97 research outputs found

    Concentration depth-profile reconstruction from angle-resolved XPS data using the maximum entropy method: characterization of surface film formed on Ni-18P alloy

    Get PDF
    A knowledge of the depth concentration profile of materials is very important for research and technological development. Methods reported in the literature are often destructive and/or based on severe approximations; their application is limited to relatively simple profiles (number of components ≤ 3). A reconstructed depth-profile should be consistent with the ARXPS data. However, transformation of XPS intensities vs. emission angle into concentrations vs. depth data is an ill posed mathematical problem. The main goal of this work was thus to develop a new, iterative algorithm based on the maximum entropy method (MEM) that allows to solve this problem. The new algorithm involves an iterative procedure for calculating the IMFP values taking into account the actual depth-profile of the sample surface under investigation. In a first phase, numerical experiments were performed on a large series of computer generated, ideal and error containing, ARXPS data from model depth-profiles with up to four layers and up to eight components. In a second phase, the tested algorithm was implemented using real ARXPS data obtained from technologically important, highly corrosion and wear resistant Ni-P alloys. In conclusion, the new algorithm proved to be at least as accurate as depth-profiling methods reported in the literature but more powerful than any of the existing algorithms as depth profiles with up to eight components can be reconstructed from ARXPS data. Combining information on the chemical state of the different phosphorus compounds in the layered interface with the reconstructed in-depth profile it can be concluded that the high corrosion and wear resistance of Ni-P alloys is due to a thin, self-repairing nickel-(poly)phosphate film formed on a strongly phosphorus enriched surface

    Core-shell nano-architectures: the incorporation mechanism of hydrophobic nanoparticles into the aqueous core of a microemulsion

    No full text
    This work presents an in-depth investigation of the molecular interactions in the incorporation mechanism of colloidal hydrophobic-capped nanoparticles into the hydrophilic core of reverse microemulsions. 1H Nuclear Magnetic Resonance (NMR) was employed to obtain molecular level details of the interaction between the nanoparticles capping amphiphiles and the microemulsion surfactants. The model system of choice involved oleic acid (OAC) and oleylamine (OAM) as capping molecules, while igepal-CO520 was the surfactant. The former were studied both in their ‘‘free’’ state and ‘‘ligated’’ one, i.e., bound to nanoparticles. The latter was investigated either in cyclohexane (micellar solution) or in water/cyclohexane microemulsions. The approach was extremely useful to gain a deeper understanding of the equilibria involved in this complex system (oleic acid capped-Bi2S3 in igepal/water/cyclohexane microemulsions). In difference to previously proposed mechanisms, the experimental data showed that the high affinity of the capping ligands for the reverse micelle interior was the driving force for the incorporation of the nanoparticles. A simple ligand-exchange mechanism could be ruled out. The collected information about the nanoparticle incorporation mechanism is extremely useful to develop new synthetic routes with an improved/tuned coating efficiency, in order to tailor the core–shell structure preparation

    A Simulation Model for the Non-Electrogenic Uniport Carrier-Assisted Transport of Ions across Lipid Membranes

    Get PDF
    Impressive work has been completed in recent decades on the transmembrane anion transport capability of small synthetic transporters from many different structural classes. However, very few predicting models have been proposed for the fast screening of compound libraries before spending time and resources on the laboratory bench for their synthesis. In this work, a new approach is presented which aims at describing the transport process by taking all the steps into explicit consideration, and includes all possible experiment-derived parameters. The algorithm is able to simulate the macroscopic experiments performed with lipid vesicles to assess the ion-transport ability of the synthetic transporters following a non-electrogenic uniport mechanism. While keeping calculation time affordable, the final goal is the curve-fitting of real experimental data—so, to obtain both an analysis and a predictive tool. The role and the relative weight of the different parameters is discussed and the agreement with the literature is shown by using the simulations of a virtual benchmark case. The fitting of real experimental curves is also shown for two transporters of different structural type.This research was funded by the University of Cagliari (FIR 2020). Financial support from MIUR (PRIN 2017 project 2017EKCS35), Fondazione di Sardegna (FdS Progetti Biennali di Ateneo, annualità 2018 and 2020) is also gratefully acknowledged

    The semi-synthetic peptide Lin-SB056-1 in combination with EDTA exerts strong antimicrobial and antibiofilm activity against pseudomonas aeruginosa in conditions mimicking cystic fibrosis sputum

