6,775 research outputs found

    Chicago Music City

    Get PDF
    Chicago Music City compares the strength and vitality of music industries and scenes across the United States. Sociologists, urban planners, and real-estate developers point to quality of life and availability of cultural amenities as important indicators of the health and future success of urban areas. Economic impact studies show the importance of music to local economies. This publication compares Chicago's musical strength with the 50 largest metropolitan areas in the U.S., focusing on 11 comparison cities: Chicago and its demographic peers, New York and Los Angeles, and eight other cities with strong musical reputations -- Atlanta, Austin, Boston, Las Vegas, Memphis, Nashville, New Orleans and Seattle

    A new set of BXD recombinant inbred lines from advanced intercross populations in mice

    Get PDF
    BACKGROUND: Recombinant inbred (RI) strains are an important resource for mapping complex traits in many species. While large RI panels are available for Arabidopsis, maize, C. elegans, and Drosophila, mouse RI panels typically consist of fewer than 30 lines. This is a severe constraint on the power and precision of mapping efforts and greatly hampers analysis of epistatic interactions. RESULTS: In order to address these limitations and to provide the community with a more effective collaborative RI mapping panel we generated new BXD RI strains from two independent advanced intercrosses (AI) between C57BL/6J (B6) and DBA/2J (D2) progenitor strains. Progeny were intercrossed for 9 to 14 generations before initiating inbreeding, which is still ongoing for some strains. Since this AI base population is highly recombinant, the 46 advanced recombinant inbred (ARI) strains incorporate approximately twice as many recombinations as standard RI strains, a fraction of which are inevitably shared by descent. When combined with the existing BXD RI strains, the merged BXD strain set triples the number of previously available unique recombinations and quadruples the total number of recombinations in the BXD background. CONCLUSION: The combined BXD strain set is the largest mouse RI mapping panel. It is a powerful tool for collaborative analysis of quantitative traits and gene function that will be especially useful to study variation in transcriptome and proteome data sets under multiple environments. Additional strains also extend the value of the extensive phenotypic characterization of the previously available strains. A final advantage of expanding the BXD strain set is that both progenitors have been sequenced, and approximately 1.8 million SNPs have been characterized. This provides unprecedented power in screening candidate genes and can reduce the effective length of QTL intervals. It also makes it possible to reverse standard mapping strategies and to explore downstream effects of known sequence variants

    Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling

    Full text link
    We study the two-dimensional periodic Anderson model at half-filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2

    Spin-fluctuations in the quarter-filled Hubbard ring : significances to LiV2_2O4_4

    Full text link
    Using the quantum Monte Carlo method, we investigate the spin dynamics of itinerant electrons in the one-dimensional Hubbard system. Based on the model calculation, we have studied the spin-fluctuations in the quarter-filled metallic Hubbard ring, which is aimed at the vanadium ring or chain defined along corner-sharing tetrahedra of LiV2_2O4_4, and found the dramatic changes of magnetic responses and spin-fluctuation characteristics with the temperature. Such results can explain the central findings in the recent neutron scattering experiment for LiV2_2O4_4.Comment: 5 pages, 3 figure

    Environmental Regulation Can Arise Under Minimal Assumptions

    No full text
    Models that demonstrate environmental regulation as a consequence of organism and environment coupling all require a number of core assumptions. Many previous models, such as Daisyworld, require that certain environment-altering traits have a selective advantage when those traits also contribute towards global regulation. We present a model that results in the regulation of a global environmental resource through niche construction without employing this and other common assumptions. There is no predetermined environmental optimum towards which regulation should proceed assumed or coded into the model. Nevertheless, polymorphic stable states that resist perturbation emerge from the simulated co-evolution of organisms and environment. In any single simulation a series of different stable states are realised, punctuated by rapid transitions. Regulation is achieved through two main subpopulations that are adapted to slightly different resource values, which force the environmental resource in opposing directions. This maintains the resource within a comparatively narrow band over a wide range of external perturbations. Population driven oscillations in the resource appear to be instrumental in protecting the regulation against mutations that would otherwise destroy it. Sensitivity analysis shows that the regulation is robust to mutation and to a wide range of parameter settings. Given the minimal assumptions employed, the results could reveal a mechanism capable of environmental regulation through the by-products of organisms

