161 research outputs found

    О собственных числах матрицы состояния электрических цепей

    Get PDF
    An algorithm has been developed to form a matrix for balancing a state of monotonous circuits. It is shown that proper numbers of asymmetric matrix for balancing states of a monotonous circuit are real ones.Разработан алгоритм формирования матрицы уравнения состояния монотонных цепей. Показано, что собственные числа несимметричной матрицы уравнений состояний для монотонной цепи действительные

    The cryoEM structure of cytochrome bd from C. glutamicum provides novel insights into structural properties of actinobacterial terminal oxidases

    Get PDF
    Cytochromes bd are essential for microaerobic respiration of many prokaryotes including a number of human pathogens. These enzymes catalyze the reduction of molecular oxygen to water using quinols as electron donors. Their importance for prokaryotic survival and the absence of eukaryotic homologs make these enzyme ideal targets for antimicrobial drugs. Here, we determined the cryoEM structure of the menaquinol-oxidizing cytochrome bd-type oxygen reductase of the facultative anaerobic Actinobacterium Corynebacterium glutamicum at a resolution of 2.7 Å. The obtained structure adopts the signature pseudosymmetrical heterodimeric architecture of canonical cytochrome bd oxidases formed by the core subunits CydA and CydB. No accessory subunits were identified for this cytochrome bd homolog. The two b-type hemes and the oxygen binding heme d are organized in a triangular geometry with a protein environment around these redox cofactors similar to that of the closely related cytochrome bd from M. tuberculosis. We identified oxygen and a proton conducting channels emerging from the membrane space and the cytoplasm, respectively. Compared to the prototypical enzyme homolog from the E. coli, the most apparent difference is found in the location and size of the proton channel entry site. In canonical cytochrome bd oxidases quinol oxidation occurs at the highly flexible periplasmic Q-loop located in the loop region between TMHs six and seven. An alternative quinol-binding site near heme b595 was previously identified for cytochrome bd from M. tuberculosis. We discuss the relevance of the two quinol oxidation sites in actinobacterial bd-type oxidases and highlight important differences that may explain functional and electrochemical differences between C. glutamicum and M. tuberculosis. This study expands our current understanding of the structural diversity of actinobacterial and proteobacterial cytochrome bd oxygen reductases and provides deeper insights into the unique structural and functional properties of various cytochrome bd variants from different phylae

    Tamoxifen-Induced Apoptosis of MCF-7 Cells via GPR30/PI3K/MAPKs Interactions: Verification by ODE Modeling and RNA Sequencing.

    Get PDF
    Tamoxifen (Nolvadex) is one of the most widely used and effective therapeutic agent for breast cancer. It benefits nearly 75% of patients with estrogen receptor (ER)-positive breast cancer that receive this drug. Its effectiveness is mainly attributed to its capacity to function as an ER antagonist, blocking estrogen binding sites on the receptor, and inhibiting the proliferative action of the receptor-hormone complex. Although, tamoxifen can induce apoptosis in breast cancer cells via upregulation of pro-apoptotic factors, it can also promote uterine hyperplasia in some women. Thus, tamoxifen as a multi-functional drug could have different effects on cells based on the utilization of effective concentrations or availability of specific co-factors. Evidence that tamoxifen functions as a GPR30 (G-Protein Coupled Receptor 30) agonist activating adenylyl cyclase and EGFR (Epidermal Growth Factor Receptor) intracellular signaling networks, provides yet another means of explaining the multi-functionality of tamoxifen. Here ordinary differential equation (ODE) modeling, RNA sequencing and real time qPCR analysis were utilized to establish the necessary data for gene network mapping of tamoxifen-stimulated MCF-7 cells, which express the endogenous ER and GPR30. The gene set enrichment analysis and pathway analysis approaches were used to categorize transcriptionally upregulated genes in biological processes. Of the 2,713 genes that were significantly upregulated following a 48 h incubation with 250 μM tamoxifen, most were categorized as either growth-related or pro-apoptotic intermediates that fit into the Tp53 and/or MAPK signaling pathways. Collectively, our results display that the effects of tamoxifen on the breast cancer MCF-7 cell line are mediated by the activation of important signaling pathways including Tp53 and MAPKs to induce apoptosis

    The correlation of RNase A enzymatic activity with the changes in the distance between Nepsilon2-His12 and N delta1-His119 upon addition of stabilizing and destabilizing salts.

