865 research outputs found

    Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    Get PDF
    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods

    Phase 1 study of sirolimus in combination with oral cyclophosphamide and topotecan in children and young adults with relapsed and refractory solid tumors.

    Get PDF
    PurposeTo determine the maximum tolerated dose (MTD), toxicities, and pharmacodynamics effects of sirolimus combined with oral metronomic topotecan and cyclophosphamide in a pediatric population.Materials and methodsPatients who were 1 to 30 years of age with relapsed/refractory solid tumors (including CNS) were eligible. Patients received daily oral sirolimus and cyclophosphamide (25-50 mg/m2/dose) on days 1-21 and oral topotecan (0.8 mg/m2/dose) on days 1-14 in 28-day cycles. Sirolimus steady-state plasma trough concentrations of 3-7.9 ng/mL and 8-12.0 ng/mL were evaluated, with dose escalation based on a 3+3 phase 1 design. Biomarkers of angiogenesis were also evaluated.ResultsTwenty-one patients were treated (median age 18 years; range 9-30). Dose-limiting toxicities included myelosuppression, ALT elevation, stomatitis, and hypertriglyceridemia. The MTD was sirolimus with trough goal of 8-12.0 ng/mL; cyclophosphamide 25 mg/m2/dose; and topotecan 0.8 mg/m2/dose. No objective responses were observed. Four patients had prolonged stable disease > 4 cycles (range 4-12). Correlative biomarker analyses demonstrated reductions in thrombospondin-1 (p=0.043) and soluble vascular endothelial growth factor receptor-2 plasma concentrations at 21 days compared to baseline.ConclusionsThe combination of oral sirolimus, topotecan, and cyclophosphamide was well tolerated and biomarker studies demonstrated modulation of angiogenic pathways with this regimen

    Mozart KV 448 Menurunkan Densitas dan Aktivitas Neuroglia Hipokampus Mencit (Mus Musculus) Selama Stres Prenatal No. 416-KE

    Get PDF
    The aim of this research was to explore the influence of Mozart KV 448 classical music therapy to the neuroglia cells of mice's hippocampus that were exposed to stress during prenatal. This research were employing twenty female mices and twenty male mices. Female mices were estrus synchronized with PMSG and hCG then monomating to the males. Pregnant females were then divided into four groups (P0, P1, P2, P3). P0 was as control, P1 was treated by one minute forced swim test, P2 was treated by one minute forced swim test followed by thirtyminutes classical music Mozart KV 448 and P3 was treated by one minute forced swim test followed by sixty minutes classical music Mozart KV 448. This research was carried out for twenty-one days during gestation period. The neuroglia density result was analyzed using ANOVA and Duncan test. The neuroglia activity result wasanalyzed using Kruskal wallis test and Z test. The histology reading showed degradation of density and activity of hippocampus neuroglia

    Schr\"{o}dinger cat state of trapped ions in harmonic and anharmonic oscillator traps

    Full text link
    We examine the time evolution of a two level ion interacting with a light field in harmonic oscillator trap and in a trap with anharmonicities. The anharmonicities of the trap are quantified in terms of the deformation parameter τ\tau characterizing the q-analog of the harmonic oscillator trap. Initially the ion is prepared in a Schr\"{o}dinger cat state. The entanglement of the center of mass motional states and the internal degrees of freedom of the ion results in characteristic collapse and revival pattern. We calculate numerically the population inversion I(t), quasi-probabilities Q(t),Q(t), and partial mutual quantum entropy S(P), for the system as a function of time. Interestingly, small deformations of the trap enhance the contrast between population inversion collapse and revival peaks as compared to the zero deformation case. For \beta =3 and 4,(4,(% \beta determines the average number of trap quanta linked to center of mass motion) the best collapse and revival sequence is obtained for \tau =0.0047 and \tau =0.004 respectively. For large values of \tau decoherence sets in accompanied by loss of amplitude of population inversion and for \tau \sim 0.1 the collapse and revival phenomenon disappear. Each collapse or revival of population inversion is characterized by a peak in S(P) versus t plot. During the transition from collapse to revival and vice-versa we have minimum mutual entropy value that is S(P)=0. Successive revival peaks show a lowering of the local maximum point indicating a dissipative irreversible change in the ionic state. Improved definition of collapse and revival pattern as the anharminicity of the trapping potential increases is also reflected in the Quasi- probability versus t plots.Comment: Revised version, 16 pages,6 figures. Revte

