176 research outputs found

    High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    Get PDF
    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model

    Study of plasmid profile and alkane hydroxylase genes in crude-oil degrading bacteria isolated from the Persian Gulf

    Get PDF
    610-615Bioremediation, using microorganisms, especially hydrocarbon-degrading bacteria are inexpensive and eco-friendly methods to reduce oil pollutions. Plasmids containing hydrocarbon-degrading genes encode the enzymes necessary for the derivative pathways are important for bioremediation. The aim of the present work was to study the plasmid profile of bacterial strains isolated from crude-oil contaminated sites in the Persian Gulf in previous researches. In this study, plasmids were extracted from 21 strains using alkaline lysis method. Then, alkane hydroxylase gene groups (I, II, III) were detected in extracted plasmids using specific primers by PCR. The results of this study indicated that eight crude oil degrading strains out of 21 had plasmid. The results of PCR amplification confirmed that 50 % of plasmid containing strains had alkane hydroxylase gene group (I), 75 percent of them had alkane hydroxylase gene group (III) and none of them had alkane hydroxylase gene group (II)

    Optimal Signal Processing of Frequency-Stepped CW Radar Data

    Get PDF
    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed

    Accurate proteome-wide protein quantification from high-resolution 15N mass spectra

    Get PDF
    In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods

    Construction of vaccine from Lactococcus lactis bacteria using Aeromonas hydrophila virulent Aerolysin gene.

    Get PDF
    In this study the forward and reverse primers were designated to amplify the segments (~250 bps and ~650 bps) of the gene coding domains 1 and 4 of aerolysin of Aeromonas hydrophila. These two domains are involved in pathogenesis of the aerolysin gene. Sequences for two restriction enzymes, Pst I and Hind III, were included in the forward and reverse primers respectively. These restriction enzyme sites were used because they are not present within the genes of interest but are available in the multiple cloning sites of plasmid pNZ8048. Amplified PCR products were analyzed with 1% agarose gel electrophoresis and results showed that amplifications were very specific. In comparison with the DNA marker, the sizes of the amplified PCR products were determined to be approximately ~250 bps and ~650 bps respectively. PCR products were then purified by the DNA purification kit, digested with REs and ligated with linearised pNZ8048 plasmid using T4 DNA ligase. Transformation of Lactococcus lactis NZ9000 cells was performed by the electroporation method. Verification for cloning of virulent genes was performed by REs digestion and also DNA sequencing. Since several antigens (bacterial and viral) and cytokines have been efficiently produced in L. lactis, constructing and expression and utilization of recombinant L. lactis harboring the aerolysin domains (virulent) genes from A. hydrophila may induce production of antibodies in fish against this pathogen

    Characterizing 3D Vegetation Structure from Space: Mission Requirements

    Get PDF
    Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth s sustainability. To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that: (1) current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral data have low explanatory power outside low biomass areas. There is no current capability for repeatable disturbance and regrowth estimates. (2) The science and policy needs for information on vegetation 3D structure can be successfully addressed by a mission capable of producing (i) a first global inventory of forest biomass with a spatial resolution 1km or finer and unprecedented accuracy (ii) annual global disturbance maps at a spatial resolution of 1 ha with subsequent biomass accumulation rates at resolutions of 1km or finer, and (iii) transects of vertical and horizontal forest structure with 30 m along-transect measurements globally at 25 m spatial resolution, essential for habitat characterization. We also show from the literature that lidar profile samples together with wall-to53 wall L-band quad-pol-SAR imagery and ecosystem dynamics models can work together to satisfy these vegetation 3D structure and biomass measurement requirements. Finally we argue that the technology readiness levels of combined pol-SAR and lidar instruments are adequate for space flight. Remaining to be worked out, are the particulars of a lidar/pol-SAR mission design that is feasible and at a minimum satisfies the information and measurement requirement articulated herein
    corecore