49 research outputs found
Solid-state additive manufacturing for metallized optical fiber integration
The formation of smart, Metal Matrix Composite (MMC) structures through the use of solid-state Ultrasonic Additive Manufacturing (UAM) is currently hindered by the fragility of uncoated optical fibers under the required processing conditions. In this work, optical fibers equipped with metallic coatings were fully integrated into solid Aluminum matrices using processing parameter levels not previously possible. The mechanical performance of the resulting manufactured composite structure, as well as the functionality of the integrated fibers, was tested. Optical microscopy, Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) analysis were used to characterize the interlaminar and fiber/matrix interfaces whilst mechanical peel testing was used to quantify bond strength. Via the integration of metallized optical fibers it was possible to increase the bond density by 20–22%, increase the composite mechanical strength by 12–29% and create a solid state bond between the metal matrix and fiber coating; whilst maintaining full fiber functionality
Wetting films on chemically heterogeneous substrates
Based on a microscopic density functional theory we investigate the
morphology of thin liquidlike wetting films adsorbed on substrates endowed with
well-defined chemical heterogeneities. As paradigmatic cases we focus on a
single chemical step and on a single stripe. In view of applications in
microfluidics the accuracy of guiding liquids by chemical microchannels is
discussed. Finally we give a general prescription of how to investigate
theoretically the wetting properties of substrates with arbitrary chemical
structures.Comment: 56 pages, RevTeX, 20 Figure
Multifunctional metal matrix composites with embedded printed electrical materials fabricated by Ultrasonic Additive Manufacturing
This work proposes a new method for the fabrication of Multifunctional Metal Matrix Composite (MMC) structures featuring embedded printed electrical materials through Ultrasonic Additive Manufacturing (UAM). Printed electrical circuitries combining conductive and insulating materials were directly embedded within the interlaminar region of UAM aluminium matrices to realise previously unachievable multifunctional composites. A specific surface flattening process was developed to eliminate the risk of short circuiting between the metal matrices and printed conductors, and simultaneously reduce the total thickness of the printed circuitry. This acted to improve the integrity of the UAM MMC’s and their resultant mechanical strength. The functionality of embedded printed circuitries was examined via four-point probe measurement. DualBeam Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) milling were used to investigate the microstructures of conductive materials to characterize the effect of UAM embedding energy whilst peel testing was used to quantify mechanical strength of MMC structures in combination with optical microscopy. Through this process, fully functioning MMC structures featuring embedded insulating and conductive materials were realised whilst still maintaining high peel resistances of ca. 70 N and linear weld densities of ca. 90%
Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.
Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health
25 Years of Self-organized Criticality: Concepts and Controversies
Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers