rate into leaf biomass regrowth (in mg GDD-1). 157 

 158 

(d)!Statistical analysis 159 

All analyses were performed using R (version 3.4.1; 30). The effect of fire frequency on plant 160 

traits (all biomass measurements, plant height, number of flowering tillers, regrowth rate, 161 

regrown leaf area and SLA) was determined by fitting a linear mixed-effects model to the 162 

data (“lme4” package; 31). The fixed effects were “treatment” (annual burn vs no burn) and 163 

“species”, and an interaction term between these effects was added if it improved the quality 164 

of the model (as indicated by the Akaike information criterion value). “Plot” (i.e the replicate 165 
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plot the plant was taken from) was added as random effect. “Plant size” (the sampled subset 166 

of above-ground biomass taken from each plant before being burned) was also added as a 167 

fixed effect for models in which the trait is likely influenced by plant size (number of 168 

flowering tillers, height and some regrowth traits after fire). To determine whether fire 169 

frequency was significantly influencing plant traits, this model was then compared to a grand 170 

mean model using a parametric bootstrapping method (“pbkrtest” package, 32) with 10,000 171 

simulated generations. 172 

 173 

(e)!DNA extraction and RAD-seq 174 

For each species, total genomic DNA was extracted from leaf material for a subset of 175 

individuals (n=3-5) per treatment (using the DNeasy Plant Mini Kit, Qiagen) and double-176 

digested restriction-associated DNA libraries were built (following 33). DNA extract (150-177 

350 ng DNA) was double-digested using EcoRI and MseI after which barcoded adaptors 178 

were ligated to the EcoRI side and a common adaptor to the MseI side (following 34). The 34 179 

libraries were pooled with 62 libraries from different projects and the library pool was gel 180 

size selected (300-600 bp), purified (using QIAquick Gel Extration kit) and paired-end 181 

sequenced on an Illumina HiSeq2500 lane at Edinburgh Genomics (University of Edinburgh, 182 

UK), following standard protocols. 183 

Sequencing data was cleaned such that adaptor and primer sequences were removed 184 

and low quality (<3) bases were trimmed from 3’ and 5’ ends, as well as bases with a 185 

minimum quality of 15 in a four-base sliding window. Reads shorter than 36 bases after 186 

trimming were removed. The library pool was de-multiplexed and the barcodes were 187 

removed (using the program “Stacks”, 35). Nuclear reads were selected (see Table S3 for 188 

details on chloroplast read removal) and used to de novo assemble nuclear RAD loci in 189 

ipyrad (v.0.7.2; 36). A cluster threshold (sequence similarity for homology) of 0.85 was used 190 

and only loci with a cluster depth below 100 and less than 50% missing data were output. 191 

One random single nucleotide polymorphism (SNP) with a minor allele count of three 192 

was extracted using VCFtools (37) from each of the assembled RAD loci. The SNPs were 193 

then used in a principal component analysis (R package “adegenet”; 38) to test whether the 194 

two treatments were genetically distinct. An analysis of similarity was used to evaluate the 195 

significance of sample clustering (R package “vegan”; 39). Signatures for genetic differences 196 

were further evaluated by calculating the genetic distances between the treatments for each 197 

species. Pairwise FST for each SNP were calculated in VCFtools, and an average FST across 198 
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all SNPs was estimated. Jackknifing was used to evaluate the significance of average FST 199 

values, by randomly sampling individuals for each species with replacement into 1,000 two-200 

population comparisons and the average FST between the two populations calculated. 201 

Significance was evaluated as the percentage of the jacknifed FST values that were greater 202 

than or equal to the observed FST. The number of SNPs showing extreme FST values (>0.8) 203 

was also assessed. The p-values for each SNP were calculated as the proportion of jacknifed 204 

FST values above the observed FST. Comparisons of observed and expected p-values were 205 

then used to evaluate the power of the genetic data to detect differentiation between 206 

treatments. 207 

SNPs were concatenated to an alignment and used to estimate a maximum likelihood 208 

phylogenetic tree for each species using RAxML v.8.2.11 (40) under a GTR+G substitution 209 

model and 100 fast bootstrap replicates were used to evaluate node support.  210 
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3.! Results 211 