    Get PDF
    The effect of stabilizing and destabilizing salts on the catalytic behavior of ribonuclease A (RNase A) was investigated at pH 7.5 and 25 degrees C, using spectrophotometric, viscometric and molecular dynamic methods. The changes in the distance between N(epsilon2) of His(12) and N(delta1) of His(119) at the catalytic center of RNase A upon the addition of sodium sulfate, sodium hydrogen sulfate and sodium thiocyanate were evaluated by molecular dynamic methods. The compactness and expansion in terms of Stokes radius of RNase A upon the addition of sulfate ions as kosmotropic salts, and thiocyanate ion as a chaotropic salt, were estimated by viscometric measurements. Enzyme activity was measured using cytidine 2', 3'-cyclic monophosphate as a substrate. The results from the measurements of distances between N(epsilon2) of His(12) and N(delta1) of His(119) and Stokes radius suggest (i) that the presence of sulfate ions decreases the distance between the catalytic His residues and increases the globular compactness, and (ii) that there is an expansion of the enzyme surface as well as elongation of the catalytic center in the presence of thiocyanate ion. These findings are in agreement with activity measurements

    A genetic variant in proline and serine rich coiled-coil 1 gene is associated with the risk of cardiovascular disease

    Get PDF
    Background: Cardiovascular disease is one of the most common causes of morbidity and mortality worldwide. The Proline and Serine Rich Coiled-Coil 1 gene in 1p13.3 locus has been reported to be associated with low density lipoprotein cholesterol (LDL-C) and coronary artery disease (CAD). The objective of this study was to investigate the association between the rs599839 polymorphism of the Proline and Serine Rich Coiled-Coil 1 (PSRC1) gene with CVD outcomes in a population sample recruited as part of the Mashhad-Stroke and Heart-Atherosclerotic-Disorders (MASHAD) cohort. Methods: Five hundred and nine individuals who had an average follow-up period of 10 years were enrolled as part of the MASHAD cohort. DNA was extracted and genotyped using the TaqMan-real-time-PCR based method. Results: The study found individuals with GA/GG genotypes were at a higher risk of CVDs (OR= 4.7; 95% CI, 2.5-8.7; p< 0.001) in comparison to those with AA genotype; however, the result was not significant for GG genotype data. Conclusions: The results suggest that the GA/GG genotypes of the PSRC1gene locus were at increased risk of CVD in a representative population-based cohort, demonstrating further functional analysis to discover the value of emerging marker as a risk stratification biomarker to recognize high risk cases

    An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation

    Get PDF
    The bioenergetics of anaerobic metabolism frequently relies on redox loops performed by membrane complexes with substrate- and quinone-binding sites on opposite sides of the membrane. However, in sulfate respiration (a key process in the biogeochemical sulfur cycle), the substrate- and quinone-binding sites of the QrcABCD complex are periplasmic, and their role in energy conservation has not been elucidated. Here we show that the QrcABCD complex of Desulfovibrio vulgaris is electrogenic, as protons and electrons required for quinone reduction are extracted from opposite sides of the membrane, with a H+/e− ratio of 1. Although the complex does not act as a H+-pump, QrcD may include a conserved proton channel leading from the N-side to the P-side menaquinone pocket. Our work provides evidence of how energy is conserved during dissimilatory sulfate reduction, and suggests mechanisms behind the functions of related bacterial respiratory complexes in other bioenergetic contexts

    Sphingomimetic multiple sclerosis drug FTY720 activates vesicular synaptobrevin and augments neuroendocrine secretion

    Get PDF
    Neurotransmission and secretion of hormones involve a sequence of protein/lipid interactions with lipid turnover impacting on vesicle trafficking and ultimately fusion of secretory vesicles with the plasma membrane. We previously demonstrated that sphingosine, a sphingolipid metabolite, promotes formation of the SNARE complex required for membrane fusion and also increases the rate of exocytosis in isolated nerve terminals, neuromuscular junctions, neuroendocrine cells and in hippocampal neurons. Recently a fungi-derived sphingosine homologue, FTY720, has been approved for treatment of multiple sclerosis. In its non-phosphorylated form FTY720 accumulates in the central nervous system, reaching high levels which could affect neuronal function. Considering close structural similarity of sphingosine and FTY720 we investigated whether FTY720 has an effect on regulated exocytosis. Our data demonstrate that FTY720 can activate vesicular synaptobrevin for SNARE complex formation and enhance exocytosis in neuroendocrine cells and neurons
    corecore