    The future of human nature: a symposium on the promises and challenges of the revolutions in genomics and computer science, April 10, 11, and 12, 2003

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's Symposium on the Promises and Challenges of the Revolutions in Genomics and Computer Science took place during April 10, 11, and 12, 2003. Co-organized by Charles DeLisi and Kenneth Lewes; sponsored by Boston University, the Frederick S. Pardee Center for the Study of the Longer-Range Future.This conference focused on scientific and technological advances in genetics, computer science, and their convergence during the next 35 to 250 years. In particular, it focused on directed evolution, the futures it allows, the shape of society in those futures, and the robustness of human nature against technological change at the level of individuals, groups, and societies. It is taken as a premise that biotechnology and computer science will mature and will reinforce one another. During the period of interest, human cloning, germ-line genetic engineering, and an array of reproductive technologies will become feasible and safe. Early in this period, we can reasonably expect the processing power of a laptop computer to exceed the collective processing power of every human brain on the planet; later in the period human/machine interfaces will begin to emerge. Whether such technologies will take hold is not known. But if they do, human evolution is likely to proceed at a greatly accelerated rate; human nature as we know it may change markedly, if it does not disappear altogether, and new intelligent species may well be created

    Evidence for Transgenerational Transmission of Epigenetic Tumor Susceptibility in Drosophila

    Get PDF
    Transgenerational epigenetic inheritance results from incomplete erasure of parental epigenetic marks during epigenetic reprogramming at fertilization. The significance of this phenomenon, and the mechanism by which it occurs, remains obscure. Here, we show that genetic mutations in Drosophila may cause epigenetic alterations that, when inherited, influence tumor susceptibility of the offspring. We found that many of the mutations that affected tumorigenesis induced by a hyperactive JAK kinase, HopTum-l, also modified the tumor phenotype epigenetically, such that the modification persisted even in the offspring that did not inherit the modifier mutation. We analyzed mutations of the transcription repressor Krüppel (Kr), which is one of the hopTum-l enhancers known to affect ftz transcription. We demonstrate that the Kr mutation causes increased DNA methylation in the ftz promoter region, and that the aberrant ftz transcription and promoter methylation are both transgenerationally heritable if HopTum-l is present in the oocyte. These results suggest that genetic mutations may alter epigenetic markings in the form of DNA methylation, which are normally erased early in the next generation, and that JAK overactivation disrupts epigenetic reprogramming and allows inheritance of epimutations that influence tumorigenesis in future generations

    Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping

    Get PDF
    New multibeam (swath) bathymetric sonar data acquired using an EM120 system on the RRS James Clark Ross, supplemented by sub-bottom profiling, reveals the underwater morphology of a not, vert, similar 12,000 km2 area in the northern part of the mainly submarine South Sandwich volcanic arc. The new data extend between 55° 45′S and 57° 20′S and include Protector Shoal and the areas around Zavodovski, Visokoi and the Candlemas islands groups. Each of these areas is a discrete volcanic center. The entirely submarine Protector Shoal area, close to the northern limit of the arc, forms a 55 km long east–west-trending seamount chain that is at least partly of silicic composition. The seamounts are comparable to small subaerial stratovolcanoes in size, with volumes up to 83 km3, indicating that they are the product of multiple eruptions over extended periods. Zavodovski, Visokoi and the Candlemas island group are the summits of three 3–3.5 km high volcanic edifices. The bathymetric data show evidence for relationships between constructional volcanic features, including migrating volcanic centers, structurally controlled constructional ridges, satellite lava flows and domes, and mass wasting of the edifices. Mass wasting takes place mainly by strong erosion at sea level, and dispersal of this material along chutes, probably as turbidity currents and other mass flows that deposit in extensive sediment wave fields. Large scale mass wasting structures include movement of unconsolidated debris in slides, slumps and debris avalanches. Volcanism is migrating westward relative to the underlying plate and major volcanoes are asymmetrical, being steep with abundant recent volcanism on their western flanks, and gently sloping with extinct, eroded volcanic sequences to their east. This is consistent with the calculated rate of subduction erosion of the fore-arc
    corecore