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Abstract— At high charging and discharging rates, batteries 
are typically dominated by high rates of ohmic heating which 
poses a problem for decreasing charge times of consumer battery 
electric vehicles (BEVs). This problem inherently deals with multi-
physics phenomenon at varying scales from vehicle-level thermal 
management systems down to cell construction and Li-ion 
transport. This study develops a co-simulation framework for the 
analysis of a battery electric vehicle thermal management system 
(TMS) that couples a dynamic system-level model (Modelica) with 
a high-fidelity finite volume battery module thermal model 
(COMSOL). The thermal management system investigated is one 
incorporating waste heat recovery (WHR) suited for high capacity 
BEVs operating over long range cycles, which harvests waste heat 
from power electronics for use in cabin or battery heating. A novel 
co-simulation control scheme is developed, characterized, and 
shown to provide improvements to instantaneous and cumulative 
error across the simulated cycle. As a result of the present study, 
a holistic co-simulation framework is developed, tested, and 
various case studies of a parameterized battery pack are shown. 
Future work will extend this to battery aging characterization and 
lifetime technoeconomic study considering BEV thermal 
management system components. 

Keywords—Fast Charging, Co-Simulation, Battery Electric 
Vehicle, Thermal Management 

I. NOMENCLATURE 

𝒂 Correlation coefficient for cell degradation 
𝑪 Compressor or Charge rate (1/h) 
𝑪𝑫 Charge discharge binary value 
𝒄𝒑 Specific heat at constant pressure (kJ/kg-K) 
𝑬 Activation energy (kJ/K*mol) 
𝑭 Fan 
𝑰 Current (A) 
𝑷 Pump 
𝑹 Resistance (Ohm) 
𝒕 Time (s, h) 
∆𝒕 Co-simulation time step (s) 
𝒖 Input 
𝒗 Velocity (m/s) 
𝑽 Valve or Voltage (V) 
 

Greek Symbols 
𝜌 Density (kg/m3)  

Σ Continuous summation  
 

Subscripts 
𝒄 Capacity loss 
𝒇 Final value 
𝒊𝒏𝒄 Increase 
int Effective internal resistance model 
𝒍𝒐𝒔𝒔 Loss 
𝒐 Initial value 
𝒓 Power fade 
𝑺𝑰𝑴 True simulated value 
𝑻𝑰𝑺𝑪 Co-simulated value 
1,N Discretized co-simulation step size values 

Acronyms 
APM Auxiliary power module 
BEV Battery electric vehicle 
CC-CV Constant current constant voltage  
EM Electric motor 
EOC End of charge condition 
EOD End of discharge condition 
ESS Energy storage system 
EXV Electronic expansion valve 
HVAC Heating, ventilation, and air conditioning 
HX Heat exchanger 
OCV Open circuit voltage 
PTC Positive temperature coefficient 
TMS Thermal management system 
TPIM Traction power inverter module 
WHR Waste heat recovery 
 

