4,775 research outputs found

    Murine and human myogenic cells identified by elevated aldehyde dehydrogenase activity: Implications for muscle regeneration and repair

    Get PDF
    Background: Despite the initial promise of myoblast transfer therapy to restore dystrophin in Duchenne muscular dystrophy patients, clinical efficacy has been limited, primarily by poor cell survival post-transplantation. Murine muscle derived stem cells (MDSCs) isolated from slowly adhering cells (SACs) via the preplate technique, induce greater muscle regeneration than murine myoblasts, primarily due to improved post-transplantation survival, which is conferred by their increased stress resistance capacity. Aldehyde dehydrogenase (ALDH) represents a family of enzymes with important morphogenic as well as oxidative damage mitigating roles and has been found to be a marker of stem cells in both normal and malignant tissue. In this study, we hypothesized that elevated ALDH levels could identify murine and human muscle derived cell (hMDC) progenitors, endowed with enhanced stress resistance and muscle regeneration capacity. Methodology/Principal Findings: Skeletal muscle progenitors were isolated from murine and human skeletal muscle by a modified preplate technique and unfractionated enzymatic digestion, respectively. ALDHhisubpopulations isolated by fluorescence activate cell sorting demonstrated increased proliferation and myogenic differentiation capacities compared to their ALDHlocounterparts when cultivated in oxidative and inflammatory stress media conditions. This behavior correlated with increased intracellular levels of reduced glutathione and superoxide dismutase. ALDHhimurine myoblasts were observed to exhibit an increased muscle regenerative potential compared to ALDHlomyoblasts, undergo multipotent differentiation (osteogenic and chondrogenic), and were found predominately in the SAC fraction, characteristics that are also observed in murine MDSCs. Likewise, human ALDHhihMDCs demonstrated superior muscle regenerative capacity compared to ALDHlohMDCs. Conclusions: The methodology of isolating myogenic cells on the basis of elevated ALDH activity yielded cells with increased stress resistance, a behavior that conferred increased regenerative capacity of dystrophic murine skeletal muscle. This result demonstrates the critical role of stress resistance in myogenic cell therapy as well as confirms the role of ALDH as a marker for rapid isolation of murine and human myogenic progenitors for cell therapy. © 2011 Vella et al

    End-to-End Learning of Video Super-Resolution with Motion Compensation

    Full text link
    Learning approaches have shown great success in the task of super-resolving an image given a low resolution input. Video super-resolution aims for exploiting additionally the information from multiple images. Typically, the images are related via optical flow and consecutive image warping. In this paper, we provide an end-to-end video super-resolution network that, in contrast to previous works, includes the estimation of optical flow in the overall network architecture. We analyze the usage of optical flow for video super-resolution and find that common off-the-shelf image warping does not allow video super-resolution to benefit much from optical flow. We rather propose an operation for motion compensation that performs warping from low to high resolution directly. We show that with this network configuration, video super-resolution can benefit from optical flow and we obtain state-of-the-art results on the popular test sets. We also show that the processing of whole images rather than independent patches is responsible for a large increase in accuracy.Comment: Accepted to GCPR201

    Distributed and scalable XML document processing architecture for E-commerce systems

    Get PDF
    XML has became a very important emerging standard for E-commerce because of its flexibility and universality. Many software designers are actively developing new systems to handle information in XML formats. We propose a generic architecture for processing XML. We have designed an XML processing system using the latest technologies, such as XML, XSLT (XML Stylesheet Language Transformation), HTTP and Java servlets. Our design is very generic, flexible, scalable, extensible, and also suitable for distributed network environments. A main application of the architecture and the system is to support data exchange in E-commerce systems.published_or_final_versio

    Muscle-derived stem/progenitor cell dysfunction in Zmpste24-deficient progeroid mice limits muscle regeneration

