317 research outputs found

    Parity Doubling and the S Parameter Below the Conformal Window

    Get PDF
    We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with Nf=2N_f = 2 and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when NfN_f is increased from 2 to 6, motivating study of these trends as NfN_f is increased further, toward the critical value for transition from confinement to infrared conformality.Comment: 4 pages, 5 figures; to be submitted to PR

    A case study of bovine tuberculosis in an area of County Donegal, Ireland

    Get PDF
    A descriptive analysis, to investigate the potential risk factors that might have contributed to the increased incidence of bovine tuberculosis (BTB) herd-breakdowns in the reference area of Co. Donegal during the fifth year of the four-area project (FAP), was performed. Seventy two different herds were restricted for BTB during the FAP; 10 of these herds were restricted twice, resulting in a total of 82 BTB breakdowns. During the first four years of the FAP, the number of BTB herd breakdowns in the area varied from a lowest of nine to a maximum of 18 per year, and were geographically dispersed. In the fifth year of the study a considerable increase in the number of BTB breakdowns (n = 32) was observed, and there was a spatial 'cluster' of infected herds in the eastern part of the study area. The increased number of BTB breakdowns during the fifth year most likely occurred because of the recrudescence of infection, herd-to-herd transmission and, to a lesser extent, purchase of infected cattle. Infected badgers remain as a possible but less likely source of infection, especially as an explanation for the cluster of infected herds. The analysis supports the hypothesis that BTB in herds is a problem that cannot be addressed successfully by dedicating our efforts to the elimination of single risk factors. Neither is it a problem that needs to be investigated only at the herd level, but rather at the area level, including groups of contiguous herds

    A Double Sigma Model for Double Field Theory

    Full text link
    We define a sigma model with doubled target space and calculate its background field equations. These coincide with generalised metric equation of motion of double field theory, thus the double field theory is the effective field theory for the sigma model.Comment: 26 pages, v1: 37 pages, v2: references added, v3: updated to match published version - background and detail of calculations substantially condensed, motivation expanded, refs added, results unchange

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    You turn me cold: evidence for temperature contagion

    Get PDF
    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Effects of two contrasting canopy manipulations on growth and water use of London plane (Platanus x acerifolia) trees

    Get PDF
    Aims: Two contrasting canopy manipulations were compared to unpruned controls on London plane trees, to determine the effects on canopy regrowth, soil and leaf water relations. Methods: ‘Canopy reduction’, was achieved by removing the outer 30 % length of all major branches and ‘canopy thinning’, by removing 30 % of lateral branches arising from major branches. Results: Total canopy leaf areas recovered within two and three years of pruning for the canopy-thinned and reduced trees respectively. Canopy reduction increased mean leaf size, nitrogen concentration, canopy leaf area density and conserved soil moisture for up to 3 years, whereas canopy thinning had no effects. Another experiment compared more severe canopy reduction to unpruned trees. This produced a similar growth response to the previous experiment, but soil moisture was conserved nearer to the trunk. Analysis of 13C and 18O signals along with leaf water relations and soil moisture data suggested that lower boundary layer conductance within the canopy-reduced trees restricted tree water use, whereas for the canopy-thinned trees the opposite occurred. Conclusions: Only canopy reduction conserved soil moisture and this was due to a combination of reduced total canopy leaf area and structural changes in canopy architecture
    corecore