323 research outputs found

    Foliar lead uptake by lettuce exposed to atmospheric fallouts

    Get PDF
    Metal uptake by plants occurs by soil−root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce (Lactuca sativa) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 ± 50 mg Pb kg−1 (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer

    Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle

    Full text link
    The isolated mouse tail tendon fascicle, a functional and homogenous volume of tendon extracellular matrix, was utilized as an experimental system to examine the structure–function relationships in tendon. Our previous work using this model system demonstrated relationships between mean collagen fibril diameter and fascicle mechanical properties in isolated tail tendon fascicles from three different groups of mice (3-week and 8-week control and 8-week Mov13 transgenic) K.A. Derwin, L.J. Soslowsky, J. Biomech. Eng. 121 (1999) 598–604. These groups of mice were chosen to obtain tendon tissues with varying collagen fibril structure and/or biochemistry, such that relationships with material properties could be investigated. To further investigate the molecular details of matrix composition and organization underlying tendon function, we report now on the preparation, characterization, and quantitation of fascicle PGs (proteoglycans) from these three groups. The chondroitin sulfate/dermatan sulfate (CS/DS)-substituted PGs, biglycan and decorin, which are the abundant proteoglycans of whole tendons, were also shown to be the predominant PGs in isolated fascicles. Furthermore, similar to the postnatal maturation changes in matrix composition previously reported for whole tendons, isolated fascicles from 8-week mice had lower CS/DS PG contents (both decorin and biglycan) and a higher collagen content than 3-week mice. In addition, CS/DS chains substituted on PGs from 8-week fascicles were shorter (based on a number average) and richer in disulfated disaccharide residues than chains from 3-week mice. Fascicles from 8-week Mov13 transgenic mice were found to contain similar amounts of total collagen and total CS/DS PG as age-matched controls, and CS/DS chain lengths and sulfation also appeared normal. However, both decorin and biglycan in Mov13 tissue migrated slightly faster on sodium dodecyl sulfate polyacrylamide gel electorphoresis (SDS-PAGE) than the corresponding species from 8-week control, and biglycan from the 8-week Mov13 fascicles appeared to migrate as a more polydisperse band, suggesting the presence of a unique PG population in the transgenic tissue. These observations, together with our biomechanical data [Derwin and Soslowsky, 1999] suggest that compensatory pathways of extracellular matrix assembly and maturation may exist, and that tissue mechanical properties may not be simply determined by the contents of individual matrix components or collagen fibril size. © 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34919/1/1100190216_ftp.pd

    The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation

    Get PDF
    The cytoplasmic N–terminal domain of the human ether–a–go–go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N–terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N–terminal 135 residues of hERG contains a previously described Per–Arnt–Sim (PAS) domain (residues 26–135) as well as an amphipathic α–helix (residues 13–23) and an initial unstructured segment (residues 2–9). Deletion of residues 2–25, only the unstructured segment (residues 2–9) or replacement of the α–helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α–helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N–terminal α–helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel

    Changes in Channel Trafficking and Protein Stability Caused by LQT2 Mutations in the PAS Domain of the HERG Channel

    Get PDF
    Inherited human long-QT2 syndrome (LQTS) results from mutations in the gene encoding the HERG channel. Several LQT2-associated mutations have been mapped to the amino terminal cytoplasmic Per-Arnt-Sim (PAS) domain of the HERG1a channel subunit. Here we have characterized the trafficking properties of some LQT2-associated PAS domain mutants and analyzed rescue of the trafficking mutants by low temperature (27°C) or by the pore blocker drug E4031. We show that the LQT2-associated mutations in the PAS domain of the HERG channel display molecular properties that are distinct from the properties of LQT2-associated mutations in the trans-membrane region. Unlike the latter, many of the tested PAS domain LQT2-associated mutations do not result in trafficking deficiency of the channel. Moreover, the majority of the PAS domain mutations that cause trafficking deficiencies are not rescued by a pore blocking drug. We have also explored the in vitro folding stability properties of isolated mutant PAS domain proteins using a thermal unfolding fluorescence assay and a chemical unfolding assay