II. INTRODUCTION 

Electrification of the vehicle fleet via consumer adoption of 
battery electric vehicles (BEVs) is hindered by range and range 
anxieties, cost, and lifetime performance of these vehicles. To 
investigate and improve each of these BEV thermal 
management systems (TMSs) are being continuously 
investigated and optimized in research and commercial solutions 
alike with key metrics being system range, battery aging, and 
overall system cost. Often these studies focus on evaluating 
specific components of the TMS, such as the cabin, power 
electronics, or battery thermal management. As exhaustively 
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reviewed previously [1], examples of these include studies on 
the effect of cooling channel optimization and pack construction 
on cell temperature gradients, which seek to optimize for battery 
cell thermal performance. Such component-level studies must 
typically assume some boundary conditions at the interface to 
the vehicle-level TMS, which are either held constant or varied 
parametrically to characterize the response of the battery 
temperatures. The type of battery management system can also 
be varied to investigate and optimize for battery thermal 
performance [2]. The same component-level investigation 
approach is also typical for cabin heating, ventilation, and air 
conditioning (HVAC) systems, with optimization of the BEV 
TMS for heat pumping [3], combined fluid loop thermal 
management [4], and investigations of different refrigerant types 
for extreme conditions [5]. Each of these studies must make 
various simplifications to other aspects of the thermal 
management, such as neglecting the presence of the power 
electronics or battery systems entirely [3, 5], or simplifying them 
to point sources of heat in the HVAC system [4]. These 
simplifications appropriately serve the original purposes of these 
studies but leave open investigations into the effect of the TMS 
on the aging performance of cells. Studies investigating battery 
aging performance have been completed with relatively 
simplified thermal models that assume the battery to be at 
constant temperature [6, 7] or establish a resistance network [8] 
for thermal calculations. This has set a precedent for making 
significant simplifications to the TMS, using reduced-order 
assumptions, to support all previous investigations into aging of 
batteries.  

The goal of this study then is to establish a full BEV TMS 
model representing all salient components that is coupled with a 
3D finite volume battery module thermal model, as a co-
simulation platform for investigation of battery aging. This 
builds off the previous works of the authors [9, 10] which 
investigated the long-range EV thermal management system 
performance as a function of ambient conditions and system 
architecture. The two modeling environments are first 
established separately and then the necessary interconnections 
to allow co-simulation are created. These interconnections 
include derivative-controlled adaptative co-simulation step sizes 
based on the vehicle velocity and mode of system operation, 
battery charging and discharging controllers, and a velocity 
profile controller to start and stop the vehicle corresponding to 
charging behavior. Finally, a case study of long-range BEV 
performance is co-simulated to illustrate each functional aspect 
of the parameterized co-simulation scheme. This result has 
implications for future work investigating the technoeconomic 
performance and aging of battery cells as a function of the BEV 
TMS design.  

III. MODELING METHODOLOGY 

The following subsections introduce the thermal system and 
battery models, co-simulation framework, and simulation 
control parameters. The software used for the dynamic thermal 
system model is Modelica running on Dymola [11]. For 
Modelica, TLK libraries are used encompassing TIL 3.10 and 
TISC 2.8.0 [12]. Finite volume thermal simulation of flow and 
heat transfer in the battery module is performed using COMSOL 
Multiphysics 5.6 [13].  

A. Vehicle thermal management system model 

Our past efforts developed a model of a full BEV TMS with 
waste heat recovery (WHR) in Refs. [9, 10] . The primary 
operational modes of this system are briefly summarized below 
based on the schematic diagram shown in Fig 1. Readers are 
referred to our past studies for all further details about the 
subcomponents and model implementation. All key 
assumptions in the thermal system model remain the same as 
from this past work, with a few notable exceptions described in 
the coming sections, including the system control and the 
assumed battery model. The heat transfer correlations inside of 
the system are the same as previous works except for the 
refrigerant-side correlations in the vapor compression cycle 
(VCC), which are changed to a blended correlation for 
condensation [14] and evaporation [15]. In Fig 1 the boundary 
between the overall thermal system model and the finite volume 
battery module model are indicated by a red dashed line.  

The cycle has three discrete possible modes of operation: 
discharging and heating, discharging and cooling, or charging 
mode. In discharging and heating mode the TMS architecture 
layout enables the recovery of waste heat from the power 
electronics for heating the cabin or battery environment via two 
four way valves (V5, V6). With these, the water glycol loops 
can be placed into either series, such that all glycol loops share 
common heat sources, or parallel configurations where the 
loops are then independent. For the purposes of this study only 
the latter two modes, discharging and cooling or charging, 
occur under the conditions and velocity profile investigated. 