(a)!Traits in plants sampled from the field 212 

Plants in the annual-burn and no-burn populations differed significantly in their initial (field-213 

state) traits. In comparison to annual-burn plants, no-burn plants were taller (+29.6%; 214 

likelihood ratio test (LRT)=35.1, df=1, P<0.001) and had higher above-ground dry biomass 215 

(+33%; LRT=62.5, df=1, P<0.001; all model coefficients given in Table S4). 216 

 217 

(b)!Traits in a common environment 218 

After plants had been reduced to a small, uniform number of tillers and grown in a common 219 

environment for 12 months, significant trait differences persisted between the no-burn and 220 

annual-burn populations. After this growth period, all plants were well established and had 221 

greatly increased in size (~500-700% increase from the initial number of tillers, data not 222 

shown). Past fire frequency had a significant effect on the number of flowering tillers, with 223 

annual-burn plants having 50% more flowering tillers on average than no-burn plants (LRT = 224 

11.11, df=1, P<0.001; Fig. 1A). Annual-burn plants also invested significantly more of their 225 

total biomass below-ground (+23% on average; LRT=19.98, df=1, P<0.001; Fig. 1C) than 226 

no-burn plants. However, the treatment had no effect on total (above- and below-ground) dry 227 

biomass (LRT=0.62, P=0.43; Fig. 1B) or on plant height (LRT=0.09; df=1, P=0.77; model 228 

coefficients in Table S5). 229 

 230 

(c)!Traits after experimental fire 231 

Populations with a different fire history behaved similarly after the experimental fire. All 232 

regrowth traits differed significantly between species (ANOVA: P<0.05), but were 233 

unaffected by the fire frequency previously experienced in the field. Treatment had no 234 

significant effect on tiller-scale regrowth rate (LRT=0.69, df=1, P=0.41, Fig. 1E), regrown 235 

leaf area (LRT=0.11; df=1, P=0.73) or regrown leaf SLA (LRT=1.22, df=1, P=0.27, Fig. 1F; 236 

all model coefficients in Table S6). Overall, there was no treatment effect on regrown dry 237 

biomass across species (LRT=0.46; df=1, P=0.49) but significant intra-specific differences 238 

existed within C. pospischilii and T. triandra populations where annual-burnt plants regrew a 239 

larger aboveground biomass after fire in comparison to no-burn plants (P<0.05; Fig. 1D). 240 

 241 

(d)!Population genetic analyses 242 
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The species M. racemosa was excluded from the genetic analyses, because sample failure 243 

resulted in a low sample size. The number of assembled RAD loci and retained SNPs differed 244 

between the remaining species (Table 1), as expected due to variation in sequencing quality 245 

and depth, and divergence between individuals within each species. We observed deviation 246 

from the null hypothesis with an excess of SNPs with low p-values. At the whole genome 247 

level, there is therefore power in our genetic data to detect differentiation between treatments 248 

(Fig. S4). However, we found no significant clustering of individuals within species based on 249 

treatment (Fig. 2, analysis of similarity: C. pospischilii, P=0.22; D. eriantha, P=0.42; T. 250 

triandra P=1), and none of the species showed a significant genetic difference (as estimated 251 

by average FST and number of FST outliers) between the treatments (Table 1). Furthermore, 252 

with a few exceptions, the bootstrap support in the maximum likelihood trees were generally 253 

low (<95) indicating that there is no significant phylogenetic clustering in the investigated 254 

species.  255 

 256 

4.! Discussion 257 

This study of grass functional traits under differing fire frequencies supports the hypothesis 258 

that fire has strong direct effects upon plant structure and function (2). Previous studies have 259 

found evidence of a genetic basis for fire-related traits such as serotiny in pines (3) and 260 

flammability in a Mediterranean shrub (5). However, we found no detectable genetic 261 

differences between plants that had experienced one or the other of the two fire regimes. 262 

