1,971 research outputs found

    The PdBI Arcsecond Whirlpool Survey (PAWS): Multi-phase cold gas kinematic of M51

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The kinematic complexity and the favorable position of M51 on the sky make this galaxy an ideal target to test different theories of spiral arm dynamics. Taking advantage of the new high-resolution PdBI Arcsecond Whirlpool Survey data, we undertake a detailed kinematic study of M51 to characterize and quantify the origin and nature of the non-circular motions. Using a tilted-ring analysis supported by several other archival data sets, we update the estimation of M51's position angle (P.A. = (173 ± 3)°) and inclination (i = (22 ± 5)°). Harmonic decomposition of the high-resolution (∌40 pc) CO velocity field shows the first kinematic evidence of an m = 3 wave in the inner disk of M51 with a corotation at R CR, m = 3 = 1.1 ± 0.1 kpc and a pattern speed of Ωp, m = 3 ≈ 140 km s -1 kpc-1. This mode seems to be excited by the nuclear bar, while the beat frequencies generated by the coupling between the m = 3 mode and the main spiral structure confirm its density-wave nature. We observe also a signature of an m = 1 mode that is likely responsible for the lopsidedness of M51 at small and large radii. We provide a simple method to estimate the radial variation of the amplitude of the spiral perturbation (V sp) attributed to the different modes. The main spiral arm structure has 〈V sp〉 = 50-70 km s-1, while the streaming velocity associated with the m = 1 and m = 3 modes is, in general, two times lower. Our joint analysis of H I and CO velocity fields at low and high spatial resolution reveals that the atomic and molecular gas phases respond differently to the spiral perturbation due to their different vertical distribution and emission morphology. © 2014. The American Astronomical Society. All rights reserved.We thank our anonymous referee for thoughtful comments that improved the quality of the paper. We thank the IRAM staff for their support during the observations with the Plateau de Bure interferometer and the 30 m telescope. D.C. and A.H. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via grant SCHI 536/5-1 and SCHI 536/7-1 as part of the priority program SPP 1573 “ISM-SPP: Physics of the Interstellar Medium.” C.L.D. acknowledges funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. T.A.T. acknowledges support from NASA grant No. NNX10AD01G. During this work, J.P. was partially funded by the grant ANR-09-BLAN-0231-01 from the French Agence Nationale de la Recherche as part of the SCHISM project (http://schism.ens.fr/). E.S., A.H. and D.C. thank NRAO for their support and hospitality during their visits in Charlottesville. E.S. thanks the Aspen Center for Physics and the NSF grant No. 1066293 for hospitality during the development and writing of this paper. D.C. thanks Glenn van de Ven for the useful discussion and the help with the harmonic decomposition code. S.G.B. acknowledges economic support from Junta de Andalucia grant P08 TIC 03531. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc

    The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H ii regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure with a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.S.E.M. and M.Q. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via grant SCHI 536/7-2 as part of the priority program SPP 1573 "ISM-SPP: Physics of the Interstellar Medium." C.L.D. acknowledges funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. J.P. acknowledges support from the CNRS programme Physique et Chimie du Milieu Interstellaire (PCMI). M.Q. acknowledges the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRS-HD). S.G.B. thanks support from Spanish grant AYA2012-32295. We acknowledge financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313. E.S. thanks NRAO for their support and hospitality during her visits in Socorro. E.S. thanks the Kavli Institute for Theoretical Physics for hospitality during the writing of this paper. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain)

    Investigating the Influences of Task Demand and Reward on Cardiac Pre-Ejection Period (PEP) Reactivity During a Speech-in-Noise Task

    Get PDF
    Objectives: Effort investment during listening varies as a function of task demand and motivation. Several studies have manipulated both these factors to elicit and measure changes in effort associated with listening. The cardiac pre-ejection period (PEP) is a relatively novel measure in the field of cognitive hearing science. This measure, which reflects sympathetic nervous system activity on the heart, has previously been implemented during a tone discrimination task but not during a speech-in-noise task. Therefore, the primary goal of this study was to explore the influences of signal to noise ratio (SNR) and monetary reward level on PEP reactivity during a speech-in-noise task. Design: Thirty-two participants with normal hearing (mean age = 22.22 years, SD = 3.03) were recruited at VU University Medical Center. Participants completed a Dutch speech-in-noise test with a single-interfering-talker masking noise. Six fixed SNRs, selected to span the entire psychometric performance curve, were presented in a block-wise fashion. Participants could earn a low (€0.20) or high (€5.00) reward by obtaining a score of ≄70% of words correct in each block. The authors analyzed PEP reactivity: the change in PEP measured during the task, relative to the baseline during rest. Two separate methods of PEP analysis were used, one including data from the whole task block and the other including data obtained during presentation of the target sentences only. After each block, participants rated their effort investment, performance, tendency to give up, and the perceived difficulty of the task. They also completed the need for recovery questionnaire and the reading span test, which are indices of additional factors (fatigue and working memory capacity, respectively) that are known to influence listening effort. Results: Average sentence perception scores ranged from 2.73 to 91.62%, revealing a significant effect of SNR. In addition, an improvement in performance was elicited by the high, compared to the low reward level. A linear relationship between SNR and PEP reactivity was demonstrated: at the lower SNRs PEP reactivity was the most negative, indicating greater effort investment compared to the higher SNRs. The target stimuli method of PEP analysis was more sensitive to this effect than the block-wise method. Contrary to expectations, no significant impact of reward on PEP reactivity was found in the present dataset. Also, there was no physiological evidence that participants were disengaged, even when performance was poor. A significant correlation between need for recovery scores and average PEP reactivity was demonstrated, indicating that a lower need for recovery was associated with less effort investment. Conclusions: This study successfully implemented the measurement of PEP during a standard speech-in-noise test and included two distinct methods of PEP analysis. The results revealed for the first time that PEP reactivity varies linearly with task demand during a speech-in-noise task, although the effect size was small. No effect of reward on PEP was demonstrated. Finally, participants with a higher need for recovery score invested more effort, as shown by average PEP reactivity, than those with a lower need for recovery score