During discharging and cooling, starting from the 
compressor (C1) outlet in the refrigerant (R134a) line, 
superheated refrigerant enters the vehicles front end heat 
exchanger. A fan, F1, blows air over this exchanger to condense 
and subcool the refrigerant as it exits to a branch point with two  

 
Fig 1: Battery electric vehicle thermal management system with waste heat 

recovery. 

Authorized licensed use limited to: Purdue University. Downloaded on December 02,2022 at 17:31:45 UTC from IEEE Xplore.  Restrictions apply. 



system expansion valves (EXV). The cabin EXV, V1, expands 
the refrigerant to a lower pressure and into the cabin heat 
exchanger, an evaporator in this case. The evaporating 
refrigerant cools the air pushed over the exchange by fan F2. 
Then, through closed-loop control of V1 and the compressor, 
the superheat at the exit of the evaporator and the cabin inlet 
temperature are controlled, respectively. Returning to the EXV 
branch point, V2 expands refrigerant flow while controlling for 
the battery module inlet temperature. The expanded refrigerant 
then passes through a battery heat exchanger that is sufficiently 
sized to ensure a superheated exit state. Both the cabin and 
battery refrigerant lines mix before entering back in the 
compressor. Moving next to the water/glycol loops inside of the 
system under the same operating mode, these are all separated 
using four-way flow control valves V5 and V6. Starting at P1, 
water glycol is pumped through a front-end heat exchanger 
which removes heat from the traction drive power electronics 
inside of the system. For cabin heating. a loop of water/glycol, 
heated via a positive temperature coefficient (PTC) heater, is 
circulated via pump P2. Finally, pump P3 circulates the 
water/glycol used for heating or cooling of the battery. 

In the charging mode, it is assumed that the vehicle is 
stationary, and the cabin is conditioned. Thus, V1 remains 
closed and the compressor controls for battery inlet temperature 
while V2 controls for superheat at the inlet to the compressor. 
The fans and pumps for cooling power electronics and the cabin 
environment are shut off. 

B. Battery electric, aging, and thermal models 

With the goal of co-simulation, a high-fidelity model of 
thermal transport in the battery module and cold plate is 
established to calculate the heat transfer performance, battery 
temperature distribution, and local state of health (SOH). A 
battery cell model is selected from the literature [16] which 
accounts for power (𝑅 ) and capacity (𝐶 ) fade as a function 
of battery throughput (Ah), temperature (T), and charging rate 
(CR)  

 𝐶 𝑎 𝑆𝑂𝐶 ∗ exp ∗ 𝐴ℎ ∗    (1) 

 𝑅 𝑎 𝑆𝑂𝐶 , 𝐶𝑅 ∗ exp ∗ 𝐴ℎ ∗  (2) 

Here 𝐸  and 𝐸  are the cell activation energy for capacity 
and power fade respectively, 𝑅  is the universal gas constant, 
𝑆𝑂𝐶  is the minimum state of charge for the model set in this 
case to 0.25, and z is a fitting coefficient set to 0.48. In this 
study, a fast charge rate of 5C is considered. The coefficients of 
capacity fade, 𝑎 , and resistance increase, 𝑎 , are calculated 
according to known parameters and coefficients from the 
original literature source [16]. The chosen cell is a 15 Ah 
capacity prismatic cell with a nominal voltage of 3.7 volts. Key 
thermal properties and geometric parameters of the battery cells 
are shown in Table 1. 

With the characteristics of a single cell specified, a battery 
pack is designed to achieve a 95 kWh capacity at 400 V. Given 
the cell voltage of 3.7 V, this target pack voltage fixes the 
number of cells chained in series at 108 cells. This then requires 
16 such cell-chains connected in parallel to achieve the  

Table 1:Thermal properties and geometric parameters of the battery cell. 