Given the statistical power of our test, this is strong evidence that the selective pressure 263 

imposed by the past fire regime has not led to consistent genetic differences between the two 264 

treatments. Previous evidence of selection for fire-related traits is from obligate seeder 265 

species (5). Such species are expected to experience stronger selection pressures for fire 266 

adaptations than resprouting species, such as those studied here, due to their short and non-267 

overlapping generations, and the higher cost of being burned. The absence of detectable 268 

genetic differentiation between the annual-burn and no-burn grasses may therefore be a result 269 

of their resprouting mode of persistence through fire. Alternatively, as grasses are wind 270 

pollinated, gene flow among populations in the different fire treatments may have 271 

counteracted the effects of selection. 272 

The trait differences observed between the contrasting fire treatments could potentially be 273 

explained by environmental effects carried over from the long-term treatments into the 274 
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common environment, rather than by differential developmental responses to these 275 

treatments. However, this is unlikely for three reasons. Firstly, we washed the roots of soil 276 

before potting the plants. Fire causes a release of nutrients into the soil, and may result in 277 

increased soil fertility and faster plant growth in burnt areas (41,42). However, any possible 278 

carry-over fertilisation effects were limited by soil removal from the roots. Secondly, we 279 

found no significant difference in the total (above- and below-ground) biomass between the 280 

treatments after one year in a common environment, implying that any carryover of internal 281 

resource stores from annually burnt plots did not enable plants to grow larger. Finally, the 282 

long period of growth in a common environment resulted in the initial transplanted biomass 283 

(five tillers) constituting only a small fraction of the final plant biomass (30-40 tillers). Whilst 284 

efforts were made to limit variation in the age of plants removed from the burn plots (by 285 

selecting plants of a similar basal diameter), we are unable to directly determine age and 286 

whether this differed by treatment. Individuals in the frequently burned plots could be 287 

younger and therefore differ in allocation strategies. However, as plants were standardised 288 

by tiller number before being grown in a common environment, and plant size 289 

(aboveground dry biomass) was included as a fixed effect in appropriate analyses, there 290 

can only be age effects and not size effects. Furthermore, many age-related changes in 291 

allocation strategy and growth can be explained by size (43). 292 

This study constitutes the first documentation, as far as we are aware, of plants having a 293 

primed response to fire, as found for some other abiotic stresses such as drought and 294 

inundation (e.g. 10,44,45). Traits relating to flowering and growth allocation differed across 295 

all of the species according to prior fire exposure. These differences continued at least until 296 

the end of the study providing an example of a persistent phenotypic change, but could be 297 

maintained for one or more generations as has been found in other cases of environmentally 298 

induced carry-over effects (46,47,48). Whilst fire is a major disturbance to plants, these 299 

developmental changes may mean current performance can be maximised, through improved 300 

tolerance and/or responses to future fires, whilst avoiding the potential costs of maintaining a 301 

life-long high-fire-suited phenotype. The priming mechanism is not addressed here, but such 302 

responses could involve epigenetic, metabolic, physiological or morphological changes 303 

(7,8,9). The roles of epigenetic and chromatin modifications are particularly recognised in 304 

plant stress responses, and therefore represent a likely mechanism for the traits differences 305 

seen between plants with and without prior fire exposure. 306 
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Similar to findings on the effect of crown fires on woody species (49,50,51), this study shows 307 

that fires cause trait divergence in the above- and below-ground allocation strategies of 308 

herbaceous plants. Annually burned plants invested more of their biomass below ground 309 

compared to no-burn plants, which likely equates to them having greater stored energy 310 

reserves to initiate and support early resprouting. The greater frequency of disturbance 311 

experienced by the annual-burn plants means they are regularly subjected to the near 312 

complete removal of above-ground biomass and frequently encounter the competitive, post-313 

fire environment. Thus, greater investment below ground results in a smaller proportion of 314 

total plant biomass being consumed by fire. However, a higher proportional investment in 315 

root biomass in annual-burn plants did not cause the faster initial resprouting rate compared 316 

to no- burn plants that we expected. Similarly, specific leaf area, a trait indicative of resource 317 