    The PdBI Arcsecond Whirlpool Survey (PAWS): Environmental dependence of giant molecular cloud properties in M51

    Get PDF
    This is the final version of the article. Available fromAmerican Astronomical Society / IOP Publishing via the DOI in this recordUsing data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic giant molecular cloud (GMC) catalog to date, containing 1507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12CO(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that ∌30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power-law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high-mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12CO(1-0) emission in molecule-rich environments, such as M51's inner disk. © 2014. The American Astronomical Society. All rights reserved

    Gravitational torques imply molecular gas inflow towards the nucleus of M 51

    Get PDF
    PublishedJournal Article© 2016 ESO.The transport of gas towards the centre of galaxies is critical for black hole feeding and, indirectly, it can control active galactic nucleus (AGN) feedback. We have quantified the molecular gas inflow in the central R< 1 kpc of M 51 to be 1 M⊙/yr, using a new gravitational torque map and the molecular gas traced by the Plateau de Bure Interferometer Arcsecond Whirlpool Survey (PAWS). The nuclear stellar bar is responsible for this gas inflow. We also used torque profiles to estimate the location of dynamical resonances, and the results suggest a corotation for the bar CRbar ∌ 20″, and a corotation for the spiral CRsp ∌ 100″. We demonstrate how important it is to correct 3.6 ÎŒm images for dust emission when gravitational torques are to be computed, and we examine further sources of uncertainty. Our observational measurement of gas inflow can be compared with nuclear molecular outflow rates and provide useful constraints for numerical simulations.The authors would like to thank the anonymous referee for a helpful report, as well as Daniela Calzetti, Nick Z. Scoville and Mari Polletta for making the HST/F190N mosaic available to us. We also appreciate valuable comments from Françoise Combes and Sebastian Haan. We acknowledge financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007- 2013/ under REA grant agreement number PITN-GA-2011-289313. M.Q. acknowledges the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRS-HD). S.G.B. thanks support from Spanish grant AYA2012-32295. J.P. acknowledges support from the CNRS programme “Physique et Chimie du Milieu Interstellaire” (PCMI). M.Q., S.E.M., D.C. and A.H. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via grants SCHI 536/7-2,SCHI 536/5-1, and SCHI 536/7-1 as part of the priority program SPP 1573 “ISM-SPP: Physics of the Interstellar Medium”

    Short GMC lifetimes: an observational estimate with the PdBI Arcsecond Whirlpool Survey (PAWS)

    Get PDF
    PublishedJournal ArticleWe describe and execute a novel approach to observationally estimate the lifetimes of giant molecular clouds (GMCs). We focus on the cloud population between the two main spiral arms in M51 (the inter-arm region) where cloud destruction via shear and star formation feedback dominates over formation processes. By monitoring the change in GMC number densities and properties across the inter-arm, we estimate the lifetime as a fraction of the inter-arm travel time. We find that GMC lifetimes in M51's inter-arm are finite and short, 20-30 Myr. Over most of the region under investigation shear appears to regulate the lifetime. As the shear timescale increases with galactocentric radius, we expect cloud destruction to switch primarily to feedback at larger radii. We identify a transition from shear- to feedback-dominated disruption, finding that shear is more efficient at dispersing clouds, whereas feedback transforms the population, e.g., by fragmenting high-mass clouds into lower mass pieces. Compared to the characteristic timescale for molecular hydrogen in M51, our short lifetimes suggest that gas can remain molecular while clouds disperse and reassemble. We propose that galaxy dynamics regulates the cycling of molecular material from diffuse to bound (and ultimately star-forming) objects, contributing to long observed molecular depletion times in normal disk galaxies. We also speculate that, in extreme environments like elliptical galaxies and concentrated galaxy centers, star formation can be suppressed when the shear timescale is short enough that some clouds will not survive to form stars.We thank the IRAM staff for their support during the observations with the Plateau de Bure interferometer and the 30 m telescope. S.E.M., D.C., and A.H. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via grants SCHI 536/7-2, SCHI 536/5-1, and SCHI 536/7-1 as part of the priority program SPP 1573 “ISM-SPP: Physics of the Interstellar Medium.” C.L.D. acknowledges funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. T.A.T. acknowledges support from NASA grant number NNX10AD01G. J.P. acknowledges support from the CNRS program “Physique et Chimie du Milieu Interstellaire” (PCMI). M.Q. acknowledges financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313