Parameter Value Unit 
𝑙𝑒𝑛𝑔𝑡ℎ 0.241 m 
𝑤𝑖𝑑𝑡ℎ 0.165 m 

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 0.00625 m 
𝑚𝑎𝑠𝑠 0.383 kg 

𝜌 1541 kg/m3 
𝑐  1050 kJ/kg-K 

necessary pack capacity of approximately 95 kWh. Uniform 
volumetric heat generation in each cell is based on adopted 
battery parameterization data [16] in the form of an effective 
internal resistance ( 𝑅 ) circuit model. Heat generation is 
governed by ohmic heating of the battery across 𝑅 , the initial 
value for ohmic resistance of the battery cell, with the addition 
of any accumulated power fade as.  
 𝑄 𝐼 𝑅 𝑅  (3) 
Coulomb counting is employed to track the batteries SOC at 
any given instant as a function of the capacity loss subtracted 
from the initial system capacity  

 𝑆𝑂𝐶 𝑡 𝑆𝑂𝐶 𝑡 𝑑𝑡 (4) 

where t is measured in hours for appropriate dimensions with 
the traditionally defined battery capacity in amp hours. This 
formulation ignores polarization losses and entropic losses due 
to the lack of available data from open literature sources.  

Utilizing the calculated number of cells, the battery thermal 
model is constructed for a single chain of 108 cells in series. 
Coolant flows through a cold plate across the bottom of the 
cells; it is thereby inherently assumed that that total coolant 
flow in the thermal system is equally distributed among 16 
parallel such flow paths. In the pack construction, one 
conducting fin is placed between pairs of two battery cells (i.e., 
such that only one side of each cell contacts a fin, with the other 
side facing a TIM and battery cell face.). This is shown in Fig 
2 with a zoomed inset view for additional detail. A thermal 
contact resistance value of 300×10-6 m2*K/W [17] is used for 
all interfacial gaps in the battery module, between the coldplate 
and fins, batteries and the fins, and between the batteries 
themselves. This corresponds to an equivalent material 
thickness of 1 mm at an effective thermal conductivity of 3.33 
W/(m-K).  

 
Fig 2: Constructed battery pack thermal model. 
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C. Co-simulation framework 

To establish a co-simulation framework, Modelica and 
COMSOL must be made to communicate and simulate across a 
shared simulation time space. A java-based shared simulation 
server application is utilized [12], TISC, which acts as an 
intermediary that each separate simulation can connect and 
synchronize to. This coupling has been studied previously to 
pass of initialization conditions from Modelica to COMSOL and 
then back again as they simulate across discrete time [18]. A 
diagram of this process is shown in Fig 3. 
 The variables passed back and forth in this scenario are the 
heat generation inside of the battery module, temperature at 
discrete points inside the pack which are used to calculate the 
battery aging, and the coolant flow temperatures. For the 
purposes of this study, the battery is subdivided into six battery 
bundles whose values of heat generation are calculated in 
Modelica, passed to COMSOL, and then the predicted 
temperature distribution passed back. Additionally, the inlet 
temperature of the coolant to the battery module is passed from 
Modelica to COMSOL, and the outlet temperature is sent back.  
 Starting at point 1, Modelica initializes the simulation by 
transferring initial conditions to COMSOL via the shared 
simulation server which include the fluid flow rate through the 
module, inlet temperature to the coldplate, and heat generation 
inside the discretized battery pack. COMSOL then simulates the 
battery pack from points 2 to 3 for a prescribed time step and 
stops once that time is reached. The shared server then initiates 
the simulation in Modelica, which then simulates through the 
same time step from points 4 to 5. During this simulation, the 
values for variables passed from COMSOL, temperature of each 
battery bundle and outlet temperature of the module cold plate 
are held constant. Once Modelica reaches the end of the timestep 
these values are updated to be the same as the COMSOL model 
at point 5. Modelica then re-initializes the COMSOL simulation 
and the pattern continues till the end of the simulation at point 
6.  
 For long-range BEV simulations, these interconnections 
require newly developed schemes for active control of the co-
simulation step size, stop/start of the parameterized velocity 
profile, and control of the power demand from the battery in 
charging versus discharging conditions. These additional co-
simulation controls are described in the following subsections. 