    Collagen-Binding Peptidoglycans Inhibit MMP Mediated Collagen Degradation and Reduce Dermal Scarring

    Get PDF
    Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13) mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA) vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM) analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing

    Aging Alters Functionally Human Dermal Papillary Fibroblasts but Not Reticular Fibroblasts: A New View of Skin Morphogenesis and Aging

    Get PDF
    Understanding the contribution of the dermis in skin aging is a key question, since this tissue is particularly important for skin integrity, and because its properties can affect the epidermis. Characteristics of matched pairs of dermal papillary and reticular fibroblasts (Fp and Fr) were investigated throughout aging, comparing morphology, secretion of cytokines, MMPs/TIMPs, growth potential, and interaction with epidermal keratinocytes. We observed that Fp populations were characterized by a higher proportion of small cells with low granularity and a higher growth potential than Fr populations. However, these differences became less marked with increasing age of donors. Aging was also associated with changes in the secretion activity of both Fp and Fr. Using a reconstructed skin model, we evidenced that Fp and Fr cells do not possess equivalent capacities to sustain keratinopoiesis. Comparing Fp and Fr from young donors, we noticed that dermal equivalents containing Fp were more potent to promote epidermal morphogenesis than those containing Fr. These data emphasize the complexity of dermal fibroblast biology and document the specific functional properties of Fp and Fr. Our results suggest a new model of skin aging in which marked alterations of Fp may affect the histological characteristics of skin

    Functional KV10.1 Channels Localize to the Inner Nuclear Membrane

    Get PDF
    Ectopically expressed human KV10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of KV10.1 channels remain at intracellular locations. In this study we investigated the localization and possible roles of perinuclear KV10.1. We show that KV10.1 is expressed at the inner nuclear membrane in both human and rat models; it co-purifies with established inner nuclear membrane markers, shows resistance to detergent extraction and restricted mobility, all of them typical features of proteins at the inner nuclear membrane. KV10.1 channels at the inner nuclear membrane are not all transported directly from the ER but rather have been exposed to the extracellular milieu. Patch clamp experiments on nuclei devoid of external nuclear membrane reveal the existence of channel activity compatible with KV10.1. We hypothesize that KV10.1 channels at the nuclear envelope might participate in the homeostasis of nuclear K+, or indirectly interact with heterochromatin, both factors known to affect gene expression

    Granzyme B Cleaves Decorin, Biglycan and Soluble Betaglycan, Releasing Active Transforming Growth Factor-β1

    Get PDF
    Objective: Granzyme B (GrB) is a pro-apoptotic serine protease that contributes to immune-mediated target cell apoptosis. However, during inflammation, GrB accumulates in the extracellular space, retains its activity, and is capable of cleaving extracellular matrix (ECM) proteins. Recent studies have implicated a pathogenic extracellular role for GrB in cardiovascular disease, yet the pathophysiological consequences of extracellular GrB activity remain largely unknown. The objective of this study was to identify proteoglycan (PG) substrates of GrB and examine the ability of GrB to release PG-sequestered TGF-b1 into the extracellular milieu. Methods/Results: Three extracellular GrB PG substrates were identified; decorin, biglycan and betaglycan. As all of these PGs sequester active TGF-b1, cytokine release assays were conducted to establish if GrB-mediated PG cleavage induced TGF-b1 release. Our data confirmed that GrB liberated TGF-b1 from all three substrates as well as from endogenous ECM and this process was inhibited by the GrB inhibitor 3,4-dichloroisocoumarin. The released TGF-b1 retained its activity as indicated by the induction of SMAD-3 phosphorylation in human coronary artery smooth muscle cells. Conclusion: In addition to contributing to ECM degradation and the loss of tissue structural integrity in vivo, increase
    • …
    corecore