81 research outputs found

    The Changing Epidemiology of Murray Valley Encephalitis in Australia: The 2011 Outbreak and a Review of the Literature

    Get PDF
    Murray Valley encephalitis virus (MVEV) is the most serious of the endemic arboviruses in Australia. It was responsible for six known large outbreaks of encephalitis in south-eastern Australia in the 1900s, with the last comprising 58 cases in 1974. Since then MVEV clinical cases have been largely confined to the western and central parts of northern Australia. In 2011, high-level MVEV activity occurred in south-eastern Australia for the first time since 1974, accompanied by unusually heavy seasonal MVEV activity in northern Australia. This resulted in 17 confirmed cases of MVEV disease across Australia. Record wet season rainfall was recorded in many areas of Australia in the summer and autumn of 2011. This was associated with significant flooding and increased numbers of the mosquito vector and subsequent MVEV activity. This paper documents the outbreak and adds to our knowledge about disease outcomes, epidemiology of disease and the link between the MVEV activity and environmental factors. Clinical and demographic information from the 17 reported cases was obtained. Cases or family members were interviewed about their activities and location during the incubation period. In contrast to outbreaks prior to 2000, the majority of cases were non-Aboriginal adults, and almost half (40%) of the cases acquired MVEV outside their area of residence. All but two cases occurred in areas of known MVEV activity.This outbreak continues to reflect a change in the demographic pattern of human cases of encephalitic MVEV over the last 20 years. In northern Australia, this is associated with the increasing numbers of non-Aboriginal workers and tourists living and travelling in endemic and epidemic areas, and also identifies an association with activities that lead to high mosquito exposure. This outbreak demonstrates that there is an ongoing risk of MVEV encephalitis to the heavily populated areas of south-eastern Australia

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Neutralizing antibodies explain the poor clinical response to Interferon beta in a small proportion of patients with Multiple Sclerosis: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutralizing antibodies (NAbs) against Interferon beta (IFNΞ²) are reported to be associated with poor clinical response to therapy in multiple sclerosis (MS) patients. We aimed to quantify the contribution of NAbs to the sub-optimal response of IFNΞ² treatment.</p> <p>Methods</p> <p>We studied the prevalence of NAbs in MS patients grouped according to their clinical response to IFNΞ² during the treatment period. Patients were classified as: group A, developing β‰₯ 1 relapse after the first 6 months of therapy; group B, exhibiting confirmed disability progression after the first 6 months of therapy, with or without superimposed relapses; group C, presenting a stable disease course during therapy. A cytopathic effect assay tested the presence of NAbs in a cohort of ambulatory MS patients treated with one of the available IFNΞ² formulations for at least one year. NAbs positivity was defined as NAbs titre β‰₯ 20 TRU.</p> <p>Results</p> <p>Seventeen patients (12.1%) were NAbs positive. NAbs positivity correlated with poorer clinical response (<it>p </it>< 0.04). As expected, the prevalence of NAbs was significantly lower in Group C (2.1%) than in Group A (17.0%) and Group B (17.0%). However, in the groups of patients with a poor clinical response (A, B), NAbs positivity was found only in a small proportion of patients.</p> <p>Conclusion</p> <p>The majority of patients with poor clinical response are NAbs negative suggesting that NAbs explains only partially the sub-optimal response to IFNΞ².</p

    Incremental grouping of image elements in vision

    Get PDF
    One important task for the visual system is to group image elements that belong to an object and to segregate them from other objects and the background. We here present an incremental grouping theory (IGT) that addresses the role of object-based attention in perceptual grouping at a psychological level and, at the same time, outlines the mechanisms for grouping at the neurophysiological level. The IGT proposes that there are two processes for perceptual grouping. The first process is base grouping and relies on neurons that are tuned to feature conjunctions. Base grouping is fast and occurs in parallel across the visual scene, but not all possible feature conjunctions can be coded as base groupings. If there are no neurons tuned to the relevant feature conjunctions, a second process called incremental grouping comes into play. Incremental grouping is a time-consuming and capacity-limited process that requires the gradual spread of enhanced neuronal activity across the representation of an object in the visual cortex. The spread of enhanced neuronal activity corresponds to the labeling of image elements with object-based attention

    Valence-Specific Modulation in the Accumulation of Perceptual Evidence Prior to Visual Scene Recognition

    Get PDF
    Visual scene recognition is a dynamic process through which incoming sensory information is iteratively compared with predictions regarding the most likely identity of the input stimulus. In this study, we used a novel progressive unfolding task to characterize the accumulation of perceptual evidence prior to scene recognition, and its potential modulation by the emotional valence of these scenes. Our results show that emotional (pleasant and unpleasant) scenes led to slower accumulation of evidence compared to neutral scenes. In addition, when controlling for the potential contribution of non-emotional factors (i.e., familiarity and complexity of the pictures), our results confirm a reliable shift in the accumulation of evidence for pleasant relative to neutral and unpleasant scenes, suggesting a valence-specific effect. These findings indicate that proactive iterations between sensory processing and top-down predictions during scene recognition are reliably influenced by the rapidly extracted (positive) emotional valence of the visual stimuli. We interpret these findings in accordance with the notion of a genuine positivity offset during emotional scene recognition