    An Algebraic Pairing Model with Sp(4) Symmetry and its Deformation

    Full text link
    A fermion realization of the compact symplectic sp(4) algebra provides a natural framework for studying isovector pairing correlations in nuclei. While these correlations manifest themselves most clearly in the binding energies of 0^+ ground states, they also have a large effect on the energies of excited states, including especially excited 0^+ states. In this article we consider non-deformed as well as deformed algebraic descriptions of pairing through the reductions of sp_{(q)}(4) to different realizations of u_{(q)}(2) for single-j and multi-j orbitals. The model yields a classification scheme for completely paired 0^{+} states of even-even and odd-odd nuclei in the 1d_{3/2}, 1f_{7/2}, and 1f_{5/2}2p_{1/2}2p_{3/2}1g_{9/2} shells. Phenomenological non-deformed and deformed isospin-breaking Hamiltonians are expressed in terms of the generators of the dynamical symmetry groups Sp(4) and Sp_{q}(4). These Hamiltonians are related to the most general microscopic pairing problem, including isovector pairing and isoscalar proton-neutron interaction along with non-linear interaction in the deformed extension. In both the non-deformed and deformed cases the eigenvalues of the Hamiltonian are fit to the relevant Coulomb corrected experimental 0^{+} energies and this, in turn, allows us to estimate the interaction strength parameters, to investigate isovector-pairing properties and symmetries breaking, and to predict the corresponding energies. While the non-deformed theory yields results that are comparable to other theories for light nuclei, the deformed extension, which takes into account higher-order interactions between the particles, gives a better fit to the data. The multi-shell applications of the model provide for reasonable predictions of energies of exotic nuclei.Comment: 19 pages, 5 figures minor changes; improvements to achieve a better and clearer presentation of our messages and idea

    Effects of perturbations on estuarine microcosms

    Get PDF
    Microcosms containing planktonic communities from Chesapeake Bay responded to enrichment with sewage by developing larger standing crops of phytoplankton and zooplankton. Data suggest that increased productivity would be reflected up the food chain but might increase existing problems with dissolved oxygen and might lead to qualitative changes in the composition of the zooplankton. Either phosphorus or nitrogen was removed more rapidly from solution depending on where and when the experimental water was obtained. Increases in standing crop of algae were associated with loss of nitrogen from solution in two experiments and losses of both nitrogen and phosphorus from solution in one experiment

    Enhancing surface heat transfer by carbon nanofins: towards an alternative to nanofluids?

    Get PDF
    Background: Nanofluids are suspensions of nanoparticles and fibers which have recently attracted much attention because of their superior thermal properties. Nevertheless, it was proven that, due to modest dispersion of nanoparticles, such high expectations often remain unmet. In this article, by introducing the notion of nanofin, a possible solution is envisioned, where nanostructures with high aspect-ratio are sparsely attached to a solid surface (to avoid a significant disturbance on the fluid dynamic structures), and act as efficient thermal bridges within the boundary layer. As a result, particles are only needed in a small region of the fluid, while dispersion can be controlled in advance through design and manufacturing processes. Results: Toward the end of implementing the above idea, we focus on single carbon nanotubes to enhance heat transfer between a surface and a fluid in contact with it. First, we investigate the thermal conductivity of the latter nanostructures by means of classical non-equilibrium molecular dynamics simulations. Next, thermal conductance at the interface between a single wall carbon nanotube (nanofin) and water molecules is assessed by means of both steady-state and transient numerical experiments. Conclusions: Numerical evidences suggest a pretty favorable thermal boundary conductance (order of 107 W·m-2·K-1) which makes carbon nanotubes potential candidates for constructing nanofinned surface

    Rescaling multipartite entanglement measures for mixed states

    Full text link
    A relevant problem regarding entanglement measures is the following: Given an arbitrary mixed state, how does a measure for multipartite entanglement change if general local operations are applied to the state? This question is nontrivial as the normalization of the states has to be taken into account. Here we answer it for pure-state entanglement measures which are invariant under determinant 1 local operations and homogeneous in the state coefficients, and their convex-roof extension which quantifies mixed-state entanglement. Our analysis allows to enlarge the set of mixed states for which these important measures can be calculated exactly. In particular, our results hint at a distinguished role of entanglement measures which have homogeneous degree 2 in the state coefficients.Comment: Published version plus one important reference (Ref. [39]

    Modeling the Mechanism of Action of a DGAT1 Inhibitor Using a Causal Reasoning Platform

    Get PDF
    Triglyceride accumulation is associated with obesity and type 2 diabetes. Genetic disruption of diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the final reaction of triglyceride synthesis, confers dramatic resistance to high-fat diet induced obesity. Hence, DGAT1 is considered a potential therapeutic target for treating obesity and related metabolic disorders. However, the molecular events shaping the mechanism of action of DGAT1 pharmacological inhibition have not been fully explored yet. Here, we investigate the metabolic molecular mechanisms induced in response to pharmacological inhibition of DGAT1 using a recently developed computational systems biology approach, the Causal Reasoning Engine (CRE). The CRE algorithm utilizes microarray transcriptomic data and causal statements derived from the biomedical literature to infer upstream molecular events driving these transcriptional changes. The inferred upstream events (also called hypotheses) are aggregated into biological models using a set of analytical tools that allow for evaluation and integration of the hypotheses in context of their supporting evidence. In comparison to gene ontology enrichment analysis which pointed to high-level changes in metabolic processes, the CRE results provide detailed molecular hypotheses to explain the measured transcriptional changes. CRE analysis of gene expression changes in high fat habituated rats treated with a potent and selective DGAT1 inhibitor demonstrate that the majority of transcriptomic changes support a metabolic network indicative of reversal of high fat diet effects that includes a number of molecular hypotheses such as PPARG, HNF4A and SREBPs. Finally, the CRE-generated molecular hypotheses from DGAT1 inhibitor treated rats were found to capture the major molecular characteristics of DGAT1 deficient mice, supporting a phenotype of decreased lipid and increased insulin sensitivity
    corecore