1,844 research outputs found

    Experimental observation of the breaking and recombination of single Cooper pairs

    Get PDF
    We observe the real-time breaking of single Cooper pairs by monitoring the radio-frequency impedance of a superconducting double quantum dot. The Cooper pair breaking rate in the microscale islands of our device decreases as temperature is reduced, saturating at 2 kHz for temperatures beneath 100 mK. In addition, we measure in real-time the quasiparticle recombination into Cooper pairs. Analysis of the recombination rates shows that, in contrast to bulk lms, a multi-stage recombination pathway is followed.A.J.F. would like to acknowledge the Hitachi Research fellowship, support from Hitachi Cambridge Laboratory and support from the EPSRC grant EP/H016872/1. B.W.L. is supported by a Royal Society University Research Fellowship. F.A.P. would like to thank the Leverhulme Trust for fi nancial support.This is the author accepted manuscript. The final version is available from APS via http://dx.doi.org/10.1103/PhysRevB.90.14050

    Understanding the dispersion and assembly of bacterial cellulose in organic solvents

    No full text
    The constituent nanofibrils of bacterial cellulose are of interest to many researchers because of their purity and excellent mechanical properties. Mechanisms to disrupt the network structure of bacterial cellulose (BC) to isolate bacterial cellulose nanofibrils (BCN) are limited. This work focuses on liquid-phase dispersions of BCN in a range of organic solvents. It builds on work to disperse similarly intractable nanomaterials, such as single-walled carbon nanotubes, where optimum dispersion is seen for solvents whose surface energies are close to the surface energy of the nanomaterial; bacterial cellulose is shown to disperse in a similar fashion. Inverse gas chromatography was used to determine the surface energy of bacterial cellulose, under relevant conditions, by quantifying the surface heterogeneity of the material as a function of coverage. Films of pure BCN were prepared from dispersions in a range of solvents; the extent of BCN exfoliation is shown to have a strong effect on the mechanical properties of BC films and to fit models based on the volumetric density of nanofibril junctions. Such control offers new routes to producing robust cellulose films of bacterial cellulose nanofibrils

    Risk factors for exacerbations and pneumonia in patients with chronic obstructive pulmonary disease: a pooled analysis.

    Get PDF
    BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) are at risk of exacerbations and pneumonia; how the risk factors interact is unclear. METHODS: This post-hoc, pooled analysis included studies of COPD patients treated with inhaled corticosteroid (ICS)/long-acting ÎČ2 agonist (LABA) combinations and comparator arms of ICS, LABA, and/or placebo. Backward elimination via Cox's proportional hazards regression modelling evaluated which combination of risk factors best predicts time to first (a) pneumonia, and (b) moderate/severe COPD exacerbation. RESULTS: Five studies contributed: NCT01009463, NCT01017952, NCT00144911, NCT00115492, and NCT00268216. Low body mass index (BMI), exacerbation history, worsening lung function (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage), and ICS treatment were identified as factors increasing pneumonia risk. BMI was the only pneumonia risk factor influenced by ICS treatment, with ICS further increasing risk for those with BMI <25 kg/m2. The modelled probability of pneumonia varied between 3 and 12% during the first year. Higher exacerbation risk was associated with a history of exacerbations, poorer lung function (GOLD stage), female sex and absence of ICS treatment. The influence of the other exacerbation risk factors was not modified by ICS treatment. Modelled probabilities of an exacerbation varied between 31 and 82% during the first year. CONCLUSIONS: The probability of an exacerbation was considerably higher than for pneumonia. ICS reduced exacerbations but did not influence the effect of risks associated with prior exacerbation history, GOLD stage, or female sex. The only identified risk factor for ICS-induced pneumonia was BMI <25 kg/m2. Analyses of this type may help the development of COPD risk equations

    Synthetic Lethality of Chk1 Inhibition Combined with p53 and/or p21 Loss During a DNA Damage Response in Normal and Tumor Cells

    Get PDF
    Cell cycle checkpoints ensure genome integrity and are frequently compromised in human cancers. A therapeutic strategy being explored takes advantage of checkpoint defects in p53-deficient tumors in order to sensitize them to DNA-damaging agents by eliminating Chk1-mediated checkpoint responses. Using mouse models, we demonstrated that p21 is a key determinant of how cells respond to the combination of DNA damage and Chk1 inhibition (combination therapy) in normal cells as well as in tumors. Loss of p21 sensitized normal cells to the combination therapy much more than did p53 loss and the enhanced lethality was partially blocked by CDK inhibition. In addition, basal pools of p21 (p53 independent) provided p53 null cells with protection from the combination therapy. Our results uncover a novel p53-independent function for p21 in protecting cells from the lethal effects of DNA damage followed by Chk1 inhibition. As p21 levels are low in a significant fraction of colorectal tumors, they are predicted to be particularly sensitive to the combination therapy. Results reported in this study support this prediction

    Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918

    Get PDF
    The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized

    Creating the Back Ward: The Triumph of Custodialism and the Uses of Therapeutic Failure in Nineteenth Century Idiot Asylums

    Get PDF
    My focus in this chapter is on the origin of the back ward rather than its demise. Where did the “back wards” that [Burton] Blatt and [Senator Robert] Kennedy witnessed come from in the first place? What 3 exactly were those “antecedents of the problems observed” that Blatt cited? This chapter reviews that history and argues that, in fact, there is a specific narrative to the evolution of the institutional “back ward” as an identifiable place where people with the most significant intellectual disabilities were to be incarcerated and largely forgotten.https://digitalcommons.chapman.edu/education_books/1006/thumbnail.jp

    Linkage Group Selection: Towards Identifying Genes Controlling Strain Specific Protective Immunity in Malaria

    Get PDF
    Protective immunity against blood infections of malaria is partly specific to the genotype, or strain, of the parasites. The target antigens of Strain Specific Protective Immunity are expected, therefore, to be antigenically and genetically distinct in different lines of parasite. Here we describe the use of a genetic approach, Linkage Group Selection, to locate the target(s) of Strain Specific Protective Immunity in the rodent malaria parasite Plasmodium chabaudi chabaudi. In a previous such analysis using the progeny of a genetic cross between P. c. chabaudi lines AS-pyr1 and CB, a location on P. c. chabaudi chromosome 8 containing the gene for merozoite surface protein-1, a known candidate antigen for Strain Specific Protective Immunity, was strongly selected. P. c. chabaudi apical membrane antigen-1, another candidate for Strain Specific Protective Immunity, could not have been evaluated in this cross as AS-pyr1 and CB are identical within the cell surface domain of this protein. Here we use Linkage Group Selection analysis of Strain Specific Protective Immunity in a cross between P. c. chabaudi lines CB-pyr10 and AJ, in which merozoite surface protein-1 and apical membrane antigen-1 are both genetically distinct. In this analysis strain specific immune selection acted strongly on the region of P. c. chabaudi chromosome 8 encoding merozoite surface protein-1 and, less strongly, on the P. c. chabaudi chromosome 9 region encoding apical membrane antigen-1. The evidence from these two independent studies indicates that Strain Specific Protective Immunity in P. c. chabaudi in mice is mainly determined by a narrow region of the P. c. chabaudi genome containing the gene for the P. c. chabaudi merozoite surface protein-1 protein. Other regions, including that containing the gene for P. c. chabaudi apical membrane antigen-1, may be more weakly associated with Strain Specific Protective Immunity in these parasites

    Long gamma-ray bursts and core-collapse supernovae have different environments

    Get PDF
    When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the long gamma-ray bursts are far more concentrated on the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.Comment: 27 pages, 4 figures, submitted to Nature on 22 August 2005, revised 9 February 2006, online publication 10 May 2006. Supplementary material referred to in the text can be found at http://www.stsci.edu/~fruchter/GRB/locations/supplement.pdf . This new version contains minor changes to match the final published versio

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Tracking the impact of depression in a perspective-taking task

    Get PDF
    Research has identified impairments in Theory of Mind (ToM) abilities in depressed patients, particularly in relation to tasks involving empathetic responses and belief reasoning. We aimed to build on this research by exploring the relationship between depressed mood and cognitive ToM, specifically visual perspective-taking ability. High and low depressed participants were eye-tracked as they completed a perspective-taking task, in which they followed the instructions of a ‘director’ to move target objects (e.g. a “teapot with spots on”) around a grid, in the presence of a temporarily-ambiguous competitor object (e.g. a “teapot with stars on”). Importantly, some of the objects in the grid were occluded from the director’s (but not the participant’s) view. Results revealed no group-based difference in participants’ ability to use perspective cues to identify the target object. All participants were faster to select the target object when the competitor was only available to the participant, compared to when the competitor was mutually available to the participant and director. Eye-tracking measures supported this pattern, revealing that perspective directed participants’ visual search immediately upon hearing the ambiguous object’s name (e.g. “teapot”). We discuss how these results fit with previous studies that have shown a negative relationship between depression and ToM
    • 

    corecore