    Get PDF
    Pseudomonas aeruginosa is a major cause of chronic lung infections in cystic fibrosis (CF) patients. The ability of the bacterium to form biofilms and the presence of a thick and stagnant mucus in the airways of CF patients largely contribute to antibiotic therapy failure and demand for new antimicrobial agents able to act in the CF environment. The present study investigated the anti-P. aeruginosa activity of lin-SB056-1, a recently described semi-synthetic antimicrobial peptide, used alone and in combination with the cation chelator ethylenediaminetetraacetic acid (EDTA). Bactericidal assays were carried out in standard culture conditions and in an artificial sputum medium (ASM) closely resembling the CF environment. Peptideâ\u80\u99s structure and interaction with large unilamellar vesicles in media with different ionic strengths were also investigated through infrared spectroscopy. Lin-SB056-1 demonstrated fast and strong bactericidal activity against both mucoid and non-mucoid strains of P. aeruginosa in planktonic form and, in combination with EDTA, caused significant reduction of the biomass of P. aeruginosa mature biofilms. In ASM, the peptide/EDTA combination exerted a strong bactericidal effect and inhibited the formation of biofilm-like structures of P. aeruginosa. Overall, the results obtained highlight the potential of the lin-SB056-1/EDTA combination for the treatment of P. aeruginosa lung infections in CF patients

    Enhanced Amphiphilic Profile of a Short β-Stranded Peptide Improves Its Antimicrobial Activity

    Get PDF
    SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β- stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2_{2}, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2_{2}, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β- SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19^{19}F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056- lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β- SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which also leads to a dramatic alteration of membrane integrity as shown by 31^{31}P-NMR. These findings are generally relevant for the design and optimization of other membrane-active antimicrobial peptides that can fold into amphipathic β-strands

    Fluorescent asymmetric bis-ureas for pyrophosphate recognition in pure water

    No full text
    Three fluorescent asymmetric bis-urea receptors (L1–L3) have been synthesised. The binding properties of L1–L3 towards different anions (fluoride, acetate, hydrogencarbonate, dihydrogen phosphate, and hydrogen pyrophosphate HPpi3?) have been studied by means of 1H-NMR, UV-Vis and fluorescence spectroscopy, single crystal X-ray diffraction, and theoretical calculations. In particular, a remarkable affinity for HPpi3? has been observed in the case L1 (DMSO-d6/0.5% H2O) which also acts as a fluorimetric chemosensor for this anion. Interestingly, when L1 is included in cetyltrimethylammonium (CTAB) micelles, hydrogen pyrophosphate recognition can also be achieved in pure water

    A Simulation Model for the Non-Electrogenic Uniport Carrier-Assisted Transport of Ions across Lipid Membranes

    No full text
    Impressive work has been completed in recent decades on the transmembrane anion transport capability of small synthetic transporters from many different structural classes. However, very few predicting models have been proposed for the fast screening of compound libraries before spending time and resources on the laboratory bench for their synthesis. In this work, a new approach is presented which aims at describing the transport process by taking all the steps into explicit consideration, and includes all possible experiment-derived parameters. The algorithm is able to simulate the macroscopic experiments performed with lipid vesicles to assess the ion-transport ability of the synthetic transporters following a non-electrogenic uniport mechanism. While keeping calculation time affordable, the final goal is the curve-fitting of real experimental data—so, to obtain both an analysis and a predictive tool. The role and the relative weight of the different parameters is discussed and the agreement with the literature is shown by using the simulations of a virtual benchmark case. The fitting of real experimental curves is also shown for two transporters of different structural type

    Antimicrobial peptidomimetics: reinterpreting nature to deliver innovative therapeutics

    Get PDF
    Virtually all multicellular organisms must ward off pathogenic microbes in order to survive and thrive on this planet. To accomplish this, most metazoans rely on gene-encoded antimicrobial peptides (AMPs) as an essential part of their innate immune system. The role played by AMPs – and by the other umoral and cellular components of innate immunity – is particularly crucial in those organisms (the vast majority) that have not developed the more sophisticated adaptive immune system. Even in higher vertebrates as humans, AMPs like defensins and cathelicidins (e.g., LL-37) do not only have direct microbicidal activity, but they also serve as signals which initiate, mobilize, and amplify adaptive immune host defenses, thus functioning as immunomodulatory and immunostimulatory elements (Giuliani and Rinaldi, 2010)
    corecore