93 research outputs found

    Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with T2 to T4, N0 and N1 breast cancer

    Get PDF
    Abstract Background Histological status of axillary lymph nodes is an important prognostic factor in patients receiving surgery for breast cancer (BC). Sentinel lymph node (SLN) biopsy (B) has rapidly replaced axillary lymph node dissection (ALND), and is now the standard of care for axillary staging in patients with clinically node-negative (N0) operable BC. The aim of this study is to compare pretreatment lymphoscintigraphy with a post primary systemic treatment (PST) scan in order to reduce the false-negative rates for SLNB. Methods In this single-institution study we considered 170 consecutive T2-4 N0-1 M0 BC patients treated with anthracycline-based PST. At the time of incisional biopsy, we performed sentinel lymphatic mapping. After PST, all patients repeated lymphoscintigraphy with the same methodology. During definitive surgery we performed further sentinel lymphatic mapping, SLNB and ALND. Results The SLN was removed in 158/170 patients giving an identification rate of 92.9% (95% confidence interval (CI) = 88.0–96.3%) and a false-negative rate of 14.0% (95% CI = 6.3–25.8%). SLNB revealed a sensitivity of 86.0% (95% CI = 74.2–93.7%), an accuracy of 94.9% (95% CI = 90.3–97.8%) and a negative predictive value of 92.7% (95% CI = 86.1–96.8%). Conclusion Identification rate, sensitivity and accuracy are in accordance with other studies on SLNB after PST, even after clinically negative node conversion following PST. This study confirms that diagnostic biopsy and neoadjuvant chemotherapy maintain breast lymphatic drainage unaltered

    Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Addison's disease (AD) is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV) could add to the repertoire of genetic susceptibility to autoimmune AD.</p> <p>Methods</p> <p>A genome-wide study using the Affymetrix GeneChip<sup>® </sup>Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352) and healthy controls (n = 353) by duplex Taqman real-time polymerase chain reaction assays.</p> <p>Results</p> <p>We found that low copy number of <it>UGT2B28 </it>was significantly more frequent in AD patients compared to controls; conversely high copy number of <it>ADAM3A </it>was associated with AD.</p> <p>Conclusions</p> <p>We have identified two novel CNV associations to <it>ADAM3A </it>and <it>UGT2B28 </it>in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (<it>UGT2B28</it>) and T cell maturation (<it>ADAM3A</it>). Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity.</p

    Breast tumour angiogenesis

    Get PDF
    The central importance of tumour neovascularization has been emphasized by clinical trials using antiangiogenic therapy in breast cancer. This review gives a background to breast tumour neovascularization in in situ and invasive breast cancer, outlines the mechanisms by which this is achieved and discusses the influence of the microenvironment, focusing on hypoxia. The regulation of angiogenesis and the antivascular agents that are used in an antiangiogenic dosing schedule, both novel and conventional, are also summarized

    Caloric vestibular stimulation modulates nociceptive evoked potentials

    Get PDF
    Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS and to 1 h after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated either by subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex

    Preoperative bevacizumab combined with letrozole and chemotherapy in locally advanced ER- and/or PgR-positive breast cancer: clinical and biological activity

    Get PDF
    The antiangiogenic agent bevacizumab showed synergistic effects when combined with chemotherapy in advanced breast cancer. We presently investigated the activity of bevacizumab in combination with chemotherapy, including capecitabine and vinorelbine, and endocrine therapy, including letrozole (+triptorelin in premenopausal women), as primary therapy for patients with ER and/or PgR ⩾10% T2–T4a-c, N0–N2, M0 breast cancer. Biological end point included the proliferative activity (Ki67), whereas clinical end points were clinical response rate, pathological complete response (pCR) and tolerability. Circulating endothelial cells (CECs) and their progenitors, as surrogate markers of antiangiogenic activity, were measured at baseline and at surgery.Thirty-six women are evaluable. A clinical response rate of 86% (95% CI, 70–95) and no pCR were observed; Ki67 was significantly decreased by 71% (interquartile range, −82%, −62%). Toxicity was manageable: two grade 3 hypertension, four grade 3 deep venous thrombosis and no grade >2 proteinuria were observed. Treatment significantly decreased the percentage of viable CECs and prevented the chemotherapy-induced mobilisation of circulating progenitors. Basal circulating progenitors were positively associated with clinical response. In conclusion, bevacizumab is feasible and active in association with primary chemoendocrine therapy for ER-positive tumours in terms of proliferation inhibition, clinical response and antiangiogenic activity

    Do Gravity-Related Sensory Information Enable the Enhancement of Cortical Proprioceptive Inputs When Planning a Step in Microgravity?

    No full text
    International audienceWe recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90–160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity

    The vestibular system modulates the contributions of head and torso to egocentric spatial judgements

    Get PDF
    Egocentric representations allow us to describe the external world as experienced from an individual’s bodily location. We recently developed a novel method of quantifying the weight given to different body parts in egocentric judgments (the Misalignment Paradigm). We found that both head and torso contribute to simple alter-egocentric spatial judgments. We hypothesised that artificial stimulation of the vestibular system would provide a head-related signal, which might affect the weighting given to the head in egocentric spatial judgments. Bipolar Galvanic Vestibular Stimulation (GVS) was applied during the Misalignment Paradigm. A sham stimulation condition was also included to control for non-specific effects. Our data show that the weight given to the head was increased during left anodal and right cathodal GVS, compared to the opposite GVS polarity and sham stimulation. That is, the polarity of GVS, which preferentially activates vestibular areas in the right cerebral hemisphere, influenced the relative weightings of head and torso in spatial judgments

    Somatosensory modulation of perceptual vestibular detection

    Get PDF
    Vestibular-multisensory interactions are essential for self-motion, navigation and postural stability. Despite evidence suggesting shared brain areas between vestibular and somatosensory inputs, no study has yet investigated whether somatosensory information influences vestibular perception. Here, we used signal detection methods to identify whether somatosensory stimulation might interact with vestibular events in a vestibular detection task. Participants were instructed to detect near-threshold vestibular roll-rotation sensations delivered by galvanic vestibular stimulation in one-half of experimental trials. A vibrotactile signal occurred to the index fingers of both hands in half of the trials, independent of vestibular signals. We found that vibrotactile somatosensory stimulation decreased perceptual vestibular sensitivity. The results are compatible with a gain regulation mechanism between vestibular and somatosensory modalities
    corecore