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Abstract Purpose: To investigate the relationship of hypoxia-inducible factor-1a (HIF-1a) tumor expres-
sion in predicting the response to epirubicin and disease-free survival (DFS) in patients with
breast cancer enrolled in a single institution trial of primary anthracycline and tamoxifen therapy.
Experimental Design: The expression of HIF-1awas assessed by immunohistochemistry in
187 patients withT2-4 N0-1breast cancer enrolled in a randomized trial comparing four cycles of
single agent epirubicin versus epirubicin + tamoxifen as primary systemic treatment. All patients
postoperatively received four cycles of the four weekly i.v. CMF regimen (cyclophosphamide,
methotrexate, and 5-fluorouracil). Patients with estrogen receptor (ER)-positive primary tumors
also underwent 5 years of treatment with adjuvant tamoxifen. Carbonic anhydrase IX (CAIX)was
also scored as a marker of HIF activity.
Results: Overall response to therapy progressively decreased with increasing tumor HIF-1a
(P < 0.05), and HIF-1awas an independent predictor of response (P < 0.048). HIF-1aexpression
was also associated with a significantly shorter DFS (P < 0.02) in all patients and in ER-positive
but not in ER-negative patients. Furthermore, CAIX positivity conferred a significantly shorter
DFS (P = 0.02) compared with CAIX-negative tumors in patients with HIF-1a-negative tumors.
Conclusions: HIF-1a expression in patients with breast cancer is a marker of poor therapy
response and outcome, especially in ER-positive patients. The combination of two hypoxia
markers has greater utility than assessing just one, and patients with hypoxia markers in their
tumors may be suitable for administration of drugs that reduce HIF-1aexpression and increase
oxygen delivery to the tumor bed before starting neoadjuvant therapies.

Tumor growth and metastasis is dependent on the generation
of a neovasculature. However, newly formed vessels function
poorly in supplying oxygen and nutrient requirements in many
tumors. Hypoxia, the pathophysiologic consequence of the

structurally and functionally disturbed microcirculation (1), is

therefore a common feature in solid tumors. Tumors respond

to cellular oxygen deprivation using the ubiquitous family of

transcription factors known as hypoxia-inducible factors (HIF;

ref. 2). Under normal oxygen tension, HIF-1a is hydroxylated

by specific prolyl hydroxylases, leading to recognition and

binding by the von Hippel-Lindau protein, and targeting for

degradation through the proteasome. In conditions of hypoxia,

molecular oxygen is not available for hydroxylase activity,

which leads to HIF-1a protein stabilization and translocation

to the nucleus where it binds to aryl hydrocarbon nuclear

translocators resulting in the activation of several gene path-

ways involved in angiogenesis, glycolysis, erythropoiesis, and

apoptosis (see ref. 3). Overexpression of HIF-1a protein has

been identified in many tumor types (4), with high levels

influencing the growth rate and metastatic potential of these

cancers. In breast cancers, the frequency of HIF-1a-positive cells

increases in parallel with increasing pathologic stage and is

associated with a poor prognosis (5–7). Furthermore, up-

regulation of the hypoxia pathway by HIF has not only been

shown to confer an aggressive phenotype, but also contributes

to resistance to radiotherapy and chemotherapy.
Both radiotherapy and chemotherapy improve patient

survival, with response dependent on tumor and patient
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characteristics. Predictive factors are used to forecast such
response to a particular therapy (8). Each therapy should be
evaluated independently in patient cohorts defined by the
predictive factor (9). This can be optimally done in a
prospective randomized clinical trial with primary chemother-
apy being the optimal setting to study new biological markers
in relation to the predictive information they provide. In
addition, tumor biopsy specimens obtained in matched pair
cases at diagnosis and definitive surgery provides valuable
information on the interaction between biological markers
and treatment. We have used an immunohistochemical
approach to evaluate the putative hypoxia markers HIF-1a
and carbonic anhydrase IX (CAIX) expression in a series of
breast cancer specimens obtained before and after primary
anthracycline and tamoxifen therapy. Our aims were (a) to
test whether HIF-1a predicts response to treatment, (b) to
assess whether HIF-1a predicts disease-free survival (DFS), and
(c) whether using additional hypoxic markers helps define the
hypoxic population.

