It is demonstrated that gravity waves of a flowing fluid in a shallow basin
can be used to simulate phenomena around black holes in the laboratory. Since
the speed of the gravity waves as well as their high-wavenumber dispersion
(subluminal vs. superluminal) can be adjusted easily by varying the height of
the fluid (and its surface tension) this scenario has certain advantages over
the sonic and dielectric black hole analogs, for example, although its use in
testing quantum effects is dubious. It can be used to investigate the various
classical instabilities associated with black (and white) holes experimentally,
including positive and negative norm mode mixing at horizons. PACS: 04.70.-s,
47.90.+a, 92.60.Dj, 04.80.-y.Comment: 14 pages RevTeX, 5 figures, section VI modifie