acquisition (52), did not differ between annual-burn and no-burn plants. Recurrent fire could 318 

instead select for more vigorous resprouting (i.e. greater resprouted biomass, as found for two 319 

of the four species examined here, 53) rather than a faster rate of resprouting at the tiller 320 

scale. Such differences could be due to a greater number of resprouting tillers rather than a 321 

faster rate of regrowth per tiller. Interestingly, the two species in which annually-burnt 322 

populations regrew significantly more biomass after fire than unburnt populations both 323 

belong to the monophyletic group Andropogoneae. Similarly, in a previous comparative 324 

analysis of grass fire responses of different lineages (54), regrowth was stimulated by fire 325 

only in the Andropogoneae species studied. In fire-prone areas, the rapid creation of a large, 326 

flammable fuel load by these shade-intolerant species may aid in the maintenance of an open 327 

canopy by burning off standing dead and woody biomass (55). 328 

Grasses showed plasticity in reproduction, dependent upon previous fire experience, that is 329 

likely to be adaptive in fire-prone environments. A history of high fire frequency favours 330 

grass traits relating to vigorous post-fire recruitment, with the heightened flowering in 331 

annual-burn plants suggesting that flowering and seed production is stimulated by fire. Fire-332 

stimulated flowering has been demonstrated in other savanna grass species (56), but this 333 

study represents the first documentation of fire having a priming effect on grass flowering. In 334 

many perennial grasslands, successful recruitment is a rare event (19,20), but fire may 335 

enhance seedling establishment through reduced below-ground competition with resprouters 336 

(57). 337 

Fire-prone savannas are vulnerable to global change drivers (58), with fire regimes changing 338 
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in frequency and intensity (59). As fire behaviour influences plant traits, a consequence of 339 

such changes may be transformed community functional diversity. However, the finding here 340 

that grasses may have a primed response to fire, resulting in adaptive trait changes, may lead 341 

to a community composition that is more resistant to future fire regime changes (8). 342 
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Table 1. Assembly statistics for the analysis of genetic differences between populations 573 

of three savanna grass species under contrasting fire regimes [annual burn (AB) and no 574 

burn (NB)]. RAD; restriction-site associated DNA sequencing, SNPs; single nucleotide 575 

polymorphisms. Melica racemosa was removed from this analysis because failure of some 576 

samples resulted in a low sample size. a FST > 0.80 577 

 578 

Species Number 

individuals 

(NB:AB) 

Number assembled 

nuclear RAD loci 

Number 

SNPs 

Average FST 

(p-value) 

Nr. Outlier 

FST (p-value)a 

Cymbpogon 

pospischilii 

10 (5:5) 21,649 5,528 0.083 (0.074) 33 (0.136) 

Digitaria 

eriantha 

9 (5:4) 11,716 4,611 0.095 (0.107) 22 (0.361) 

Themeda 

triandra 

8 (5:3) 40,031 9,977 0.107 (0.076) 104 (0.122) 

 579 

  580 
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Figure legends 581 

Figure 1. Grass traits differ in populations exposed to contrasting fire frequencies. 582 

Annual-burn plants had significantly more flowering tillers (P<0.001; panel A) than no-burn 583 

plants. Total dry biomass did not differ between treatments (panel B) but the allocation of 584 

biomass differed significantly (P<0.001; panel C) with annual-burn plants investing a higher 585 

proportion of their dry biomass below ground in comparison to no-burn plants. After burning 586 

all individuals, there was no overall effect of treatment on total regrown dry biomass (panel 587 

D; although, for two species, annual-burn plants did regrow significantly more biomass than 588 

no-burn plants; P<0.05), regrowth rate (panel E) or the specific leaf area of regrown leaves 589 

(panel F) C.=Cymbopogon; D.=Digitaria; M. =Melica; T.=Themeda. *, P < 0.05; **, P<0.01; 590 

***, P < 0.001.  591 

 592 

Figure 2. No genetic differentiation between grass populations under contrasting fire 593 

frequencies. Phylogenies and PCA plots reveal no clustering based on treatment for 594 

individuals of Cymbopogon pospischilii (a), Digitaria eriantha (b), and Themeda triandra 595 