Patients andMethods

Patients. Patients with T2-4 N0-1 breast cancer were recruited in a

randomized trial comparing single agent epirubicin (EPI arm) versus

epirubicin plus tamoxifen (EPI-TAM arm) as the primary systemic

treatment (10). Patients were accrued from January 1997 to December

2001. The study was approved by the Institutional Investigations

Committee. All patients gave written informed consent to the

diagnostic procedures, the proposed treatment, and the biological

evaluations. Two-hundred and eleven patients were enrolled, 105 were

randomized to receive epirubicin alone, and 106 were randomized to

receive epirubicin plus tamoxifen. On first presentation, an incision

biopsy was done on each patient and a small tissue sample (0.5-0.8

cm) was removed. Chemotherapy was started within 2 days of

diagnosis. Patients in the EPI arm received 60 mg/m2 of epirubicin

(Farmorubicina, Pharmacia, Milan, Italy) by slow i.v. push on days 1

and 2; whereas patients on the EPI-TAM arm received 60 mg/m2 of

epirubicin by slow i.v. push on days 1 and 2 and 30 mg of tamoxifen

(Kessar, Pharmacia) daily. Epirubicin injections were repeated every

21 days for three or four cycles before definitive surgery, whereas

tamoxifen was given continuously until definitive surgery. All patients

postoperatively received four cycles of the CMF regimen [i.v.

cyclophosphamide (600 mg/m2), i.v. methotrexate (40 mg/m2), and

i.v. 5-fluorouracil (600 mg/m2) on days 1 and 8, every 28 days; ref. 11].

Patients with estrogen receptor (ER)–positive primary tumor in

both treatment arms received tamoxifen (20 mg, i.e., lower than

the primary dose) starting after surgery, up to progression or for

a maximum of 5 years. The median follow up of patients was

53 months (August 2004; range, 13-95).
Treatment evaluation. Each month, the size of the primary tumor

and the size of the axillary lymph nodes, when appreciable, were

measured by the same clinician using a caliper. Response was assessed

before definitive surgery by the clinical measurement of the changes in

the product of the two largest diameters recorded in two successive

evaluations. According to WHO criteria, tumor progression was

defined as an increase of at least 25% in tumor size; stable disease

was defined as an increase of <25%, or a reduction of <50%; partial

response was defined as a tumor shrinkage >50%; and complete

response was defined as the complete disappearance of all clinical

signs of disease. Pathologic complete response was defined as the

absence of neoplastic cells in the breast and in the axillary lymph

nodes. Surgery was planned after full clinical reassessment. Quad-

rantectomy or modified radical mastectomy were done when

indicated in association with full axillary node dissection. All patients

subjected to quadrantectomy underwent irradiation of the residual

breast (60 Gy delivered over 6 weeks).
Histopathologic grade and immunohistochemistry. Tumor grade was

evaluated using the Nottingham prognostic index (12). Immunohis-
tochemical evaluation was done on paraffin-embedded tumor samples

obtained at diagnosis and at definitive surgery. Bcl2, p53, ER,
progesterone receptor (PgR), and Ki67 staining were done at the
Pathology Unit of the Azienda Ospedaliera Istituti Ospitalieri of
Cremona (Italy). The immunohistochemical method used in Cremona

for routine markers is fully described elsewhere (13). Immunohisto-
chemistry for HIF-1a and CAIX was done on 5 Am sections of tissue
microarrays containing two 1-mm tumor cores taken from selected
morphologically representative tumor regions of each paraffin-

embedded breast tumor from both the initial diagnostic incisional
biopsy and from tumor remaining at definitive surgery. Quality
control was assessed on each block by H&E staining. HIF-1a was
detected using the ESEE 122 (IgG1 monoclonal antibody; dilution,

1:40) monoclonal antibody and CAIX with murine monoclonal
antibody M75 (a kind gift from S. Pastorekova, Center of Molecular
Medicine, Institute of Virology, Slovak Academy of Sciences, Brati-
slava, Slovak Republic) at a dilution of 1:50 for 30 minutes (14).