    Understanding the links between hearing impairment and dementia : development and validation of the social and emotional impact of hearing impairment (SEI-HI) questionnaire

    Get PDF
    Background The links between hearing impairment (HI) and dementia have been well documented, but factors mediating this relationship remain unknown. Major consequences of HI are social and emotional dysfunction, and as the risk of dementia increases linearly with the severity of HI, it is plausible that socio-emotional difficulties may play a role in this association. Objective The aim of this study was to develop and validate a tool to analyse levels of hearing-related disability, to investigate ultimately whether subjective disability contributes to risk of cognitive impairment compared with hearing thresholds alone. Methods Development and validation of the questionnaire, the Social and Emotional Impact of Hearing Impairment (SEI-HI), was conducted in four phases: (1) content; (2) scoring and outcomes; (3) validation; (4) feasibility in a sample of people with cognitive impairment. Results Considerable evidence was found for the internal and external reliability of the tool with high construct validity, concurrent validity and test-retest values of the SEI-HI questionnaire. A feasibility check on 31 patients with mild cognitive impairment or dementia showed the SEI-HI questionnaire was easy to administer and well-received. Conclusion The SEI-HI questionnaire is a relevant instrument to assess hearing-related disability which can be used in people with cognitive decline to assess further impact on risk of developing dementia

    Social observation increases the cardiovascular response of hearing-impaired listeners during a speech reception task

    Get PDF
    Certain cardiovascular measures allow for distinction between sympathetic and parasympathetic nervous system activity. Applied during listening, these measures may provide a novel and complementary insight into listening effort. To date, few studies have implemented cardiovascular measures of listening effort and seldom have these included hearing-impaired participants. These studies have generally measured changes in cardiovascular parameters while manipulating environmental factors, such as listening difficulty. Yet, listening effort is also known to be moderated by individual factors, including the importance of performing successfully. In this study, we aimed to manipulate success importance by adding observers to the traditional laboratory set-up. Twenty-nine hearing-impaired participants performed a speech reception task both alone and in the presence of two observers. Auditory stimuli consisted of Danish Hearing in Noise Test (HINT) sentences masked by four-talker babble. Sentences were delivered at two individually adapted signal-to-noise ratios, corresponding to 50 and 80% of sentences correct. We measured change scores, relative to baseline, of pre-ejection period, two indices of heart rate variability, heart rate and blood pressure (systolic, diastolic, and mean arterial pressure). After each condition, participants rated their effort investment, stress, tendency to give up and preference to change the situation to improve audibility. A multivariate analysis revealed that cardiovascular reactivity increased in the presence of the observers, compared to when the task was performed alone. More specifically, systolic, diastolic, and mean arterial blood pressure increased while observed. Interestingly, participants’ subjective ratings were sensitive only to intelligibility level, not the observation state. This study was the first to report results from a range of different cardiovascular variables measured from hearing-impaired participants during a speech reception task. Due to the timing of the observers’ presence, we were not able to conclusively attribute these physiological changes to being task related. Therefore, instead of representing listening effort, we suggest that the increased cardiovascular response detected during observation reveals increased physiological stress associated with potential evaluation

    The Role of Demography and Markets in Determining Deforestation Rates Near Ranomafana National Park, Madagascar

    Get PDF
    The highland forests of Madagascar are home to some of the world's most unique and diverse flora and fauna and to some of its poorest people. This juxtaposition of poverty and biodiversity is continually reinforced by rapid population growth, which results in increasing pressure on the remaining forest habitat in the highland region, and the biodiversity therein. Here we derive a mathematical expression for the subsistence of households to assess the role of markets and household demography on deforestation near Ranomafana National Park. In villages closest to urban rice markets, households were likely to clear less land than our model predicted, presumably because they were purchasing food at market. This effect was offset by the large number of migrant households who cleared significantly more land between 1989–2003 than did residents throughout the region. Deforestation by migrant households typically occurred after a mean time lag of 9 years. Analyses suggest that while local conservation efforts in Madagascar have been successful at reducing the footprint of individual households, large-scale conservation must rely on policies that can reduce the establishment of new households in remaining forested areas
    • 

    corecore