    NK-CD11c+ Cell Crosstalk in Diabetes Enhances IL-6-Mediated Inflammation during Mycobacterium tuberculosis Infection

    Get PDF
    In this study, we developed a mouse model of type 2 diabetes mellitus (T2DM) using streptozotocin and nicotinamide and identified factors that increase susceptibility of T2DM mice to infection by Mycobacterium tuberculosis (Mtb). All Mtb-infected T2DM mice and 40% of uninfected T2DM mice died within 10 months, whereas all control mice survived. In Mtb-infected mice, T2DM increased the bacterial burden and pro- and anti-inflammatory cytokine and chemokine production in the lungs relative to those in uninfected T2DM mice and infected control mice. Levels of IL-6 also increased. Anti-IL-6 monoclonal antibody treatment of Mtb-infected acute- and chronic-T2DM mice increased survival (to 100%) and reduced pro- and anti-inflammatory cytokine expression. CD11c+ cells were the major source of IL-6 in Mtb-infected T2DM mice. Pulmonary natural killer (NK) cells in Mtb-infected T2DM mice further increased IL-6 production by autologous CD11c+ cells through their activating receptors. Anti-NK1.1 antibody treatment of Mtb-infected acute-T2DM mice increased survival and reduced pro- and anti-inflammatory cytokine expression. Furthermore, IL-6 increased inflammatory cytokine production by T lymphocytes in pulmonary tuberculosis patients with T2DM. Overall, the results suggest that NK-CD11c+ cell interactions increase IL-6 production, which in turn drives the pathological immune response and mortality associated with Mtb infection in diabetic mice

    The Neutralization of Interferons by Antibody III. The Constant Antibody Bioassay, A Highly Sensitive Quantitative Detector of Low Antibody Levels

    No full text
    The neutralizing antibodies (NAbs) that develop in patients during interferon (IFN) therapy can reduce its beneficial effects. The universally employed method of NAb measurement currently is the constant IFN method, in which antigen at a single given concentration is mixed with serial dilutions of serum, the lowest final dilution of which (usually 1:20) is constrained by the potential adverse effect of human serum on human cells in culture. The constant antibody (Ab) method described herein uses serum at a certain set dilution (usually 1:20) mixed with a series of IFN concentrations. Theoretical neutralization curves based on the previously presented model of the Ab-IFN reaction are depicted herein in terms of experimentally observable quantities. As predicted by the theoretical studies, the constant Ab method was demonstrated experimentally to extend the lower limits of detection of Ab by a factor of 10–20. The excellent agreement observed between the theoretical prediction and experimental findings reinforces the validity of using as NAb unitage the titer based on 10-fold reduction of IFN activity, reportable as Tenfold Reduction Units (TRU)/mL, as previously recommended. Testing by the constant Ab method of sera previously considered negative (<20 TRU/mL by the constant IFN method) from patients treated with Rebif or Betaseron showed that ∼50% had detectable NAbs; such sera from Avonex-treated patients had titers of <1 TRU/mL. The constant Ab method can be used as a quantitative, sensitive IFN NAb screening bioassay of any nature, and should be able to detect low levels of NAbs early in the course of IFN therapy. The method may be useful to test monoclonal antibodies for otherwise undetectable NAbs. In principle, the constant Ab method should be applicable to the measurement of NAbs against any cytokine or other protein-effector molecule

    Quantification of the Neutralization of Cytokine Biological Activity by Antibody: The Ten-Fold Reduction Bioassay of Interleukin-6 as Growth Factor

    No full text
    The measurement of neutralizing antibodies (NAbs) to biological therapeutic agents is important clinically as well as for the preclinical evaluation of product immunogenicity. To determine whether the theoretical concepts and experimental data from studies of the nature of antibody neutralization of interferons (IFNs) can apply to unrelated protein effector molecules, neutralization experiments were undertaken with interleukin-6 (IL-6), a proinflammatory, highly pleiotropic cytokine. By following IL-6 induction of hybridoma cell growth, we demonstrated that anti-IL-6 monoclonal and polyclonal NAbs can be measured with a bioassay design structured to reduce 10 Laboratory Units (LU)/mL to 1 LU/mL. Results are reported in Ten-fold Reduction Units (TRU)/mL, as recommended for the standardization of IFN NAb unitage. The bioassay was shown to be sensitive, reproducible, and robust in measuring IL-6 potency and NAb titer, as well as for evaluating dose–response curve slope differences. This bioassay design should be applicable to any cytokine, growth factor, protein hormone, or similar effector molecules for which an adequately sensitive cellular response can be quantified
    • …
    corecore