225 research outputs found

    Induction of reactive oxygen species and cell survival in the presence of advanced glycation end products and similar structures

    Get PDF
    AbstractAdvanced glycation end products (AGEs) that arise from the reaction of sugars with protein side chains and the terminal amino group are supposed to be involved in the pathogenesis of several diseases and therefore the effects of AGEs on cells are the objective of numerous investigations. The effects of AGEs on cells are commonly assumed to be transduced via the receptor for AGEs (RAGE) but there are also other receptors known to interact with AGEs and they are likely to be involved in signal transduction. The primary cellular effect of AGEs on cultured cells was found to be the formation of reactive oxygen species (ROS). For the present study one murine and three human cell lines were used. The effects of a set of different highly modified AGEs and AGE-like compounds derived from the incubation of different modifiers with BSA were tested for their effects on these cells. Almost all AGEs tested induced the production of reactive oxygen species (ROS) in the different cell lines although the intensity of the detected signals varied considerably between the cell lines and are strongly dependent on the AGE used for cell activation. The most highly modified BSA-species were shown to inhibit cell growth in all cell lines, whereas a moderately modified glucose derived BSA-AGE and BSA-GAred did not show any inhibitory effect on cell growth even when a high ROS formation was detected

    Bile acid retention and activation of endogenous hepatic farnesoid-X-receptor in the pathogenesis of fatty liver disease in ob/ob-mice

    Get PDF
    The nuclear bile acid receptor FXR (farnesoid-X-receptor) has recently been implicated in the pathophysiology of non-alcoholic fatty liver disease because selective FXR-agonists improve glucose and lipid metabolism in rodent models of obesity. However, the regulation of FXR and other relevant nuclear receptors as well as their lipogenic target genes in fatty liver is still not revealed in detail. Livers were harvested from 14-week-old male ob/ob mice and wild-type controls. Serum bile acids were quantified by radioimmunoassay. mRNA and protein expression of transporters and nuclear receptors was analyzed by reverse transcriptase-polymerase chain reaction and Western blotting, whereas DNA binding to the IR-1 element was examined by electrophoretic mobility shift assay. In this study we show: (i) bile acid retention in ob/ob mice, (ii) a resulting FXR upregulation and binding to the IR-1 element in ob/ob animals and (iii) concomitant activation of the fatty acid synthase as a potential lipogenic FXR target gene in vivo. The present study suggests a potential role of hepatic bile acid retention and FXR activation in the induction of lipogenic target genes. Differences between intestinal and hepatic FXR could explain apparent contradictory information regarding its effects on fatty liver diseas

    The Alpha-Synuclein Gene (SNCA) is a Genomic Target of Methyl-CpG Binding Protein 2 (MeCP2)—Implications for Parkinson’s Disease and Rett Syndrome

    Get PDF
    Mounting evidence suggests a prominent role for alpha-synuclein (a-syn) in neuronal cell function. Alterations in the levels of cellular a-syn have been hypothesized to play a critical role in the development of Parkinson’s disease (PD); however, mechanisms that control expression of the gene for a-syn (SNCA) in cis and trans as well as turnover of a-syn are not well understood. We analyzed whether methyl-CpG binding protein 2 (MeCP2), a protein that specifically binds methylated DNA, thus regulating transcription, binds at predicted binding sites in intron 1 of the SNCA gene and regulates a-syn protein expression. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility-shift assays (EMSA) were used to confirm binding of MeCP2 to regulatory regions of SNCA. Site-specific methylation and introduction of localized mutations by CRISPR/Cas9 were used to investigate the binding properties of MeCP2 in human SK-N-SH neuroblastoma cells. The significance of MeCP2 for SNCA regulation was further investigated by overexpressing MeCP2 and mutated variants of MeCP2 in MeCP2 knockout cells. We found that methylation-dependent binding of MeCP2 at a restricted region of intron 1 of SNCA had a significant impact on the production of a-syn. A single nucleotide substitution near to CpG1 strongly increased the binding of MeCP2 to intron 1 of SNCA and decreased a-syn protein expression by 60%. In contrast, deletion of a single nucleotide closed to CpG2 led to reduced binding of MeCP2 and significantly increased a-syn levels. In accordance, knockout of MeCP2 in SK-N-SH cells resulted in a significant increase in a-syn production, demonstrating that SNCA is a genomic target for MeCP2 regulation. In addition, the expression of two mutated MeCP2 variants found in Rett syndrome (RTT) showed a loss of their ability to reduce a-syn expression. This study demonstrates that methylation of CpGs and binding of MeCP2 to intron 1 of the SNCA gene plays an important role in the control of a-syn expression. In addition, the changes in SNCA regulation found by expression of MeCP2 variants carrying mutations found in RTT patients may be of importance for the elucidation of a new molecular pathway in RTT, a rare neurological disorder caused by mutations in MECP2

