105 research outputs found

    The Oslo Health Study: Is bone mineral density higher in affluent areas?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on previously reported differences in fracture incidence in the socioeconomic less affluent Oslo East compared to the more privileged West, our aim was to study bone mineral density (BMD) in the same socioeconomic areas in Oslo. We also wanted to study whether possible associations were explained by socio-demographic factors, level of education or lifestyle factors.</p> <p>Methods</p> <p>Distal forearm BMD was measured in random samples of the participants in The Oslo Health Study by single energy x-ray absorptiometry (SXA). 578 men and 702 women born in Norway in the age-groups 40/45, 60 and 75 years were included in the analyses. Socioeconomic regions, based on a social index dividing Oslo in two regions – East and West, were used.</p> <p>Results</p> <p>Age-adjusted mean BMD in women living in the less affluent Eastern region was 0.405 g/cm<sup>2 </sup>and significantly lower than in West where BMD was 0.419 g/cm<sup>2</sup>. Similarly, the odds ratio of low BMD (Z-score ≤ -1) was 1.87 (95% CI: 1.22–2.87) in women in Oslo East compared to West. The same tendency, although not statistically significant, was also present in men. Multivariate analysis adjusted for education, marital status, body mass index, physical inactivity, use of alcohol and smoking, and in women also use of post-menopausal hormone therapy and early onset of menopause, did hardly change the association. Additional adjustments for employment status, disability pension and physical activity at work for those below the age of retirement, gave similar results.</p> <p>Conclusion</p> <p>We found differences in BMD in women between different socioeconomic regions in Oslo that correspond to previously found differences in fracture rates. The association in men was not statistically significant. The differences were not explained by socio-demographic factors, level of education or lifestyle factors.</p

    Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) and serine biosynthetic pathway genes are co-ordinately increased during anabolic agent-induced skeletal muscle growth

    Get PDF
    We aimed to identify novel molecular mechanisms for muscle growth during administration of anabolic agents. Growing pigs (Duroc/(Landrace/Large-White)) were administered Ractopamine (a beta-adrenergic agonist; BA; 20ppm in feed) or Reporcin (recombinant growth hormone; GH; 10mg/48hours injected) and compared to a control cohort (feed only; no injections) over a 27-day time course (1, 3, 7, 13 or 27-days). Longissimus Dorsi muscle gene expression was analyzed using Agilent porcine transcriptome microarrays and clusters of genes displaying similar expression profiles were identified using a modified maSigPro clustering algorithm. Anabolic agents increased carcass (p=0.002) and muscle weights (Vastus Lateralis: p<0.001; Semitendinosus: p=0.075). Skeletal muscle mRNA expression of serine/one-carbon/glycine biosynthesis pathway genes (Phgdh, Psat1 and Psph) and the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase-M (Pck2/PEPCK-M), increased during treatment with BA, and to a lesser extent GH (p<0.001, treatment x time interaction). Treatment with BA, but not GH, caused a 2-fold increase in phosphoglycerate dehydrogenase (PHGDH) protein expression at days 3 (p<0.05) and 7 (p<0.01), and a 2-fold increase in PEPCK-M protein expression at day 7 (p<0.01). BA treated pigs exhibit a profound increase in expression of PHGDH and PEPCK-M in skeletal muscle, implicating a role for biosynthetic metabolic pathways in muscle growth

    Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance

    Get PDF
    The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source

    Tm1: A Mutator/Foldback Transposable Element Family in Root-Knot Nematodes

    Get PDF
    Three closely related parthenogenetic species of root-knot nematodes, collectively termed the Meloidogyne incognita-group, are economically significant pathogens of diverse crop species. Remarkably, these asexual root-knot nematodes are capable of acquiring heritable changes in virulence even though they lack sexual reproduction and meiotic recombination. Characterization of a near isogenic pair of M. javanica strains differing in response to tomato with the nematode resistance gene Mi-1 showed that the virulent strain carried a deletion spanning a gene called Cg-1. Herein, we present evidence that the Cg-1 gene lies within a member of a novel transposable element family (Tm1; Transposon in Meloidogyne-1). This element family is defined by composite terminal inverted repeats of variable lengths similar to those of Foldback (FB) transposable elements and by 9 bp target site duplications. In M. incognita, Tm1 elements can be classified into three general groups: 1) histone-hairpin motif elements; 2) MITE-like elements; 3) elements encoding a putative transposase. The predicted transposase shows highest similarity to gene products encoded by aphids and mosquitoes and resembles those of the Phantom subclass of the Mutator transposon superfamily. Interestingly, the meiotic, sexually-reproducing root-knot nematode species M. hapla has Tm1 elements with similar inverted repeat termini, but lacks elements with histone hairpin motifs and contains no elements encoding an intact transposase. These Tm1 elements may have impacts on root-knot nematode genomes and contribute to genetic diversity of the asexual species

    Extremely Low Genetic Diversity Indicating the Endangered Status of Ranodon sibiricus (Amphibia: Caudata) and Implications for Phylogeography

    Get PDF
    Background: The Siberian salamander (Ranodon sibiricus), distributed in geographically isolated areas of Central Asia, is an ideal alpine species for studies of conservation and phylogeography. However, there are few data regarding the genetic diversity in R. sibiricus populations. Methodology/Principal Findings: We used two genetic markers (mtDNA and microsatellites) to survey all six populations of R. sibiricus in China. Both of the markers revealed extreme genetic uniformity among these populations. There were only three haplotypes in the mtDNA, and the overall nucleotide diversity in the mtDNA was 0.00064, ranging from 0.00000 to 0.00091 for the six populations. Although we recovered 70 sequences containing microsatellite repeats, there were only two loci that displayed polymorphism. We used the approximate Bayesian computation (ABC) method to study the demographic history of the populations. This analysis suggested that the extant populations diverged from the ancestral population approximately 120 years ago and that the historical population size was much larger than the present population size; i.e., R. sibiricus has experienced dramatic population declines. Conclusion/Significance: Our findings suggest that the genetic diversity in the R. sibiricus populations is the lowest among all investigated amphibians. We conclude that the isolation of R. sibiricus populations occurred recently and was a result of recent human activity and/or climatic changes. The Pleistocene glaciation oscillations may have facilitated intraspecie
    • …
    corecore