3,955 research outputs found
Symmetry as a sufficient condition for a finite flex
We show that if the joints of a bar and joint framework are
positioned as `generically' as possible subject to given symmetry constraints
and possesses a `fully-symmetric' infinitesimal flex (i.e., the
velocity vectors of the infinitesimal flex remain unaltered under all symmetry
operations of ), then also possesses a finite flex which
preserves the symmetry of throughout the path. This and other related
results are obtained by symmetrizing techniques described by L. Asimov and B.
Roth in their paper `The Rigidity Of Graphs' from 1978 and by using the fact
that the rigidity matrix of a symmetric framework can be transformed into a
block-diagonalized form by means of group representation theory. The finite
flexes that can be detected with these symmetry-based methods can in general
not be found with the analogous non-symmetric methods.Comment: 26 pages, 10 figure
The orbit rigidity matrix of a symmetric framework
A number of recent papers have studied when symmetry causes frameworks on a
graph to become infinitesimally flexible, or stressed, and when it has no
impact. A number of other recent papers have studied special classes of
frameworks on generically rigid graphs which are finite mechanisms. Here we
introduce a new tool, the orbit matrix, which connects these two areas and
provides a matrix representation for fully symmetric infinitesimal flexes, and
fully symmetric stresses of symmetric frameworks. The orbit matrix is a true
analog of the standard rigidity matrix for general frameworks, and its analysis
gives important insights into questions about the flexibility and rigidity of
classes of symmetric frameworks, in all dimensions.
With this narrower focus on fully symmetric infinitesimal motions, comes the
power to predict symmetry-preserving finite mechanisms - giving a simplified
analysis which covers a wide range of the known mechanisms, and generalizes the
classes of known mechanisms. This initial exploration of the properties of the
orbit matrix also opens up a number of new questions and possible extensions of
the previous results, including transfer of symmetry based results from
Euclidean space to spherical, hyperbolic, and some other metrics with shared
symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure
The omnivorous Tyrolean Iceman: colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses
The contents of the colon of the Tyrolean Iceman who lived Ga. 5300 years ago include muscle fibres, cereal remains, a diversity of pollen, and most notably that of the hop hornbeam (Ostrya carpinifolia) retaining cellular contents, as well as a moss leaf (Neckera complanata) and eggs of the parasitic whipworm (Trichuris trichiura). Based almost solely on stable isotope analyses and ignoring the work on the colon contents, two recently published papers on the Iceman's diet draw ill- founded conclusions about vegetarianism and even veganism. Neither the pollen nor the moss is likely to have been deliberately consumed as food by the Iceman. All the available evidence concerning the Iceman's broad-based diet is reviewed and the significance of the colon contents for matters other than assessment of food intake is outlined
Recommended from our members
Temperature sensitivity of decomposition in relation to soil organic matter pools: Critique and outlook
Knorr et al. (2005) concluded that soil organic carbon pools with longer turnover times are more sensitive to temperature. We show that this conclusion is equivocal, largely dependent on their specific selection of data and does not persist when the data set of Kätterer et al. (1998) is analysed in a more appropriate way. Further, we analyse how statistical properties of the model parameters may interfere with correlative analyses that relate the Q 10 of soil respiration with the basal rate, where the latter is taken as a proxy for soil organic matter quality. We demonstrate that negative parameter correlations between Qio-values and base respiration rates are statistically expected and not necessarily provide evidence for a higher temperature sensitivity of low quality soil organic matter. Consequently, we propose it is premature to conclude that stable soil carbon is more sensitive to temperature than labile carbon
Damping of differential rotation in neutron stars
We derive the transport relaxation times for quasiparticle-vortex scattering
processes via nuclear force, relevant for the damping of differential rotation
of superfluids in the quantum liquid core of a neutron star. The proton
scattering off the neutron vortices provides the dominant resistive force on
the vortex lattice at all relevant temperatures in the phase where neutrons
only are in the paired state. If protons are superconducting, a small fraction
of hyperons and resonances in the normal state would be the dominant source of
friction on neutron and proton vortex lattices at the core temperatures K.Comment: 5 pages, Revtex, Phys. Rev. D 58, Rapid Communication, in pres
Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook
Knorr et al. (2005) concluded that soil organic carbon pools with longer turnover times are more sensitive to temperature. We show that this conclusion is equivocal, largely dependent on their specific selection of data and does not persist when the data set of Kätterer et al. (1998) is analysed in a more appropriate way. Further, we analyse how statistical properties of the model parameters may interfere with correlative analyses that relate the Q<sub>10</sub> of soil respiration with the basal rate, where the latter is taken as a proxy for soil organic matter quality. We demonstrate that negative parameter correlations between Q<sub>10</sub>-values and base respiration rates are statistically expected and not necessarily provide evidence for a higher temperature sensitivity of low quality soil organic matter. Consequently, we propose it is premature to conclude that stable soil carbon is more sensitive to temperature than labile carbon
Prototype tests for the ALICE TRD
A Transition Radiation Detector (TRD) has been designed to improve the
electron identification and trigger capability of the ALICE experiment at the
Large Hadron Collider (LHC) at CERN. We present results from tests of a
prototype of the TRD concerning pion rejection for different methods of
analysis over a momentum range from 0.7 to 2 GeV/c. We investigate the
performance of different radiator types, composed of foils, fibres and foams.Comment: Presented at the IEEE Nuclear Science Symposium and Medical Imaging
Conference, Lyon, October 15-20, 2000 (accepted for publication in IEEE TNS),
Latex (IEEEtran.cls), 7 pages, 11 eps figure
- …