These were stained as previously reported by Talks et al. (15), and the

Table1. Patient characteristics

Total number 187

Randomization
EPI 90 (48.1%)
EPI-TAM 97 (51.9%)
ER� 39 (20.1%)
ER+ 147 (79.0%)
PgR� 96 (51.6%)
PgR+ 90 (48.4%)
CAIX� 125 (75.3%)
CAIX+ 41 (24.7%)

HIF-1apretherapy
0 33 (19.3%)
1 100 (58.5%)
2 38 (22.2%)

HIF-1aposttherapy
0 17 (12.7%)
1 76 (56.7%)
2 41 (30.6%)
T2 144 (77.0%)
T3-4 43 (23.0%)
N0 106 (56.7%)
N1 81 (43.3%)
Grade 2 49 (26.6%)
Grade 3 135 (73.4%)
Missing 3
p53� 93 (50%)
p53+ 93 (50.0%)
Missing 1
c-erbB2� 128 (74.9%)
c-erbB2+ 43 (25.1%)
bcl2� 51 (27.4%)
bcl2+ 135 (72.6%)

Clinical response
Complete response 33 (17.7%)
Partial response 111(59.7%)
No response 42 (22.6%)
Missing 1
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Envision HRP kit (Dako, Glostrup, Denmark) was used for sub-
sequent visualization. Slides were counterstained with hematoxylin
and mounted. Immunostaining for HIF-1a and CAIX were quantified

in carcinoma cells by semiquantitative scoring as previously described
(15, 16). Pathologists were blinded to patient outcome and whether
the samples they examined were obtained from incisional biopsy or
definitive surgery. Briefly, HIF-1a was scored as 0 (no staining), 1

(weak staining), or 2 (strong staining). Tumors were considered
positive for HIF-1a and CAIX in survival analyses when any staining
was present.
Statistical methods. m2 Test, m2 test for trend, and Fisher exact test

were used when indicated to perform comparisons of proportions.
Kruskal-Wallis ANOVA was done to compare continuous variables.
DFS and overall survival were calculated from randomization to the
occurrence of disease relapse or disease-related death. Patients were
censored if they were free from recurrence and alive at the last follow-
up period. The DFS and overall survival curves were estimated using the
Kaplan-Meier method. Unadjusted differences in these estimates were
assessed with the log-rank test. Multivariate logistic regression was used
to identify covariates independently associated with disease response.
The Cox proportional hazards model was used to assess, in multivariate
analyses, the independent predictive role of clinicopathologic factors

and the treatment administered for disease recurrence. All variables
included in multivariate analyses were dichotomized variables with the
exception of Ki67. This latter variable had a left-skewed distribution
and was modeled using log-transformation. The stepwise backward
procedure based on the likelihood ratio was employed in both
multivariate analyses. All P values reported were two sided; P < 0.05
was considered statistically significant. Statistical analyses were done
using Statistica for Windows (Tulsa, OK) and SPSS for Windows
software packages.

Results

Patient characteristics. One hundred and eighty-seven of
the 211 (88.6%) patients prospectively enrolled in the trial
were evaluable for HIF-1a. For the remaining 24 patients,
insufficient material was available. Patient characteristics are
shown in Table 1. Ninety patients (48%) were randomized to
the EPI arm and 97 (52%) patients were randomized to the
EPI-TAM arm. HIF-1a was evaluated at baseline excision in
171 (91%) tumors, 134 (72%) in the main tumor resection,