 
Fig 3: Outline of co-simulation process with information flow between the two 

simulations. 

 

D. Derivative-controlled adaptive step size 

 Adaptive control of the co-simulation step size is motivated 
from the need to reduce the simulation time in response to 
complex velocity profiles that typically contain dramatic 
changes in vehicle velocity. For example, long periods of 
constant speed can tolerate large step sizes before exchanging 
variables between the co-simulations, while rapid changes in 
velocities during other portions of the velocity profile require 
much smaller step sizes to maintain a quantifiable and 
controllable level of accuracy. A scheme is developed that uses 
the derivative of a key independent control variable to determine 
the step size. This ‘adaptive step size controller’ is shown in Fig 
4.  

Examining the structure of the controller an independent 
variable, in this case the vehicle velocity, is input and the 
absolute value of its derivative is fed into an interpolation table 
that specifies the corresponding time step. For the application to 
a vehicle system, this table relates the acceleration, 𝑎 , to the 
appropriate time step for co-simulation, ∆𝑡 . As the 
acceleration of the vehicle increases, the time step output 
decreases based on the table. Time-shifted values of the velocity, 
𝑣∆ , simultaneously input into the controller to look forward and 
observe the velocity profile for future acceleration events. If the 
controller observes one of these events and it occurs after the 
end of the current time step, then the next time step is set as the 
difference between the time that event takes place and the end 
of the current time step. If that event happened in the past, then 
the time step is set by the original table output. In this way, the 
time step can be adjusted for acceleration events. An additional 
flag can be set to detect the ending of the simulation and set the 
time step such that the co-simulation ends appropriately once the 
final time is reached.  

The response of the adaptive control scheme is illustrated in 
Fig 5 for an arbitrary velocity input profile. Briefly, at 16 sec 
there is an acceleration. From starting step size of 10 sec, the 
controller looks forward in time at this acceleration event and 
reduces the step size such that the co-simulation simulates only 
up to the event, and then switches to a much lower time step 
during the acceleration. Without a forward temporal scheme, the 
assigned initial step size would have missed a sizable period of 
acceleration from 16 to 20 sec. This adaptive behavior continues 
throughout the cycle, for example, at 30 sec as the vehicle’s 

 
Fig 4: Derivative-based adaptive step size controller. 
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Fig 5: Plot demonstrating of the effect of the input velocity on the derivative-

controlled adaptive time step size. 

acceleration increases further. As the acceleration decreases 
later in the velocity profile, the step size adapts without any such 
adjustments because the time steps happen to align directly with 
the next time step. Finally, the end of the arbitrary velocity 
profile at 60 s is anticipated by the controller and the simulation 
ends correctly with an adjusted final timestep. 
 An appropriate discretization for the time step size for the 
actual simulations is determined using a multi-cycle test (MCT) 
protocol as a benchmarking case for the algorithm. The specific 
MCT velocity profile was detailed in our previous work [9, 10] 
and the velocity schedule is shown later in Fig 9a. This velocity 
is input into the algorithm established for controlling the co-
simulation time step as the control variable. The input velocity 
error is then characterized in two ways: a comparison of the 
current true velocity and the co-simulated velocity, and a 
comparison of the integrated range from the co-simulation 
(TISC) and true velocity (SIM), calculated respectively as. 

