848 research outputs found
Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction (HARP-2) trial : study protocol for a randomized controlled trial
Acute lung injury (ALI) is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI
Relationship between chronic pain and cognition in cognitively intact older persons and patients with Alzheimer's disease; the need to control for mood
Background: Brain areas that are involved in cognition and mood also play a role in pain processing. Objective: The goal of the present study was to examine the relationship between chronic pain and cognition [executive functions (EF) and memory], while controlling for mood, in cognitively intact older persons and in patients with Alzheimer's disease (AD). Methods: Two groups of subjects participated: 20 older persons without dementia and 19 patients in an early stage of probable AD who suffered from arthrosis/arthritis. Pain intensity and pain affect were assessed by the Colored Analogue Scale for Pain Intensity and for Pain Affect, the Faces Pain Scale (FPS) and the Number of Words Chosen-Affective (NWC-A). Level of depression and anxiety were evaluated by questionnaires. EF and memory were assessed by neuropsychological tests. Results: The results show that significant correlations between specific cognitive functions, pain intensity and pain affect were lacking in the cognitively intact older persons. Cognition, in particular memory, appeared to be related to depressive symptoms. In contrast, a significant positive correlation was observed between EF, pain intensity and pain affect measured by the FPS in the AD group. Conclusions: Although older persons with depression were excluded, in studies on pain and cognition one should control for the presence of depressive symptoms in older persons with and without dementia. Copyright © 2008 S. Karger AG
The relevance of nanoscale biological fragments for ice nucleation in clouds
Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles
Characterisation of a 3-hydroxypropionic acid-inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidus necator
3-hydroxypropionic acid (3-HP) is an important platform chemical used as a precursor for production of added-value compounds such as acrylic acid. Metabolically engineered yeast, Escherichia coli, cyanobacteria and other microorganisms have been developed for the biosynthesis of 3-HP. Attempts to overproduce this compound in recombinant Pseudomonas denitrificans revealed that 3-HP is consumed by this microorganism using the catabolic enzymes encoded by genes hpdH, hbdH and mmsA. 3-HP-inducible systems controlling the expression of these genes have been predicted in proteobacteria and actinobacteria. In this study, we identify and characterise 3-HP-inducible promoters and their corresponding LysR-type transcriptional regulators from Pseudomonas putida KT2440. A newly-developed modular reporter system proved possible to demonstrate that PpMmsR/PmmsA and PpHpdR/PhpdH are orthogonal and highly inducible by 3-HP in E. coli (12.3- and 23.3-fold, respectively) and Cupriavidus necator (51.5- and 516.6-fold, respectively). Bioinformatics and mutagenesis analyses revealed a conserved 40-nucleotide sequence in the hpdH promoter, which plays a key role in HpdR-mediated transcription activation. We investigate the kinetics and dynamics of the PpHpdR/PhpdH switchable system in response to 3-HP and show that it is also induced by both enantiomers of 3-hydroxybutyrate. These findings pave the way for use of the 3-HP-inducible system in synthetic biology and biotechnology applications
The Bactofilin Cytoskeleton Protein BacM of Myxococcus xanthus Forms an Extended β-Sheet Structure Likely Mediated by Hydrophobic Interactions
Bactofilins are novel cytoskeleton proteins that are widespread in Gram-negative bacteria. Myxococcus xanthus, an important predatory soil bacterium, possesses four bactofilins of which one, BacM (Mxan_7475) plays an important role in cell shape maintenance. Electron and fluorescence light microscopy, as well as studies using over-expressed, purified BacM, indicate that this protein polymerizes in vivo and in vitro into ~3 nm wide filaments that further associate into higher ordered fibers of about 10 nm. Here we use a multipronged approach combining secondary structure determination, molecular modeling, biochemistry, and genetics to identify and characterize critical molecular elements that enable BacM to polymerize. Our results indicate that the bactofilin-determining domain DUF583 folds into an extended β-sheet structure, and we hypothesize a left-handed β-helix with polymerization into 3 nm filaments primarily via patches of hydrophobic amino acid residues. These patches form the interface allowing head-to-tail polymerization during filament formation. Biochemical analyses of these processes show that folding and polymerization occur across a wide variety of conditions and even in the presence of chaotropic agents such as one molar urea. Together, these data suggest that bactofilins are comprised of a structure unique to cytoskeleton proteins, which enables robust polymerization
Neuroscience and education: prime time to build the bridge
As neuroscience gains social traction and entices media attention, the notion that education has much to benefit from brain