Fig. 1. CONSORTdiagram.
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and 118 (63%) before and after treatment, whereas 16 (9%)
patients had HIF-1a assessed in the residual tumor histology
only. Positive tumor immunostaining was detected in 138
(80.7%) tumor samples collected before treatment and in
117 (87.3%) tumor samples collected afterwards (Fig. 1).
CAIX was expressed in 41 of 166 (24.7%) pretreatment
biopsies (Table 1).
Relationship between baseline HIF-1a expression and clinico-

pathologic variables. The relationship between HIF-1a expres-
sion and clinicopathologic variables was assessed by both m2

for trend and m2, the latter test was done to compare patients
with strong tumor expression of HIF-1a compared with those
with low or no expression. HIF-1a was scored as 0 (no
staining), 1 (weak staining), or 2 (strong staining). There was
no correlation between HIF-1a and c-erb-B2, T status, N status,
grade, p53, bcl2, or ER in a univariate analysis of expression of
preneoadjuvant tumors (P > 0.05; Table 2).
Effect of treatment on HIF-1a expression. In the 118 patients

with HIF-1a assessed in matched samples before and after
treatment, HIF-1a positivity was found in 98 baseline tumor
samples (83.1%) and in 106 residual tumor samples after
chemotherapy (89.8%). When considering individual varia-
tion, HIF-1a status changed from positive to negative in seven
patients (5.9%), one (1.7%) randomized in the EPI arm and
six (10.2%) in the EPI-TAM arm, respectively. The opposite
change (negative to positive) occurred in 15 cases (12.7%),
8 (13.6%) randomized in the EPI arm and 7 (11.9%) in the
EPI-TAM arm, respectively (Fig. 2A). As a consequence of the
different changes between treatment arms, HIF-1a positivity at
postchemotherapy histology was significantly lower in the EPI-
TAM arm (83.1%) as opposed to the EPI arm (96.4%; Fisher
m2 test; P < 0.03; Fig. 2B).
HIF-1a expression and response to treatment. Among the

171 patients with HIF-1a assessed at baseline, one patient
refused to continue the treatment after the first cycle and was
not assessable for response. One hundred and thirty-three
out of 170 assessable cases (78.2%) showed a clinical res-
ponse (complete + partial), 31 (18.2%) cases showed a com-
plete response, and 102 showed a partial response (60.0%).
At postchemotherapy residual histology, five patients (2.9%)
had a pathologic complete response. According to HIF-1a

expression, overall response progressively decreased with an
increase in HIF-1a expression score (P < 0.05; Table 3).
Stratifying patients according to treatment arm, the inverse
correlation between HIF-1 expression and disease response
was evident in EPI but not in EPI-TAM patients. The five
pathologically complete responses were observed in patients
with negative or weak HIF-1a expression. In a multivariate
analysis using a logistic regression model using 0, 1, and 2 as
in univariate analysis, HIF-1a expression was confirmed to be
a significant independent variable predicting clinical response

Fig. 2. A, HIF-1a individual variation from positive to negative and the opposite
change (negative to positive) overall and according to the randomization. B, HIF-1a
expression changes between treatment arms.

Table 2. Distribution of prognostic variables and CAIX expression according to HIF-1aexpression