 𝐸𝑟𝑟𝑜𝑟 % ∗ 100% (5) 

 𝑅𝑎𝑛𝑔𝑒 𝑣𝑑𝑡 (6) 

In this way, an instantaneous and cumulative error metrics are 
established, and the choice of time step discretization (“Disc” in 
column one in Table 2) parameters in the co-simulation 
algorithm can be varied to characterize the error. For the 
instantaneous error the number of simulation points that fall 
below 10% and 100% are counted. The total number of points, 
as well as those counted and their percentage of the total, are 
shown in columns two to four in Table 2. Finally, the integrated 
ranges of the simulated and co-simulated velocity profiles are 
shown in the columns labeled SIM and TISC respectively with 
the difference between these reported in the final column. The 
results for a parametric investigation of co-simulation 
parameters are shown in Table 2.  
 Examining the results for the different step sizes, several 
trends become apparent. First, looking at the 10 s discretization 
compared to the 20 s one, is that as the largest allowable step 
size increases, so does the instantaneous error inside of the  

Table 2: Investigation of co-simulation algorithm parameters 
for discretization of the time steps (Disc), total simulation 
points (Points), number of points with instantaneous error 

below 10% and 100%, and the integrated range of the 
simulation and co-simulation (SIM and TISC) with the 

difference between the ranges ∆ 𝑘𝑚 . 

Disc  Points  10%  100%  SIM (km)  TISC (km)  ∆ 𝐤𝐦  

10s  78263 
65938 
(84.3%) 

75334 
(96.3%) 

318.927  318.762  ‐0.165 

20s  76619 
61226
(79.9%) 

71907 
(93.9%) 

318.927  319.055  0.128 

10, 5, 
1s 

79999 
72120 
(90.5%) 

76966 
(97.3%) 

318.927  317.964  ‐0.963 

10, 5,
2s 

79615 
68900
(86.5%) 

77559 
(97.4%) 

318.927  318.822  ‐0.105 

10, 7, 
4, 1s 

81805 
70654 
(86.4%) 

79242 
(97%) 

318.927  318.348  ‐0.578 

simulation. Second, comparing 20 s to 10, 5, 1 s, as the smallest 
allowable value of step size discretization decreases the 
instantaneous error as the number of points below 10% and 
100% error improves by nearly 10% and 4%, respectively, at the 
cost of cumulative range errors. This then is counteracted by 
reducing the skewness of the discretization from a ratio of 10 in 
the third case to 5 in the fourth case, achieving better range 
results than the static first and second case counterparts with the 
same value of the largest step size. Finally, an increased 
discretization to four time step values in the last case shows that 
while maintaining the same level of skewness the static error can 
be improved while performing worse in dynamic error. For the 
purposes of simulations presented in this work the discretization 
of 10, 5, 2s is chosen. 

E. Charge and discharge control 

 With the goal of establishing a lifetime simulation 
framework that considers both charging and driving scenarios, 
logic is developed for switching between charging and 
discharging modes and outputting the appropriate battery 
charging state as a function of battery state of charge (SOC). End 
of charge (EOC) and end of discharge (EOD) conditions are 
established at 0.98 and 0.2, respectively. The charging protocol 
is constant current constant voltage (CC-CV). The logic for this 
‘continuous charge and discharge controller’ is presented in Fig 
6.  

The controller requires an initialization, either a 1 for 
discharging mode or a 0 for charging mode. If the EOD 
condition is reached a boolean test comparing the current SOC 
to the EOD moves from false to true, a negative 1 is then added 
to a continuous sum and switches the sum output from 1 to 0. 
This triggers a switch from discharging current to charging 
current. In the same way, if the EOC condition is reached, a 1 is 
added to the sum and the current switches. The switching binary 
value represents a charge/discharge binary value (CD) which is 
used to turn off key thermal system components according to the 
logic laid out in Section A.  

The ‘velocity profile controller’ logic for allowing 
continuous simulation with the stopping and resumption of the 
velocity profile at the correct moments, is outlined in Fig 7. 
With an input of the CD binary, the controller looks for times 
when the vehicle is switching from discharging to charging.  

Authorized licensed use limited to: Purdue University. Downloaded on December 02,2022 at 17:31:45 UTC from IEEE Xplore.  Restrictions apply. 



  

 
Fig 6: Continuous charge and discharge controller with the input of pack state 

of charge (SOC) and outputs of charge/discharge binary and battery pack 
current. 

