CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Murine and human myogenic cells identified by elevated aldehyde dehydrogenase activity: Implications for muscle regeneration and repair
Authors
MJ Bucsek
J Huard
+3 more
M Song
SD Thompson
JB Vella
Publication date
1 December 2011
Publisher
'Public Library of Science (PLoS)'
Doi
View
on
PubMed
Abstract
Background: Despite the initial promise of myoblast transfer therapy to restore dystrophin in Duchenne muscular dystrophy patients, clinical efficacy has been limited, primarily by poor cell survival post-transplantation. Murine muscle derived stem cells (MDSCs) isolated from slowly adhering cells (SACs) via the preplate technique, induce greater muscle regeneration than murine myoblasts, primarily due to improved post-transplantation survival, which is conferred by their increased stress resistance capacity. Aldehyde dehydrogenase (ALDH) represents a family of enzymes with important morphogenic as well as oxidative damage mitigating roles and has been found to be a marker of stem cells in both normal and malignant tissue. In this study, we hypothesized that elevated ALDH levels could identify murine and human muscle derived cell (hMDC) progenitors, endowed with enhanced stress resistance and muscle regeneration capacity. Methodology/Principal Findings: Skeletal muscle progenitors were isolated from murine and human skeletal muscle by a modified preplate technique and unfractionated enzymatic digestion, respectively. ALDHhisubpopulations isolated by fluorescence activate cell sorting demonstrated increased proliferation and myogenic differentiation capacities compared to their ALDHlocounterparts when cultivated in oxidative and inflammatory stress media conditions. This behavior correlated with increased intracellular levels of reduced glutathione and superoxide dismutase. ALDHhimurine myoblasts were observed to exhibit an increased muscle regenerative potential compared to ALDHlomyoblasts, undergo multipotent differentiation (osteogenic and chondrogenic), and were found predominately in the SAC fraction, characteristics that are also observed in murine MDSCs. Likewise, human ALDHhihMDCs demonstrated superior muscle regenerative capacity compared to ALDHlohMDCs. Conclusions: The methodology of isolating myogenic cells on the basis of elevated ALDH activity yielded cells with increased stress resistance, a behavior that conferred increased regenerative capacity of dystrophic murine skeletal muscle. This result demonstrates the critical role of stress resistance in myogenic cell therapy as well as confirms the role of ALDH as a marker for rapid isolation of murine and human myogenic progenitors for cell therapy. © 2011 Vella et al
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:140...
Last time updated on 23/11/2016
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:140...
Last time updated on 15/12/2016
Public Library of Science (PLOS)
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 18/09/2018
D-Scholarship@Pitt
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:140...
Last time updated on 19/07/2013
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:806eebe7f...
Last time updated on 13/10/2017
Public Library of Science (PLOS)
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019