Grading 0 1 2 P

Trend 0 and1versus 2

Grade 2 10 of 33 (30.3%) 28 of 99 (28.3%) 7 of 36 (19.4%)
Grade 3 23 of 33 (69.7%) 71of 99 (71.7%) 29 of 36 (80.5%) 0.30 0.26
p53 16 of 33 (48.5%) 49 of100 (49.0%) 19 of 37 (51.3%) 0.81 0.78
c-erb-B2 8 of 33 (24.2%) 23 of100 (23.0%) 12 of 38 (31.6%) 0.45 0.30
bcl2 28 of 33 (84.8%) 74 of100 (74.0%) 24 of 37 (64.8%) 0.06 0.14
ER 27 of 33 (81.8%) 81of 99 (81.8%) 29 of 38 (66.3) 0.75 0.44
PgR 19 of 33 (57.6%) 49 of 99 (49.5%) 15 of 38 (39.5%) 0.12 0.19
T2 27 of 33 (81.8%) 74 of100 (74.0%) 30 of 38 (78.9%) 0.81 0.70
T3 6 of 33 (18.2%) 26 of100 (26.0%) 8 of 38 (21.1%)
Node positive 16 of 33 (48.5%) 40 of100 (40.0%) 20 of 38 (52.6%) 0.67 0.25
Ki67 21.6 (14.7-28.4) 21.5 (17.9-25.1) 24.8 (17.4-32.1) 0.66 0.66
CAIX 8 of 29 (27.6%) 20 of 36 (20.8%) 13 of 36 (36.1%) 0.36 0.09
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(odds ratio, 0.546; 95% confidence interval, 0.299-0.995;
P = 0.048) after adjusting for T stage, N status, steroid hor-
mone receptor status, c-erb2, bcl2, p53, and Ki67 expression
(Table 4).
HIF-1a expression and disease outcome. Forty-four out of

187 patients relapsed (23.5%) and 22 (11.7%) died of
disease. HIF-1a expression was associated with a statistically
significant shorter DFS (P = 0.02; Fig. 3), whereas overall
survival was not affected (data not shown). Stratifying patients
according to ER status, showed HIF-1a to be a significant
predictor of shorter DFS in ER-positive (Fig. 4) but not in ER-
negative patients, the latter probably reflecting low numbers
in each subgroup.

In multivariate analysis, HIF-1a expression failed to be
independently associated with DFS after adjusting for T stage,
N status, steroid hormone receptor status, c-erb2, bcl2, p53, and
Ki67 (hazard ratio, 2.56; 95% confidence interval, 0.77-8.50;
P = 0.12). However, because HIF-1a has a half-life that is
measured in minutes, we also assessed whether the hypoxia
marker, CAIX, which has a half-life of 38 hours, was associated
with a worse prognosis. We therefore stratified HIF-1a-negative
patients by CAIX. This showed that those patients whose tumors
expressed CAIX had a significantly shorter DFS (P = 0.02) than
patients with tumors showing no CAIX expression (Fig. 5).
A similar but nonsignificant trend was also observed in HIF-1a-

positive tumors in which CAIX positivity was associated with a
shorter DFS (P = 0.09).

Discussion

The search for associations between biological factors and
treatment response is important not only to distinguish patients
that will derive benefit from certain regimens from those who
will not, but also to identify novel targets for specific thera-
peutics. This study has focused on the evaluation of the key
hypoxia mediator, HIF-1a, as a predictive and prognostic factor.

Although HIF-1a expression may also be influenced by other
pathways (17), a significant correlation between oxygen
tension and HIF-1a has been reported in cervical cancer (18),
suggesting that HIF-1a might be used as a surrogate for tumor
hypoxia. HIF-1a expression is associated with a reduced
survival in a variety of human cancers including uterine cervix
(19), ovary (20), esophagus (21), lung (22), and breast (6, 23)
and may also influence resistance to therapy in several cancer
types (see ref. 24). Here, we show for the first time in human
breast cancer that HIF-1a expression is also a predictive marker
of chemotherapy failure. We observed that pretreatment levels
of HIF-1a showed a significant inverse correlation with disease
response; tumors with a high expression of HIF-1a being less
likely to respond to chemotherapy. It is interesting that only

Table 4. Multivariate logistic regression analysis of
independent predictive factors for clinical response

Hazard ratio
(95% confidence interval)

P

HIF-1a 0.546 (0.299-0.995) 0.048
Ki67 1.249 (0.273-5.718) 0.774
N status 0.842 (0.372-1.904) 0.680
p53 0.861 (0.386-1.921) 0.714
bcl2 1.162 (0.458-2.951) 0.752
ER 0.667 (0.179-2.477) 0.542
PgR 1.288 (0.529-3.140) 0.578
c-erbB2 0.646 (0.272-1.533) 0.326
Tstatus 0.602 (0.259-1.399) 0.245
Treat 1.655 (0.776-3.530) 0.190
EPI versus EPI-TAM
Grade 1.829 (0.784-4.262) 0.167 Fig. 3. Kaplan-Meier curves of disease-free survival of patients stratified by HIF-1a

expression.