 
Fig 7: Velocity profile controller for continuous simulation with an input of the 
charge/discharge (CD) binary and an output of the appropriate velocity profile. 

When it does, the system records that time and measures the 
difference between the current simulation time and when it 
began charging. Once the system detects that charging has 
ended, the CD binary switching from 0 to 1, and the time that 
the vehicle spent charging is subtracted from the input to the 
velocity profile function. In this way, the velocity profile is 
appropriately shifted based on the total time spent charging 
without a priori knowledge of the exact time needed for 
charging.  

A summary of the full systems interconnections is shown 
in Fig 8. Demand currents and the battery SOC are passed to 
the battery charge/discharge controller, which determines if the 
vehicle is in charging or discharging mode. The current mode 
is then output as a binary number to control the starting and 
stopping of key thermal system components as well as the 
vehicle velocity throughout the cycle. The velocity profile 
controller then starts and stops the vehicle and outputs time 
shifted velocity profiles to the adaptive step size controller. 
These velocity profiles are used in the adaptive step size 

controller to set an appropriate co-simulation step size by 
observing the current vehicle acceleration and observing for 
acceleration events. This reduces dynamic error in the velocity 
profile while allowing for large time step sizes throughout the 
co-simulation. These step sizes are input into the battery model 
which passes discretized heat generation, flow rate, and the 
inlet temperature of the battery cold plate to the isothermal flow 
model. This battery submodel then passes back the resulting 
temperature distribution inside of the battery pack as well as the 
temperature at the outlet of the cold plate to the system model. 
Coulomb counting inside of the battery model tracks the pack 
SOC which then closes the loop on the novel co-simulation 
control logic developed herein.  
 Results 

The velocity profile used as an input into the simulation is 
the MCT methodology [19] which combines transient velocity 
profiles with high constant speed portions to quickly drain the 
battery until a second round of transient velocity profiles 
examine low state of charge system performance. This velocity 
profile is then coupled with intermediate periods of fast 
charging. The initial SOC is set as 80% and the velocity profile 
is run until the system reaches the 20% EOD condition. 
Charging then occurs at a 5C rate up to the EOC condition of 
98%. During charging, the battery is protected from 
overpotential via a CC-CV charging profile with 420 V set as 
the maximum pack value. The goal this simulation is to 
examine the implementation of the novel co-simulation scheme 
developed and to get an initial result for fast charging of a long-
range BEV.  

The ambient temperature is set to 35 °C so that the vehicle 
begins in discharge and cooling mode with the previously 
outlined TMS operation. The cabin setpoint is set to 18 °C with 
an inlet temperature of 14 °C. The ambient solar irradiation is 
set to 800 W/m2 direct and 600 W/m2 diffuse. The battery 
cooling setpoint is 35 °C with a coolant inlet of 30 °C.  

With the specific input parameters set up, the co-simulated 
velocity cycle is shown in Fig 9a. Overall, the simulation runs 
for 48 hr to simulate ~4 hr of time. Note that this velocity profile 
is the actual output of the co-simulation algorithm that results 
from the vehicle stopping to charge. At ~12,200 s, the battery 
hits the EOD condition, and the velocity of the vehicle is ramped 
down to 0 m/s over 20 s. Then for the next 600 s the battery is 
charged at a 5C rate. This is confirmed when examining the 
battery pack SOC plotted over the same period in Fig 9b. 

Following the initial transient velocity schedule, most of 
the battery drain occurs across the constant speed portion of the 
velocity profile starting at 4300 s until the EOD conditions  

 
Fig 8: Overall co-simulation control algorithm. 
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trigger the charging cycle to occur at 12,220 s. Once the 
charging cycle completes at 12,872 s, the high constant speed 
cycle resumes and transitions into the final transient velocity 
profile mimicking the first period of the cycle except that now 
the cabin has been sitting unconditioned for the charge cycle.  