    Get PDF
    Introduction. Loss of adult stem cell function during aging contributes to impaired tissue regeneration. Here, we tested the aging-related decline in regeneration potential of adult stem cells residing in the skeletal muscle. Methods. We isolated muscle-derived stem/progenitor cells (MDSPCs) from progeroid Zmpste24-deficient mice (Zmpste24§ssup§-/-§esup§) with accelerated aging phenotypes to investigate whether mutation in lamin A has an adverse effect on muscle stem/progenitor cell function. Results: Our results indicate that MDSPCs isolated from Zmpste24§ssup§-/- §esup§mice show reduced proliferation and myogenic differentiation. In addition, Zmpste24§ssup§-/- §esup§MDSPCs showed impaired muscle regeneration, with a limited engraftment potential when transplanted into dystrophic muscle, compared with wild-type (WT) MDSPCs. Exposure of progeroid Zmpste24§ssup§-/- §esup§MDSPCs to WT MDSPCs rescued the myogenic differentiation defect in vitro. Conclusions: These results demonstrate that adult stem/progenitor cell dysfunction contributes to impairment of tissue regeneration and suggest that factors secreted by functional cells are indeed important for the therapeutic effect of adult stem cells. © 2013 Song et al.; licensee BioMed Central Ltd

    An elementary stringy estimate of transport coefficients of large temperature QCD

    Full text link
    Modeling QCD at large temperature with a simple holographic five dimensional theory encoding minimal breaking of conformality, allows for the calculation of all the transport coefficients, up to second order, in terms of a single parameter. In particular, the shear and bulk relaxation times are provided. The result follows by deforming the AdS background with a scalar dual to a marginally relevant operator, at leading order in the deformation parameter.Comment: 11 pages; v2: comments and references adde

    A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data

    Get PDF
    Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia.Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families.There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic "noise" contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia

    Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting

    Get PDF
    Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb2Se3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb2Se3, is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb2Se3 photocathode exhibits a high photocurrent density of almost 30mAcm(-2) at 0V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb2Se3 photocathode with a BiVO4 photoanode, achieving a solar-to-hydrogen efficiency of 1.5% with stability over 10h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb2Se3 can thus be an attractive breakthrough material for commercial solar fuel production. While photoelectrochemical water splitting offers an integrated means to convert sunlight to a renewable fuel, cost-effective light-absorbers are rare. Here, authors report Sb2Se3 photocathodes for high-performance photoelectrochemical water splitting devices

    Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice

    Get PDF
    <div><p>Congenital cytomegalovirus (CMV) infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL) yet the mechanisms of hearing loss remain obscure. Natural Killer (NK) cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice.</p></div

    MoVam7, a Conserved SNARE Involved in Vacuole Assembly, Is Required for Growth, Endocytosis, ROS Accumulation, and Pathogenesis of Magnaporthe oryzae

    Get PDF
    Soluble NSF attachment protein receptor (SNARE) proteins play a central role in membrane fusion and vesicle transport of eukaryotic organisms including fungi. We previously identified MoSce22 as a homolog of Saccharomyces cerevisiae SNARE protein Sec22 to be involved in growth, stress resistance, and pathogenicity of Magnaporthe oryzae. Here, we provide evidences that MoVam7, an ortholog of S. cerevisiae SNARE protein Vam7, exerts conserved functions in vacuolar morphogenesis and functions in pathogenicity of M. oryzae. Staining with neutral red and FM4-64 revealed the presence of abnormal fragmented vacuoles and an absence of the Spitzenkörper body in the ΔMovam7 mutant. The ΔMovam7 mutant also exhibited reduced vegetative growth, poor conidiation, and failure to produce the infection structure appressorium. Additionally, treatments with cell wall perturbing agents indicated weakened cell walls and altered distributions of the cell wall component chitin. Furthermore, the ΔMovam7 mutant showed a reduced accumulation of reactive oxygen species (ROS) in the hyphal apex and failed to cause diseases on the rice plant. In summary, our studies indicate that MoVam7, like MoSec22, is a component of the SNARE complex whose functions in vacuole assembly also underlies the growth, conidiation, appressorium formation, and pathogenicity of M. oryzae. Further studies of MoVam7, MoSec22, and additional members of the SNARE complex are likely to reveal critical mechanisms in vacuole formation and membrane trafficking that is linked to fungal pathogenicity
    corecore