Table 3. Disease response according to baseline HIF-1aexpression

0 1 2 P

Clinical response (complete + partial)
All patients under Clinical Response 18 of 33 (84.8%) 80 of 99 (80.8%) 25 of 38 (65.8%) <0.05*
EPI 12 of14 (85.7%) 38 of 49 (77.6%) 11of 20 (55.0%) <0.04*
EPI-TAM 16 of19 (84.2%) 42 of 50 (84.0%) 14 of18 (77.8%) 0.61*

Pathologic response
Pathologic complete response 1of 33 (3.0%) 4 of 99 (4.0%) 0 of 38 (0) 0.45

*m2 Test for trend.
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patients with absent or weak HIF-1a expression showed a
pathologic complete response.

This data also confirms in vitro and in vivo data which
suggests that hypoxia reduces the effects of certain cytotoxic
agents, particularly anthracyclines (25, 26). This is in support
of our previous findings of the negative effect of low
hemoglobin on radiation and antineoplastic agents in patients
with breast cancer (1, 25, 27) and implies that the concurrent
administration of erythropoietin to maintain oxygen delivery
to the tumor bed would increase drug efficacy. Alternatively,
the addition of taxanes concomitantly or sequentially to
anthracycline-based regimens may also increase tumor oxygen-
ation (28).

An increase in HIF-1a expression was more frequently
observed in patients treated with epirubicin alone than with
the chemoendocrine combination therapy, suggesting that
this agent may at least partly be responsible for HIF-1a
induction. However, because anthracycline therapy reduces
blood flow (29), this effect might also account for HIF-1a
induction and the stimulation of vascular endothelial growth
factor noted with anthracycline therapy (30). However,
antiestrogens such as tamoxifen have also been shown to
inhibit angiogenesis in both an estrogen-dependent and
-independent manner. Although this may also be expected
to enhance the hypoxic fraction of the tumor, the concom-
itant tumor cell apoptosis from the combination treatment
could result in a reduction of interstitial pressure (31),
abrogating the effect. The potential mechanisms for HIF-
mediated drug resistance include altering the apoptotic

pathway (26), up-regulating the multidrug resistance trans-
porter P-glycoprotein (32), in addition to the poor drug
delivery in functionally deficient vessels.

Our data shows that HIF-1a not only selects the patients
with a higher risk of relapse, but also identifies the ER-positive
patients with a poor outcome that is similar to that of ER-
negative patients. These findings, together with the observation
of HIF-1a being an indicator of poor prognosis in node-
negative and -positive breast cancers (6, 23), suggests that
whatever the biological background, hypoxia is an essential
element in the selection of more aggressive phenotype being
associated with both chemoresistance and endocrine resis-
tance. Indeed, because HIF-1a protein has a half-life that is
measured in minutes (33), we also wished to determine
whether the presence of chronic, in addition to recent, hypoxia
conferred a poor prognosis. Therefore, we also stratified
HIF-1a-negative patients by CAIX expression. CAIX is a HIF-
induced protein, which has a half-life of 38 hours (34), longer
than that of HIF-1a (and therefore accounting for the absence
of association between HIF-1a and CAIX). It is interesting to
note that the presence of tumor CAIX was significantly
associated with a worse DFS in these patients compared with
CAIX-negative tumors. This enzyme contributes to an acidic
extracellular environment, which is known to reduce anthra-
cycline uptake.

In conclusion, the measurement of HIF-1a in breast cancer
may be of use to prospectively stratify patients in trials of
neoadjuvant therapy using drugs which are able to increase
oxygen delivery to the tumor or inhibit HIF, e.g., bortezomib.

Fig. 5. Kaplan-Meier curves of disease-free survival of patients with HIF-1a-
negative tumors stratified by CAIX expression.
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