(c). Analysis of similarity (anosim) results are indicated in the top left of the PCA plots. 596 

Values on nodes represent support evaluated with 100 bootstrap replicates (only support 597 

values >50 are shown). PCAs are based on all single nucleotide polymorphisms. 598 
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Table S1. Climate and treatment data for the experimental burn plots. These plots (based at the University 

of Fort Hare Research Farm, Eastern Cape, South Africa; 32° 47 Ś, 26° 52’ E), set up in 1980, comprise 

six treatments (no burn, annual, biennial, triennial, quadrennial and sexennial burns) replicated twice in a 

randomized design on 100 m x 50 m plots, each with a 5m mowed boundary (as described in 1). The area 

in which the plots are situated is semi-arid savanna and the soil at the site is a shallow silty loam of the 

Glenrosa series (2). Values represent monthly average daily minimum temperature, daily maximum 

temperature and rainfall for years spanning 1997 to 2015. The mean annual rainfall of 440mm, the majority 

of which falls in the Austral summer. Data was provided by the South African Weather Service (weather 

station 0078227A3; www.weathersa.co.za).  

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Monthly rain 

(mm) 

 

 

56.1 50.1 56.7 43.8 16.3 17.4 17.8 21.3 23.0 37.1 43.4 54.4 

Daily Max. 

Temperature 

(°C) 

 

30.1 30.0 28.6 25.6 23.7 21.4 21.3 22.8 24.4 25.7 27.0 28.5 

Daily Minimum 

Temperature 
(°C) 

16.8 17.2 15.4 12.3 9.3 6.7 6.1 7.4 9.0 11.6 13.4 15.5 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S2. Details of the species used in this study and herbarium numbers of specimens of each species 

deposited at the Selmar Schonland Herbarium, Rhodes University. 

 

Species Subfamily Herbarium number 

Cymbopogon pospischilii (K. 

Schum.) C.E. Hubb. 
Panicoideae (Andropogoneae)  GRA:Simpson s.n. 29 

Digitaria eriantha Steud.  

 

Panicoideae (Paniceae)  

 

GRA:Simpson s.n. 27 

Melica racemosa Thunb.  

 

Pooideae  

 

GRA:Simpson s.n. 28 

Themeda triandra Forssk.  Panicoideae (Andropogoneae)  

 

GRA:Simpson s.n. 26 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 



 

Table S3. Details of reference chloroplast genomes used to separate chloroplast and nuclear data. 

Representative whole chloroplast genomes were downloaded from Genbank and cleaned reads were 

mapped to the respective reference genome using Bowtie2 v.2.2.3 (3) with default settings for paired end 

reads. All reads not mapping to the chloroplast were then retrieved using SAMtools v.1.2 (4) and BEDtools 

v.2.19.1 (5) and used for further analyses 

 

 
 

Study species Reference plastid species GenBank reference 

Cymbopogon pospischilii Cymbopogon flexuosus NC_035040.1 

Digitaria eriantha Digitaria exilis NC_024176.1 

 
 Digitaria exilis KJ513091.1 

 

Themeda triandra Themeda sp KU291484.1 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

Table S4. Mixed model coefficients for the two initial (field-state) plant traits (plant height and total dry 

biomass). The intercept represents the species Cymbopogon pospischilii and the annual burn treatment. Dig 

= Digitaria eriantha; Mel = Melica racemosa; NB = no burn treatment; SE = standard error; The = Themeda 

triandra. 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Plant height Total biomass 

 

 Estimate ± SE t value Estimate ± SE t value 

(Intercept) 28. 20 ± 2.77 10.18 2.56 ± 0.12 20.99 

NB 8.36 ± 1.30 6.42 0.85 ± 0.09 9.17 

Dig -5.78 ± 1.68 -3.44 -0.93 ± 0.13 -7.09 

Mel 5.22 ± 2.18 2.39 -1.69 ± 0.13 -12.83 

The -4.89 ± 1.50 -3.26 -0.54 ± 0.13 -4.07 

log (Total dry mass) 2.31 ± 0.99 2.33   



 

