2,312 research outputs found
Strange form factors in the context of SAMPLE, HAPPEX, and A4 experiments
The strange properties of the nucleon are investigated within the framework
of the SU(3) chiral quark-soliton model assuming isospin symmetry and applying
the symmetry conserving SU(3) quantization. We present the form factors
, and the electric and magnetic strange form
factors incorporating pion and kaon asymptotics. The results
show a fairly good agreement with the recent experimental data from the SAMPLE
and HAPPEX collaborations. We also present predictions for future measurements
including the A4 experiment at MAMI (Mainz).Comment: 10 pages with four figures. RevTeX4 is used. Few lines are changed.
Accepted for publication in Phys.Rev.
Eruptions of Magnetic Ropes in Two Homologous Solar Events on 2002 June 1 and 2: a Key to Understanding of an Enigmatic Flare
The goal of this paper is to understand the drivers, configurations, and
scenarios of two similar eruptive events, which occurred in the same solar
active region 9973 on 2002 June 1 and 2. The June 2 event was previously
studied by Sui, Holman, and Dennis (2006, 2008), who concluded that it was
challenging for popular flare models. Using multi-spectral data, we analyze a
combination of the two events. Each of the events exhibited an evolving
cusp-like feature. We have revealed that these apparent ``cusps'' were most
likely mimicked by twisted magnetic flux ropes, but unlikely to be related to
the inverted Y-like magnetic configuration in the standard flare model. The
ropes originated inside a funnel-like magnetic domain whose base was bounded by
an EUV ring structure, and the top was associated with a coronal null point.
The ropes appear to be the major drivers for the events, but their rise was not
triggered by reconnection in the coronal null point. We propose a scenario and
a three-dimensional scheme for these events in which the filament eruptions and
flares were caused by interaction of the ropes.Comment: 22 pages, 11 figure
Strange nucleon form factors in the perturbative chiral quark model
We apply the perturbative chiral quark model at one loop to calculate the
strange form factors of the nucleon. A detailed numerical analysis of the
strange magnetic moments and radii of the nucleon, and also the momentum
dependence of the form factors is presented.Comment: 18 pages, 6 figure
Stellar evolution and modelling stars
In this chapter I give an overall description of the structure and evolution
of stars of different masses, and review the main ingredients included in
state-of-the-art calculations aiming at reproducing observational features. I
give particular emphasis to processes where large uncertainties still exist as
they have strong impact on stellar properties derived from large compilations
of tracks and isochrones, and are therefore of fundamental importance in many
fields of astrophysics.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Robust leakage-based distributed precoder for cooperative multicell systems
Coordinated multipoint (CoMP) from long term evolution (LTE)-advanced is a promising technique to enhance the system spectral efficiency. Among the CoMP techniques, joint transmission has high communication requirements, because of the data sharing phase through the backhaul network, and coordinated scheduling and beamforming reduces the backhaul requirements, since no data sharing is necessary. Most of the available CoMP techniques consider perfect channel knowledge at the transmitters. Nevertheless for practical systems this is unrealistic. Therefore in this study the authors address this limitation by proposing a robust precoder for a multicell-based systems, where each base station (BS) has only access to an imperfect local channel estimate. They consider both the case with and without data sharing. The proposed precoder is designed in a distributed manner at each BS by maximising the signal-to-leakage-and-noise ratio of all jointly processed users. By considering the channel estimation error in the design of the precoder, they are able to reduce considerably the impact of these errors in the system's performance. The results show that the proposed scheme has improved performance especially for the high signal-to-noise ratio regime, where the impact of the channel estimation error may be more pronounced
Chiral phase boundary of QCD at finite temperature
We analyze the approach to chiral symmetry breaking in QCD at finite
temperature, using the functional renormalization group. We compute the running
gauge coupling in QCD for all temperatures and scales within a simple truncated
renormalization flow. At finite temperature, the coupling is governed by a
fixed point of the 3-dimensional theory for scales smaller than the
corresponding temperature. Chiral symmetry breaking is approached if the
running coupling drives the quark sector to criticality. We quantitatively
determine the phase boundary in the plane of temperature and number of flavors
and find good agreement with lattice results. As a generic and testable
prediction, we observe that our underlying IR fixed-point scenario leaves its
imprint in the shape of the phase boundary near the critical flavor number:
here, the scaling of the critical temperature is determined by the
zero-temperature IR critical exponent of the running coupling.Comment: 39 pages, 8 figure
Calibration of the length of a chain of single gold atoms
Using a scanning tunneling microscope or mechanically controllable break
junctions it has been shown that it is possible to control the formation of a
wire made of single gold atoms. In these experiments an interatomic distance
between atoms in the chain of ~3.6 Angstrom was reported which is not
consistent with recent theoretical calculations. Here, using precise
calibration procedures for both techniques, we measure length of the atomic
chains. Based on the distance between the peaks observed in the chain length
histogram we find the mean value of the inter-atomic distance before chain
rupture to be 2.6 +/- 0.2 A . This value agrees with the theoretical
calculations for the bond length. The discrepancy with the previous
experimental measurements was due to the presence of He gas, that was used to
promote the thermal contact, and which affects the value of the work function
that is commonly used to calibrate distances in scanning tunnelling microscopy
and mechanically controllable break junctions at low temperatures.Comment: 6 pages, 6 figure
The Deformable Universe
The concept of smooth deformations of a Riemannian manifolds, recently
evidenced by the solution of the Poincar\'e conjecture, is applied to
Einstein's gravitational theory and in particular to the standard FLRW
cosmology. We present a brief review of the deformation of Riemannian geometry,
showing how such deformations can be derived from the Einstein-Hilbert
dynamical principle. We show that such deformations of space-times of general
relativity produce observable effects that can be measured by four-dimensional
observers. In the case of the FLRW cosmology, one such observable effect is
shown to be consistent with the accelerated expansion of the universe.Comment: 20 pages, LaTeX, 3 figure
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Drought impact on forest carbon dynamics and fluxes in Amazonia
In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth. We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots.Gordon and Betty Moore FoundationNatural Environment Research Council (NERC)EU FP7 Amazalert (282664) projectEU FP7GEOCARBON (283080) projectNational Council for Scientific and Technological Development (CNPq, Brazil)ARC - fellowship awardERC - Advanced Investigator AwardRoyal Society - Wolfson Research Merit AwardJackson FoundationJohn Fell Fun
- …