The response of key thermal system control points is 
shown in Fig 9c. Beginning during the charging period, the 
cabin conditioning is disabled, and the cabin mean air 
temperature increases to ~58 °C until the end of the charge 
cycle. The compressor inside of the TMS controls the battery 
inlet temperature to its setpoint target, switching between the 
system control objectives successfully. Once the charging 
period ends at 13,000 s, the control objectives switch back and 
the cabin mean temperature is controlled to its setpoint. At this 
point the cabin fan turns back on, resuming airflow at the 
previous speed it was shutoff at for the start of the charging 
cycle. Because the cabin has a mix of 30% fresh air circulating 
through the system, the cabin quickly begins to cool back to its 
setpoint. However, once the cabin cools below the ambient 
temperature, its cooling rate slows as the system, starved of 
capacity from cooling the battery at the same time, fails to reach 
its setpoint for 1,600 s after the resumption of driving. This 
should be addressed in further iterations of control logic which 
better balance the battery pack and cabin cooling demand and 
through an increase in system capacity. 

Examining next the performance of the battery pack 
thermal model, Fig 9d plots the average temperatures of each of 
the six battery bundles. Immediately apparent is that over 
discharge period, the battery temperature is generally well-
controlled to below the 35 °C set point.  Yet a moderate 
temperature difference inside of the pack occurs due to the 
streamwise heating of the coolant in the cold plate, which would 
contribute to non-uniform aging over the vehicle life. Once the 
charging cycle begins, the temperature inside of the battery pack 
begins to increase, peaking at ~35 °C, just as the charging cycle 
is ending. Once the charging period ends, each battery module 
is again controlled back toward its setpoint with decreasing 
temperature difference inside the pack along the flow path, 
indicating a high caloric resistance and a hard limit of the 
cooling solutions performance at the given conditions. This 
shows that the cooling loads of the cabin and battery are coupled 
together causing excessive battery aging in the final battery 
module and delayed response in the cabin conditioning.  

IV. CONCLUSIONS 

A comprehensive long-range BEV co-simulation 
framework encompassing adaptive control of co-simulation step 
sizes, continuous battery charge and discharge controllers, and 
velocity profile control is developed. The thermal system model 
includes all relevant power electronics, cabin, and battery 
thermal management. The thermal system model is uniquely 
coupled to a finite volume simulation of the battery module 
allowing for the resolution of battery temperature distribution 
while considering both discharge during the drive cycle and 
interspersed fast charging scenarios. The performance of the co-
simulation control scheme is quantified by evaluating the 
accuracy of the instantaneous vehicle velocity and cumulative 
range; errors in these metrics are shown to be inversely related 
to the co-simulation time step size. The novel co-simulation 

control schemes are collectively demonstrated and discussed in 
the context of a case study on long range BEV TMS 

 
Fig 9: Plotted co-simulation results for: a) simulated velocity profile accounting 
for discharging followed by periods of fast charging; b) battery pack state of 
charge (SOC) plotted across the continuous charge-discharge long range cycle; 
c) response of cabin mean temperature, cabin inlet temperature, and battery 
inlet temperature across the continuous charge-discharge long range cycle; and 
d) average temperatures of each battery bundle in the pack across the 
continuous charge-discharge long range cycle. 

performance across a continuous charge-discharge cycle, where 
the drive cycle follows an MCT methodology. In this study the 
active control of the co-simulation step size leads to low 
dynamic error and reduced cumulative range error. The vehicle 
system responds appropriately to complex boundary conditions, 
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handling the switching of modes of control between charging 
and discharging seamlessly. The integration of a high-fidelity 
finite volume submodel does increase simulation time but 
allows for the resolution of temperature differences inside of the 
designed battery module in response to transient control system 
response and boundary conditions. Future work will establish a 
technoeconomic framework using this model to assess TMS 
investments on the resulting lifetime battery aging, energy 
usage, and trip efficiency.  
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