    Konzept OER-Zertifizierung an österreichischen Hochschulen

    Get PDF
    Das Ergebnis der Arbeitsgruppe „Open Educational Resources“ ist ein Konzept zur OER-Zertifizierung an österreichischen Hochschulen. Dazu wird unterschieden in eine zweistufige Zertifizierung für Hochschullehrende und eine dreistufige Zertifizierung für Hochschulen. Der Umsetzungsvorschlag sieht dafür digitale Open Badges vor, die von einer zentralen Stelle bereits in der nächsten Leistungsvereinbarungsperiode (2019–2021) vergeben werden sollen

    Nationale Forschungsdateninfrastruktur für die Ingenieurwissenschaften (NFDI4Ing)

    Get PDF
    NFDI4Ing ist ein 2017 gegründetes Konsortium mit dem Ziel, Wissenschaftler:innen aller Disziplinen zu ermöglichen, ingenieurwissenschaftliche Forschungsprozesse in ihrer Gesamtheit nachvollziehen oder reproduzieren zu können. Die Besonderheit an NFDI4Ing ist der Aufbau, welcher sich in drei Bereiche aufteilt. Die Archetypen, die an den methodischen Bedarfen ausgerichtet sind, die Community Cluster und die Base Services. NFDI4Ing erarbeitet technologische Methoden und Lösungen, bietet Aus- und Weiterbildungsprogramme und trägt zur Verbreitung des Forschungsdatenmanagements (FDM) in den Ingenieurwissenschaften bei

    RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis

    Get PDF
    In plants, isoprene plays a dual role: (a) as thermo-protective agent proposed to prevent degradation of enzymes/membrane structures involved in photosynthesis, and (b) as reactive molecule reducing abiotic oxidative stress. The present work addresses the question whether suppression of isoprene emission interferes with genome wide transcription rates and metabolite fluxes in grey poplar (Populusxcanescens) throughout the growing season. Gene expression and metabolite profiles of isoprene emitting wild type plants and RNAi-mediated non-isoprene emitting poplars were compared by using poplar Affymetrix microarrays and non-targeted FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry). We observed a transcriptional down-regulation of genes encoding enzymes of phenylpropanoid regulatory and biosynthetic pathways, as well as distinct metabolic down-regulation of condensed tannins and anthocyanins, in non-isoprene emitting genotypes during July, when high temperature and light intensities possibly caused transient drought stress, as indicated by stomatal closure. Under these conditions leaves of non-isoprene emitting plants accumulated hydrogen peroxide (H2O2), a signaling molecule in stress response and negative regulator of anthocyanin biosynthesis. The absence of isoprene emission under high temperature and light stress resulted transiently in a new chemo(pheno)type with suppressed production of phenolic compounds. This may compromise inducible defenses and may render non-isoprene emitting poplars more susceptible to environmental stress

    Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

    Get PDF
    Intelligence is highly heritable(1) and a major determinant of human health and well-being(2). Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.Peer reviewe
    corecore