Table S5. Mixed model coefficients for pre-fire plant traits (number of flowering tillers, fuel load, root 

biomass, proportion of total biomass in roots, total biomass and plant height). The intercept represents the 

species Cymbopogon pospischilii and the annual burn treatment. Dig = Digitaria eriantha; Mel = Melica 

racemosa; NB = no burn treatment; SE = standard error; The = Themeda triandra. 
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Table S6. Mixed model coefficients for post-fire regrowth traits (regrown dry biomass, regrown leaf area, 

regrown leaf SLA and regrowth rate). The intercept represents the species Cymbopogon pospischilii and 

the annual burn treatment. Dig = Digitaria eriantha; Mel = Melica racemosa; NB = no burn; SE = standard 

error; The = Themeda triandra. 

 
 Regrown SLA Regrown area Regrown mass Regrowth rate 

 Estimate 

± SE 

t value Estimate 

± SE 

t value Estimate 

± SE 

t value Estimate 

± SE 

t value 

(Intercept)  

 

 

10305.8 

± 796.0 

 

12.95 6.932 ± 

0.289 

23.96 -2.126 ± 

0.261 

-8.14 0.046 ± 

0.001 

34.17 

NB treatment 793.3 ± 

717.9 

 

1.11 0.049 ± 

0.148 

0.34 -0.017 ± 

0.138 

-0.12 0.0007 ± 

0.001 

0.83 

Dig 4462.6 ± 

968.0 

 

4.61 -0.222 ± 

0.199 

-1.12 -0.547 ± 

0.180 

-3.04 -0.025 ± 

0.001 

-27.36 

Mel 7910.3 ± 

1047.8 

 

7.55 -1.179 ± 

0.213 

-5.32 -1.682 ± 

0.193 

-8.73 -0.029 ± 

0.001 

-28.99 

The 6080.7 ± 

1020.0 

 

5.96 -0.335 ± 

0.208 

-1.61 -0.779 ± 

0.187 

-4.16 -0.040 ± 

0.001 

-41.50 

log(Total pre-

fire dry mass) 

 

  1.098 ± 

0.191 

5.75 0.969 ± 

0.173 

5.62 0.003 ± 

0.001 

4.21 
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Supporting Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1 Schematic drawing of the set-up used to burn plants. (a) Modified, cleaned 45-gallon oil drum 

(85 cm tall and 61cm diameter) with the top and base removed, and a series of holes drilled in four vertical 

lines down its side for ventilation; (b) double layer of fine mesh fitted into the top of the drum to act as a 

spark arrestor; (c) wet hessian sacking placed around the base of the barrel to minimize risk of the fire 

spreading; (d) the ignition hole through which a lit blowtorch was applied. Each plant was carefully 

removed from its pot to minimize root disturbance, and lowered into a hole (not shown). The depth of the 

hole was adjusted to ensure that the soil surface of all the plants was at the same height and thus burned 

evenly. 
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Figure S2. The relationship between leaf length and dry mass for the four studied grass species, as 

determined by fitting linear models to the log-transformed values of both variables. The fit of the models 

to the data was good (R2 values <0.87 for all species) and the slope of these relationships was used to 

convert leaf length regrowth rate into leaf biomass regrowth (in mg GDD-1). 
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Figure S3. A comparison of temperatures inside and outside the polytunnel during the period of plant 

regrowth following the experimental burn. Daily average temperatures were slightly higher (2.7°C on 

average) in the polytunnel than outside, thus the plants experienced conditions similar to early spring 

without the complication of late season frosts. Outside temperatures were provided by the South African 

Weather Service (weather station 0056917 8; www.weathersa.co.za) 
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Figure S4. Relationships between P-values observed for each SNP and those expected under a null 

hypothesis (i.e. no differentiation) for three grass species. We see genome-wide departure from the null 

hypothesis, in the direction of having more genes with small p-values than expected, showing we have 

power to detect differentiation between treatments despite the low sample sizes. “Obs” = observed; “exp” 

= expected. 
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