research becomes increasingly popular. However, it has been argued that the fundamental bridge toward education is cognitive
psychology, not neuroscience. We discuss four specific cases in which neuroscience synergizes with other disciplines to serve
education, ranging from very general physiological aspects of human learning such as nutrition, exercise and sleep, to brain
architectures that shape the way we acquire language and reading, and neuroscience tools that increasingly allow the early
detection of cognitive deficits, especially in preverbal infants. Neuroscience methods, tools and theoretical frameworks have
broadened our understanding of the mind in a way that is highly relevant to educational practice. Although the bridge’s cement is
still fresh, we argue why it is prime time to march over it
Insights into the Ecology and Evolutionary Success of Crocodilians Revealed through Bite-Force and Tooth-Pressure Experimentation
BackgroundCrocodilians have dominated predatory niches at the water-land interface for over 85 million years. Like their ancestors, living species show substantial variation in their jaw proportions, dental form and body size. These differences are often assumed to reflect anatomical specialization related to feeding and niche occupation, but quantified data are scant. How these factors relate to biomechanical performance during feeding and their relevance to crocodilian evolutionary success are not known.Methodology/Principal FindingsWe measured adult bite forces and tooth pressures in all 23 extant crocodilian species and analyzed the results in ecological and phylogenetic contexts. We demonstrate that these reptiles generate the highest bite forces and tooth pressures known for any living animals. Bite forces strongly correlate with body size, and size changes are a major mechanism of feeding evolution in this group. Jaw shape demonstrates surprisingly little correlation to bite force and pressures. Bite forces can now be predicted in fossil crocodilians using the regression equations generated in this research.Conclusions/SignificanceCritical to crocodilian long-term success was the evolution of a high bite-force generating musculo-skeletal architecture. Once achieved, the relative force capacities of this system went essentially unmodified throughout subsequent diversification. Rampant changes in body size and concurrent changes in bite force served as a mechanism to allow access to differing prey types and sizes. Further access to the diversity of near-shore prey was gained primarily through changes in tooth pressure via the evolution of dental form and distributions of the teeth within the jaws. Rostral proportions changed substantially throughout crocodilian evolution, but not in correspondence with bite forces. The biomechanical and ecological ramifications of such changes need further examination
Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities
<p>Abstract</p> <p>Background</p> <p>Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups.</p> <p>Results</p> <p>We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects.</p> <p>Conclusions</p> <p>The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.</p
Detection of Plant DNA in the Bronchoalveolar Lavage of Patients with Ventilator-Associated Pneumonia
BACKGROUND: Hospital-acquired infections such as nosocomial pneumonia are a serious cause of mortality for hospitalized patients, especially for those admitted to intensive care units (ICUs). Despite the number of the studies reported to date, the causative agents of pneumonia are not completely known. Herein, we found by molecular technique that vegetable and tobacco DNA may be detected in the bronchoalveolar lavage from patients with ventilator-associated pneumonia (VAP). METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we studied bronchoalveolar lavage (BAL) from patients admitted to ICUs with ventilator-associated pneumonia. BAL fluids were assessed with molecular tests, culture and blood culture. We successfully identified plant DNA in six patients out of 106 (6%) with ventilator-associated pneumonia. Inhalation was confirmed in four cases and suspected in the other two cases. Inhalation was significantly frequent in patients with plant DNA (four out of six patients) than those without plant DNA (three out of 100 patients) (P<0.001). Nicotiana tabacum chloroplast DNA was identified in three patients who were smokers (cases 2, 3 and 6). Cucurbita pepo, Morus bombycis and Triticum aestivum DNA were identified in cases 1, 4 and 5 respectively. Twenty-three different bacterial species, two viruses and five fungal species were identified from among these six patients by using molecular and culture techniques. Several of the pathogenic microorganisms identified are reported to be food-borne or tobacco plant-associated pathogens. CONCLUSIONS/SIGNIFICANCE: Our study shows that plants DNA may be identified in the BAL fluid of pneumonia patients, especially when exploring aspiration pneumonia, but the significance of the presence of plant DNA and its role in the pathogenesis of pneumonia is unknown and remains to be investigated. However, the identification of these plants may be a potential marker of aspiration in patients with pneumonia
Application of the Intervention Mapping protocol to develop Keys, a family child care home intervention to prevent early childhood obesity
- …
